CN111999770A - Precise beam offset imaging method and system for converting TTI medium into PS wave - Google Patents

Precise beam offset imaging method and system for converting TTI medium into PS wave Download PDF

Info

Publication number
CN111999770A
CN111999770A CN202010915044.2A CN202010915044A CN111999770A CN 111999770 A CN111999770 A CN 111999770A CN 202010915044 A CN202010915044 A CN 202010915044A CN 111999770 A CN111999770 A CN 111999770A
Authority
CN
China
Prior art keywords
wave
shot
complex
anisotropic
medium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202010915044.2A
Other languages
Chinese (zh)
Other versions
CN111999770B (en
Inventor
韩建光
严加永
刘志伟
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chinese Academy of Geological Sciences
Original Assignee
Chinese Academy of Geological Sciences
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chinese Academy of Geological Sciences filed Critical Chinese Academy of Geological Sciences
Priority to CN202010915044.2A priority Critical patent/CN111999770B/en
Publication of CN111999770A publication Critical patent/CN111999770A/en
Application granted granted Critical
Publication of CN111999770B publication Critical patent/CN111999770B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V1/00Seismology; Seismic or acoustic prospecting or detecting
    • G01V1/28Processing seismic data, e.g. for interpretation or for event detection
    • G01V1/30Analysis
    • G01V1/301Analysis for determining seismic cross-sections or geostructures
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V1/00Seismology; Seismic or acoustic prospecting or detecting
    • G01V1/28Processing seismic data, e.g. for interpretation or for event detection
    • G01V1/36Effecting static or dynamic corrections on records, e.g. correcting spread; Correlating seismic signals; Eliminating effects of unwanted energy
    • G01V1/362Effecting static or dynamic corrections; Stacking
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V2210/00Details of seismic processing or analysis
    • G01V2210/50Corrections or adjustments related to wave propagation
    • G01V2210/51Migration
    • G01V2210/512Pre-stack
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V2210/00Details of seismic processing or analysis
    • G01V2210/50Corrections or adjustments related to wave propagation
    • G01V2210/58Media-related
    • G01V2210/586Anisotropic media
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V2210/00Details of seismic processing or analysis
    • G01V2210/70Other details related to processing
    • G01V2210/74Visualisation of seismic data

Landscapes

  • Engineering & Computer Science (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Acoustics & Sound (AREA)
  • Environmental & Geological Engineering (AREA)
  • Geology (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Geophysics (AREA)
  • Geophysics And Detection Of Objects (AREA)

Abstract

本发明公开了一种TTI介质转换PS波精确束偏移成像方法及系统,首先,获取待偏移成像的TTI介质的转换PS波共炮点道集地震记录数据、各向异性介质参数和偏移射线参数;据此分别进行TTI介质中的P波和S波的射线追踪;然后计算每个炮点的正向波场和每个检波点的反向波场;最后对每个炮点的正向波场和每个检波点的反向波场进行成像;将每个炮点的TTI介质的转换PS波叠前深度偏移剖面进行叠加,获得TTI介质的转换PS波深度域偏移成像剖面。本发明充分考虑了各向异性因素对转换PS波地震波场的影响,能够对存在TTI介质的地下构造准确偏移归位,克服了各向异性对转换PS波偏移的影响,提高了获取的TTI介质中转换PS波的叠前深度偏移成像剖面的精度。

Figure 202010915044

The invention discloses a method and a system for precise beam migration imaging of a TTI medium converted PS wave. First, the converted PS wave common shot gather seismic record data, anisotropic medium parameters and offset of the TTI medium to be migrated and imaged are acquired. Shift ray parameters; carry out ray tracing of P-wave and S-wave in TTI medium respectively; then calculate the forward wave field of each shot point and the reverse wave field of each detection point; The forward wave field and the reverse wave field of each detection point are imaged; the converted PS wave depth migration profile of the TTI medium of each shot point is superimposed to obtain the converted PS wave depth domain migration imaging of the TTI medium profile. The invention fully considers the influence of anisotropy factors on the converted PS wave seismic wave field, can accurately migrate and reset the underground structure with TTI medium, overcome the influence of anisotropy on the converted PS wave migration, and improve the obtained Accuracy of prestack depth-migrated imaging profiles of converted PS waves in TTI media.

