CN112002783A - 一种红外探测器及其制备方法 - Google Patents

一种红外探测器及其制备方法 Download PDF

Info

Publication number
CN112002783A
CN112002783A CN202010922645.6A CN202010922645A CN112002783A CN 112002783 A CN112002783 A CN 112002783A CN 202010922645 A CN202010922645 A CN 202010922645A CN 112002783 A CN112002783 A CN 112002783A
Authority
CN
China
Prior art keywords
layer
inas
contact layer
molecular
infrared detector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202010922645.6A
Other languages
English (en)
Other versions
CN112002783B (zh
Inventor
王炫名
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing Magnesium Core Technology Co ltd
Original Assignee
Beijing Magnesium Core Technology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing Magnesium Core Technology Co ltd filed Critical Beijing Magnesium Core Technology Co ltd
Priority to CN202010922645.6A priority Critical patent/CN112002783B/zh
Publication of CN112002783A publication Critical patent/CN112002783A/zh
Application granted granted Critical
Publication of CN112002783B publication Critical patent/CN112002783B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • H01L31/035236Superlattices; Multiple quantum well structures
    • H01L31/035263Doping superlattices, e.g. nipi superlattices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/0304Inorganic materials including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L31/03042Inorganic materials including, apart from doping materials or other impurities, only AIIIBV compounds characterised by the doping material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/0304Inorganic materials including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L31/03046Inorganic materials including, apart from doping materials or other impurities, only AIIIBV compounds including ternary or quaternary compounds, e.g. GaAlAs, InGaAs, InGaAsP
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/102Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier
    • H01L31/105Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier the potential barrier being of the PIN type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/184Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIIBV compounds, e.g. GaAs, InP
    • H01L31/1844Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIIBV compounds, e.g. GaAs, InP comprising ternary or quaternary compounds, e.g. Ga Al As, In Ga As P
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Light Receiving Elements (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)

Abstract

本发明提供了一种红外探测器,其包括GaSb衬底;GaSb缓冲层,其中掺杂有Be;超晶格结构,其包含P接触层、I吸收层和N接触层;所述P接触层为InAs/Ga0.75In0.25Sb,所述P接触层的Ga0.75In0.25Sb分子层中掺杂有Be;所述I吸收层为InAs/Ga0.75In0.25Sb,所述I吸收层的Ga0.75In0.25Sb分子层中掺杂有Be;所述N接触层为InAs/Ga0.75In0.25Sb,所述N接触层的InAs分子层中掺杂有Si;N盖层,N盖层为Si掺杂的InAs。上述红外探测器可以有效探温度测接近室温的低温目标,且探测灵敏度高。

Description

一种红外探测器及其制备方法
技术领域
本发明涉及红外探测器领域,特别是涉及一种红外探测器及其制备方法。
背景技术
红外探测器由于其优异的性能已经广泛应用于预警卫星、导弹探测、激光雷达、通信、夜视和红外成像等方面。目前较成熟的红外焦平面探测器多采用锑化铟(InSb)或碲镉汞(MCT)作为探测器的材料。这两种材料可以满足中波红外线探测,探测发动机等高温目标效果很好,但是对低温目标的探测效果仍有待提高。
发明内容
本发明实施例的目的在于提供一种红外探测器,对低温目标具有良好的探测效果。
本发明第一个方面提供了一种红外探测器,其包括:
GaSb衬底;
GaSb缓冲层,其中掺杂有Be;
超晶格结构,其包含P接触层、I吸收层和N接触层;所述P接触层为InAs/Ga0.75In0.25Sb,所述P接触层的Ga0.75In0.25Sb分子层中掺杂Be;所述I吸收层为InAs/Ga0.75In0.25Sb,所述I吸收层的Ga0.75In0.25Sb分子层中掺杂Be;所述N接触层为InAs/Ga0.75In0.25Sb,所述N接触层的InAs分子层中掺杂Si;
N盖层,所述N盖层为Si掺杂的InAs。
优选地,所述GaSb缓冲层中Be的掺杂浓度为1×1016-1×1018cm-3;所述P接触层的Ga0.75In0.25Sb分子层中Be的掺杂浓度为1×1016-1×1018cm-3;所述I吸收层的Ga0.75In0.25Sb分子层中Be的掺杂浓度为1×1013-2×1015cm-3;所述N接触层的InAs分子层中Si的掺杂浓度为1×1016-1×1018cm-3;所述N盖层中Si的掺杂浓度为1×1016-1×1018cm-3
优选地,各层的厚度为:GaSb缓冲层:500nm;P接触层:500nm;I吸收层:2200nm;N接触层:500nm;N盖层:200nm。
优选地,P接触层包含9个単分子层的InAs和10个单分子层的Ga0.75In0.25Sb;I吸收层包含9个単分子层的InAs和9个单分子层的Ga0.75In0.25Sb;N接触层包含9个単分子层的InAs和9个单分子层的Ga0.75In0.25Sb。所述红外探测器的探测波长为10.5μm。
本发明第二个方面提供了一种红外探测器的制备方法,包括以下步骤:
对GaSb衬底进行预处理;在GaSb衬底上依次生长GaSb缓冲层、P接触层、I吸收层、N接触层和N盖层;所述P接触层为InAs/Ga0.75In0.25Sb,所述P接触层的Ga0.75In0.25Sb分子层中掺杂Be;所述I吸收层为InAs/Ga0.75In0.25Sb,所述I吸收层的Ga0.75In0.25Sb分子层中掺杂Be;所述N接触层为InAs/Ga0.75In0.25Sb,所述N接触层的InAs分子层中掺杂Si;所述N盖层为Si掺杂的InAs。
优选地,In/As束流比为1:4,Ga/In/Sb束流比1:0.4:5。
优选地,所述InAs的生长速率为0.115nm/s,所述Ga0.75In0.25Sb的生长速率为0.22nm/s。
本发明提供的红外探测器具有多层结构,采用In浸没法,通过在GaSb层生长中直接加入In组分,使其可以更好的与InAs层匹配,并且通过调控InAs层和Ga0.75In0.25Sb层的单分子层数比例获得探测波长为长波红外线,可以有效探测温度接近室温的低温目标,例如人体温度。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例。
图1为本发明一种实施方式中的红外探测器结构示意图。
具体实施方式
为使本发明的目的、技术方案、及优点更加清楚明白,以下参照附图并举实施例,对本发明进一步详细说明。显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。
本发明提供一种红外探测器,如图1所示,其包括:
GaSb衬底1,
GaSb缓冲层2,其中掺杂有Be;
超晶格结构,其包含P接触层3、I吸收层4和N接触层5;所述P接触层3为InAs/Ga0.75In0.25Sb,所述P接触层3的Ga0.75In0.25Sb分子层中掺杂Be;所述I吸收层4为InAs/Ga0.75In0.25Sb,所述I吸收层4的Ga0.75In0.25Sb分子层中掺杂Be;所述N接触层5为InAs/Ga0.75In0.25Sb,所述N接触层5的InAs分子层中掺杂Si;
N盖层6,所述N盖层6为Si掺杂的InAs。
优选地,所述GaSb缓冲层中Be的掺杂浓度为1×1016-1×1018cm-3;所述P接触层的Ga0.75In0.25Sb分子层中Be的掺杂浓度为1×1016-1×1018cm-3;所述I吸收层的Ga0.75In0.25Sb分子层中Be的掺杂浓度为1×1013-2×1015cm-3;所述N接触层的InAs分子层中Si的掺杂浓度为1×1016-1×1018cm-3;所述N盖层中Si的掺杂浓度为1×1016-1×1018cm-3
优选地,各层的厚度为:GaSb缓冲层:500nm;P接触层:500nm;I吸收层:2200nm;N接触层:500nm;N盖层:200nm。