Figure 202010915044

Description

一种TTI介质转换PS波精确束偏移成像方法及系统A method and system for precise beam shifting imaging of TTI medium-converted PS wave

技术领域technical field

本发明涉及地震勘探技术领域,特别涉及一种TTI介质转换PS波精确束偏移成像方法及系统。The invention relates to the technical field of seismic exploration, in particular to a method and system for precise beam shift imaging of TTI medium-converted PS waves.

背景技术Background technique

相比于单一的纵波地震勘探,联合转换PS波地震资料可以获得更多的地下介质信息,对于地下构造成像、岩性估计、流体探测以及储层监测获得更好的勘探效果。由于从震源到检波点的传播路径具有不对称性,转换PS波的成像处理非常困难,常规的叠加处理以及叠后偏移手段无法获得准确的成像结果。虽然转换PS波的叠前时间偏移能够获得相对较好的成像效果,但在地质构造复杂、速度变化较大的地区,叠前时间偏移往往会存在成像错误,而叠前深度偏移是解决地下复杂地质构造条件下转换PS波精确成像的有效技术手段。Compared with single P-wave seismic exploration, the combined conversion of PS-wave seismic data can obtain more subsurface medium information, and achieve better exploration results for subsurface structural imaging, lithology estimation, fluid detection and reservoir monitoring. Due to the asymmetry of the propagation path from the source to the detection point, the imaging processing of converted PS waves is very difficult, and conventional superposition processing and post-stack migration methods cannot obtain accurate imaging results. Although prestack time migration of converted PS waves can obtain relatively good imaging results, in areas with complex geological structures and large velocity changes, prestack time migration often has imaging errors, while prestack depth migration is It is an effective technical means to solve the accurate imaging of converted PS waves under the conditions of complex underground geological structures.

地下大多数沉积岩都存在地震各向异性,如果使用基于各向同性假设的地震偏移方法来处理各向异性介质中的地震数据,则会导致明显的成像误差,而且偏移剖面中会出现能量不聚焦等现象,将严重影响后续的地震解释工作。因此,随着地震勘探精度要求的不断提高,考虑各向异性对地震偏移成像的影响越来越重要。横向各向同性(TI)介质是实际应用中常用的各向异性介质模型,大多数沉积岩可以描述为TI介质,其中对称轴倾斜的TTI介质是TI介质的一般形式。研究TTI介质中的偏移技术对于消除地震波传播过程中各向异性的影响,实现复杂构造的高精度成像具有重要的应用价值。各向异性对S波的影响相比于P波更为明显,各向异性对于转换PS波的偏移成像更为重要,更加不能忽略。目前,对于各向异性介质中转换PS波叠前时间偏移的研究已经较为成熟,但现有的叠前时间偏移方法对于地下复杂构造并不能获得理想的转换PS波偏移成像剖面。Seismic anisotropy exists in most subsurface sedimentary rocks, and if seismic data in anisotropic media is processed using seismic migration methods based on the isotropic assumption, significant imaging errors will result and energy will appear in the migrated profile The phenomenon of non-focusing will seriously affect the subsequent seismic interpretation work. Therefore, with the continuous improvement of seismic exploration accuracy requirements, it is more and more important to consider the influence of anisotropy on seismic migration imaging. Transversely isotropic (TI) media is a commonly used anisotropic media model in practical applications. Most sedimentary rocks can be described as TI media, and TTI media with inclined axes of symmetry are the general form of TI media. The study of migration technology in TTI medium has important application value for eliminating the influence of anisotropy in the process of seismic wave propagation and realizing high-precision imaging of complex structures. The effect of anisotropy on the S wave is more obvious than that of the P wave, and the anisotropy is more important for the migration imaging of the converted PS wave and cannot be ignored. At present, the research on prestack time migration of converted PS waves in anisotropic media is relatively mature, but the existing prestack time migration methods cannot obtain ideal imaging profiles of converted PS wave migration for complex underground structures.