优选地,P接触层包含9个単分子层的InAs和10个单分子层的Ga0.75In0.25Sb。
优选地,I吸收层包含9个単分子层的InAs和9个单分子层的Ga0.75In0.25Sb。
优选地,N接触层包含9个単分子层的InAs和9个单分子层的Ga0.75In0.25Sb。
优选地,N盖层的厚度为200nm或200nm以上。
本发明提供的红外探测器具有多层结构,InAs层和Ga0.75In0.25Sb层之间具有良好的匹配性,且电子和空穴分别被限制在InAs层和Ga0.75In0.25Sb层中,通过调控InAs层和Ga0.75In0.25Sb层的比例,使得两个波函数交叠不同,从而可以探测到不同波长的光子,获得波长为长波红外线的探测波长,而探测波长为长波红外线的探测器可以有效探测接近室温的低温目标。在红外探测领域,相较于高温探测目标,低温探测目标更难以识别和探测,因为探测目标的辐射波长随探测目标的温度变化,探测目标温度越高,辐射波长越短,辐射能量越大,也就更容易被探测器接受到;反之,低温探测目标辐射波长较长,辐射的能量小,探测器对其的辨识度较低。而本发明提供的探测器的可以探测长波长,可以探测低温目标,从而拓宽了探测器的探测范围。例如,可探测的目标温度为20-40℃,例如人体温度。
优选地,所述红外探测器的探测波长为10.5μm左右。
本发明第二个方面提供了一种红外探测器的制备方法,包括以下步骤:
对GaSb衬底进行预处理;
在GaSb衬底上依次生长GaSb缓冲层、P接触层、I吸收层、N接触层和N盖层;所述P接触层为InAs/Ga0.75In0.25Sb,所述P接触层的Ga0.75In0.25Sb分子层中掺杂Be;所述I吸收层为InAs/Ga0.75In0.25Sb,所述I吸收层的Ga0.75In0.25Sb分子层中掺杂Be;所述N接触层为InAs/Ga0.75In0.25Sb,所述N接触层的InAs分子层中掺杂Si;所述N盖层为Si掺杂的InAs。
优选地,本发明的红外探测器可以通过以下方法制备:
对GaSb衬底进行预处理;
在420-480℃下,在GaSb衬底上采用Ga源、Sb源、Be掺杂源生长GaSb缓冲层,Be的掺杂浓度为1×1016-1×1018cm-3,GaSb缓冲层的厚度为500nm;
在420-480℃下,在GaSb缓冲层上生长P接触层,先采用In源和As源生长9个単分子层的InAs,再采用Ga源、In源、Sb源和Be掺杂源生长10个単分子层的Ga0.75In0.25Sb,Be的掺杂浓度为1×1016-1×1018cm-3,P接触层的厚度为550nm;
在420-480℃下,在P接触层上生长I吸收层,先采用In源和As源生长9个単分子层的InAs,再采用Ga源、In源、Sb源和Be掺杂源生长9个単分子层的Ga0.75In0.25Sb,Be的掺杂浓度为1×1013-2×1015cm-3,I吸收层的厚度为2200nm;
在420-480℃下,在I吸收层上生长N接触层,先采用In源和As源生长9个単分子层的InAs,再采用Ga源、In源、Sb源和Si掺杂源生长9个単分子层的Ga0.75In0.25Sb,Si的掺杂浓度为1×1016-1×1018cm-3,N接触层的厚度为500nm;
在420-480℃下,在N接触层上生长N盖层,采用In源、As源生长和Si掺杂源生长InAs分子层,Si的掺杂浓度为1×1016-1×1018cm-3,N盖层厚度为200nm或大于200nm。
优选地,在生在各层时,Be掺杂源或Si掺杂源与生长各层的其它生长源同时打开。
在本发明中,生长Ga0.75In0.25Sb分子层时,先开启Ga源和Sb源,在合适的时间后打开In源,例如在30-50后打开In源,并使In源充满整个生长室,从而得到的Ga0.75In0.25Sb分子层与InAs分子层具有良好的匹配性。
优选地,In/As束流比为1:4,Ga/In/Sb束流比1:0.4:5。制备各分子层时,In源的流量均小于其它源的,采用本发明的束流比,可以得到上述Ga0.75In0.25Sb分子层与InAs分子层。
优选地,InAs的生长速率为0.115nm/s,Ga0.75In0.25Sb的生长速率为0.22nm/s。将各分子层的生长速率控制在上述范围内,得到的分子层表面平整无缺陷,有利于提高红外探测器的性能。如果生长速率过快,则会由于生长源的过量注入造成岛状生长,在分子层表面形成块状凸起,从而限制红外探测器性能的性能。生长速率过慢,则会导致制备效率低,不利于大规模生产。
在本发明中,所述预处理包含表面除气、脱氧处理和表面重构,主要是为了除去GaSb衬底表面的杂质,避免后续生长其它层时产生缺陷。在本发明中对表面除气、脱氧处理和表面重构没有特殊限制,只要能实现本发明的目的既可。例如,表面除气为在300℃下保持30分钟;脱氧处理为在真空室中,在550℃下保持30分钟;表面重构是在脱氧处理的基础上将温度降低到400±10℃后,开启Sb源,保持4-5分钟后完成对GaSb衬底的预处理;其中真空室真空大于1×10-10torr。
在本发明中,生长GaSb缓冲层、P接触层、I吸收层、N接触层和N盖层的方法没有特殊限制,只要能实现本发明的目的既可。例如,分子束外延生长法。
优选地,生长GaSb缓冲层、P接触层、I吸收层、N接触层和N盖层时,生长室的真空度大于1×10-10torr。
在本发明中,生长GaSb缓冲层的生长速率和Ga/Sb束流比没有特殊限制,只要能实现本发明的目的既可。例如,生长速率为0.22nm/s,Ga/Sb束流比为1:5。
在本发明的一些实施方式中,当掺杂元素为Be时,可以采用Be单质进行掺杂。
在本发明的一些实施方式中,当掺杂元素为Si时,可以采用Si单质进行掺杂。
在本发明的一些实施方式中,Ga源包含Ga单质,Sb源包含Sb单质,In源包含In单质,As源包含As单质。
实施例1
(1)GaSb衬底预处理:将尺寸为2英寸的GaSb衬底用去离子水超声清洗15分钟,再采用无水酒精超声清洗15分钟,最后采用丙酮超声清洗15分钟,取出后用氮气吹干。将清洗后的衬底装入进样室,用120℃红外烘烤12小时除气。然后装入分子束外延系统的缓冲室,在缓冲室内在300℃下对衬底除气30分钟。送入生长室,设置生长室内真空大于1×10- 10torr。将衬底加热至550℃,保持30分钟除去表面氧原子。再将温度降至400±10℃,开启Sb源,持续4-5分钟对衬底的表面进行重构,直到在反射高能电子衍射谱图上(RHEED)上看到尖锐清晰的1×3条纹,说明GaSb衬底表面已重构成为GaSb(100)晶面。
(2)生长GaSb缓冲层:在上述预处理完成的GaSb衬底上继续生长厚度为500nm的GaSb缓冲层,设置生长温度为450℃,待温度稳定后打开Ga源、Sb源和Be源,生长速率为0.22nm/s,Ga/Sb束流比为1:5,Be的掺杂浓度为1×1018cm-3
(3)生长P接触层:在GaSb缓冲层上继续生长厚度为500nm的P接触层,设置生长温度为480℃,待温度稳定后打开In源和As源生长9个单分子层的InAs,生长速率为0.115nm/s,Ga/Sb束流比为1:4;然后关闭In源和As源,开启Ga源、Sb源和Be源,40ms后再开启In源,生长10个单分子层的Ga0.75In0.25Sb,设置生长温度为480℃,生长速率为0.22nm/s,Ga/In/Sb束流比为1:0.4:5,Be的掺杂浓度为1×1018cm-3
(4)生长I吸收层:在P接触层上继续生长厚度为2200nm的I吸收层,设置生长温度为480℃,待温度稳定后打开In源和As源生长9个单分子层的InAs,生长速率为0.115nm/s,Ga/Sb束流比为1:4;然后In源和As源,开启Ga源、Sb源和Be源,40ms后再开启In源,生长9个单分子层的Ga0.75In0.25Sb,设置生长温度为480℃,生长速率为0.22nm/s,Ga/In/Sb束流比为1:0.4:5,Be的掺杂浓度为2×1015cm-3
(5)生长N接触层:在上述I吸收层上继续生长厚度为50nm的N接触层,设置生长温度为480℃,待温度稳定后打开In源、As源和Si源生长9个单分子层的InAs,生长速率为0.115nm/s,Ga/Sb束流比为1:4,Si的掺杂浓度为1×1018cm-3;然后关闭In源、As源和Si源,开启Ga源和Sb源,40ms后再开启In源,生长9个单分子层的Ga0.75In0.25Sb,设置生长温度为480℃,生长速率为0.22nm/s,Ga/In/Sb束流比为1:0.4:5。
(6)生长N盖层:在上述N接触层上继续生长厚度为200nm的N盖层,设置生长温度为480℃,待温度稳定后打开In源、As源和Si源生长InAs,生长速率为0.115nm/s,Ga/Sb束流比为1:4,Si的掺杂浓度为1×1018cm-3
红外探测器制备完成。
实施例2
除了GaSb缓冲层中Be的掺杂浓度为1×1016cm-3,P接触层中Be的掺杂浓度为1×1016cm-3,I吸收层中Be的掺杂浓度为1×1013cm-3,N接触层中Si的掺杂浓度为1×1016cm-3,N盖层中Si的掺杂浓度为1×1016cm-3,其余与实施例1相同。
实施例3
除了GaSb缓冲层中Be的掺杂浓度为1×1017cm-3,P接触层中Be的掺杂浓度为1×1017cm-3,I吸收层中Be的掺杂浓度为1×1014cm-3,N接触层中Si的掺杂浓度为1×1017cm-3,N盖层中Si的掺杂浓度为1×1017cm-3,其余与实施例1相同。
除了P接触层、I吸收层和N接触层中InAs的单分子层数为5,Ga0.75In0.25Sb单分子层数为15,其余与实施例1相同。
采用本发明实施例1-3的红外探测器可以探测波长为10.5μm的长波红外光,从而可探测20-40℃的较低目标温度,例如人体温度。InAs与Ga0.75In0.25Sb的単分子层数比例主要影响红外探测器的探测温度。因此,本发明提供的红外探测器可以探测低温目标,且探测灵敏度高。此外,本发明提供的探测器中采用的III-V族化合物,结构稳定、易于加工,价格也相对低廉,是一种理想的长波红外探测器材料,有利于大规模生产。
以上所述仅为本发明的较佳实施例,并非用于限定本发明的保护范围。凡在本发明的精神和原则之内所作的任何修改、等同替换、改进等,均包含在本发明的保护范围内。