发明内容SUMMARY OF THE INVENTION

本发明的目的是提供一种TTI介质转换PS波精确束偏移成像方法及系统,以克服各向异性对转换PS波偏移的影响,提高获取的TTI介质中转换PS波的叠前深度偏移成像剖面的精度。The purpose of the present invention is to provide a method and system for precise beam offset imaging of converted PS wave in TTI medium, so as to overcome the influence of anisotropy on the offset of converted PS wave and improve the pre-stack depth offset of converted PS wave in acquired TTI medium. Accuracy of shifting imaging profiles.

为实现上述目的,本发明提供了如下方案:For achieving the above object, the present invention provides the following scheme:

一种TTI介质转换PS波精确束偏移成像方法,所述成像方法包括如下步骤:A TTI medium conversion PS wave precise beam shift imaging method, the imaging method comprises the following steps:

获取待偏移成像的TTI介质的转换PS波共炮点道集地震记录数据、各向异性介质参数和偏移射线参数;Obtain the converted PS wave common shot gather seismic record data, anisotropic medium parameters and migration ray parameters of the TTI medium to be migrated and imaged;

根据所述各向异性介质参数和偏移射线参数,利用二维各向异性射线追踪方程组,分别进行TTI介质中的P波和S波的射线追踪,获得每个炮点出射的P波的各向异性高斯束复值振幅和复值时间及每个检波点出射的S波的各向异性高斯束复值振幅和复值时间;According to the parameters of the anisotropic medium and the offset ray, the two-dimensional anisotropic ray tracing equations are used to carry out the ray tracing of the P wave and the S wave in the TTI medium, respectively, and the ray tracing of the P wave emitted from each shot point is obtained. The complex-valued amplitude and complex-valued time of the anisotropic Gaussian beam and the complex-valued amplitude and complex-valued time of the anisotropic Gaussian beam of the S-wave emitted from each detection point;

根据每个炮点出射的P波的各向异性高斯束复值振幅和复值时间,构建每个炮点的正向波场;According to the complex-valued amplitude and complex-valued time of the anisotropic Gaussian beam of the P wave emitted from each shot, the forward wave field of each shot is constructed;

根据每个检波点出射的S波的各向异性高斯束复值振幅和复值时间,对每炮所述转换PS波共炮点道集地震记录数据进行反向延拓,获得每个检波点的反向波场;According to the complex-valued amplitude and complex-valued time of the anisotropic Gaussian beam of the S-wave emitted from each detection point, the reverse continuation of the converted PS-wave common shot gather seismographic record data of each shot is performed to obtain each detection point The reverse wave field of ;

基于互相关偏移成像条件,对每个炮点的正向波场和每个检波点的反向波场进行成像,获得每个炮点的TTI介质的转换PS波叠前深度偏移剖面;Based on the cross-correlation migration imaging conditions, the forward wavefield of each shot and the reverse wavefield of each detection point were imaged, and the converted PS wave prestack depth migration profile of the TTI medium of each shot was obtained;

将每个炮点的TTI介质的转换PS波叠前深度偏移剖面进行叠加,获得TTI介质的转换PS波深度域偏移成像剖面。The pre-stack depth migration profiles of the converted PS waves of the TTI medium of each shot are superimposed to obtain the converted PS wave depth domain migration imaging profiles of the TTI medium.

可选的,获取待偏移成像的TTI介质的各向异性介质参数,具体包括:Optionally, obtain the anisotropic medium parameters of the TTI medium to be migrated for imaging, specifically including:

获取待偏移成像的TTI介质的各向异性介质模型的Thomsen参数(VP0,VS0,ε,δ);其中,VP0、VP0分别