Claims (14)

1.一种红外探测器,其包括:
GaSb衬底;
GaSb缓冲层,其中掺杂有Be;
超晶格结构,其包含P接触层、I吸收层和N接触层;所述P接触层为InAs/Ga0.75In0.25Sb,所述P接触层的Ga0.75In0.25Sb分子层中掺杂有Be;所述I吸收层为InAs/Ga0.75In0.25Sb,所述I吸收层的Ga0.75In0.25Sb分子层中掺杂有Be;所述N接触层为InAs/Ga0.75In0.25Sb,所述N接触层的InAs分子层中掺杂有Si;
N盖层,所述N盖层为Si掺杂的InAs。
2.根据权利要求1的红外探测器,其中,所述GaSb缓冲层中Be的掺杂浓度为1×1016-1×1018cm-3
3.根据权利要求1的红外探测器,其中,所述P接触层的Ga0.75In0.25Sb分子层中Be的掺杂浓度为1×1016-1×1018cm-3
4.根据权利要求1的红外探测器,其中,所述I吸收层的Ga0.75In0.25Sb分子层中Be的掺杂浓度为1×1013-2×1015cm-3
5.根据权利要求1的红外探测器,其中,所述N接触层的InAs分子层中Si的掺杂浓度为1×1016-1×1018cm-3
6.根据权利要求1的红外探测器,其中,所述N盖层中Si的掺杂浓度为1×1016-1×1018cm-3
7.根据权利要求1的红外探测器,其中,各层的厚度为:
GaSb缓冲层:500nm;
P接触层:500nm;
I吸收层:2200nm;
N接触层:500nm;
N盖层:200nm。
8.根据权利要求1的红外探测器,其中,P接触层包含9个単分子层的InAs和10个单分子层的Ga0.75In0.25Sb。
9.根据权利要求1的红外探测器,其中,I吸收层包含9个単分子层的InAs和9个单分子层的Ga0.75In0.25Sb。
10.根据权利要求1的红外探测器,其中,N接触层包含9个単分子层的InAs和9个单分子层的Ga0.75In0.25Sb。
11.根据权利要求1的红外探测器,其中,所述红外探测器的探测波长为10.5μm。
12.一种根据权利要求1-11任意一项所述的红外探测器的制备方法,包括以下步骤:
对GaSb衬底进行预处理;
在GaSb衬底上依次生长GaSb缓冲层、P接触层、I吸收层、N接触层和N盖层;
所述P接触层为InAs/Ga0.75In0.25Sb,所述P接触层的Ga0.75In0.25Sb分子层中掺杂有Be;所述I吸收层为InAs/Ga0.75In0.25Sb,所述I吸收层的Ga0.75In0.25Sb分子层中掺杂有Be;所述N接触层为InAs/Ga0.75In0.25Sb,所述N接触层的InAs分子层中掺杂有Si;所述N盖层为Si掺杂的InAs。
13.根据权利要求12的制备方法,其中,In/As束流比为1:4,Ga/In/Sb束流比1:0.4:5。
14.根据权利要求12的制备方法,其特征在于,所述InAs的生长速率为0.115nm/s,所述Ga0.75In0.25Sb的生长速率为0.22nm/s。
CN202010922645.6A 2020-09-04 2020-09-04 一种红外探测器及其制备方法 Active CN112002783B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010922645.6A CN112002783B (zh) 2020-09-04 2020-09-04 一种红外探测器及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010922645.6A CN112002783B (zh) 2020-09-04 2020-09-04 一种红外探测器及其制备方法

Publications (2)

Publication Number Publication Date
CN112002783A true CN112002783A (zh) 2020-11-27
CN112002783B CN112002783B (zh) 2024-02-20

Family

ID=73469957

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010922645.6A Active CN112002783B (zh) 2020-09-04 2020-09-04 一种红外探测器及其制备方法

Country Status (1)

Country Link
CN (1) CN112002783B (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104638517A (zh) * 2015-03-13 2015-05-20 长春理工大学 Ga In比例渐变的W型锑基半导体激光器
CN208904041U (zh) * 2018-04-18 2019-05-24 中国科学院上海技术物理研究所 基于带间级联结构的长波超晶格红外探测器
CN111430497A (zh) * 2020-03-31 2020-07-17 上海科技大学 用于中红外波段的半导体光电探测器及其制备方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104638517A (zh) * 2015-03-13 2015-05-20 长春理工大学 Ga In比例渐变的W型锑基半导体激光器
CN208904041U (zh) * 2018-04-18 2019-05-24 中国科学院上海技术物理研究所 基于带间级联结构的长波超晶格红外探测器
CN111430497A (zh) * 2020-03-31 2020-07-17 上海科技大学 用于中红外波段的半导体光电探测器及其制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
A. ROGALSKI ET AL.: "InAs/GaInSb superlattices as a promising material system for third generation infrared detectors", INFRARED PHYSICS & TECHNOLOGY, no. 48, pages 39 *
SEUNG-HWAN KIM ET AL.: ""Theoretical investigation of InAs/GaInSb type-II superlattice infrared detectors for longwavelength and very longwavelength infrared applications", PHYSICA E, no. 16, pages 199 *

Also Published As

Publication number Publication date
CN112002783B (zh) 2024-02-20

Similar Documents

Publication Publication Date Title
CN108281509B (zh) 氧化物半导体基光电探测器及提高其性能的方法
CN104465853B (zh) 一种雪崩光电二极管及其制作方法
FR2650916A1 (fr) Dispositif photovoltaique
CN109004057B (zh) 基于非晶氮化物薄膜的宽谱光电探测器件及其制备方法
US20150287871A1 (en) Solution-processed ultraviolet light detector based on p-n junctions of metal oxides
CN102176489A (zh) 晶格匹配体系上裁剪带隙波长提高光电探测器性能的方法
CN106684200A (zh) 一种三色红外探测器的制备方法
Zhang et al. Carrier-selective contact GaP/Si solar cells grown by molecular beam epitaxy
CN109285914A (zh) 一种AlGaN基紫外异质结光电晶体管探测器及其制备方法
CN113066931B (zh) spiro-MeOTAD/Ga2O3/Si p-i-n型日盲紫外探测器及其制备方法
CN109698250B (zh) 栅极调控AlGaN基金属-半导体-金属紫外探测器及制备方法
CN109659398B (zh) 一种AlGaN基背入式MSM紫外焦平面阵列成像系统的制备方法
CN109166935B (zh) 一种Al组分过渡型日盲紫外探测器及其制备方法
CN110364582A (zh) 一种基于石墨烯模板上AlGaN纳米柱基MSM型紫外探测器及其制备方法
CN112002783B (zh) 一种红外探测器及其制备方法
US4936653A (en) Cerium oxyfluoride antireflection coating for group II-VI photodetectors and process for forming same
CN109524491B (zh) 具有ZnTe过渡层的GaN-CdZnTe复合结构组件、应用及其制备方法
CN116314424A (zh) 多波段紫外光电探测器及其制备方法
CN114122185B (zh) 一种短波双色红外探测器及其制备方法
EP3485516B1 (en) Absorber structure for a solar cell
CN102776567A (zh) 在Si衬底上制备纤锌矿相MxZn1-xO单晶薄膜的方法
CN109103268A (zh) 一种GaN基p-i-n紫外探测器结构及制备方法
CN115295677A (zh) 高响应度β-Ga2O3基异质结自供能紫外探测器及其制备方法和应用
Kim et al. Measurement and control of ion‐doping‐induced defects in cadmium telluride films
CN109461786B (zh) 双通道长波红外探测器

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant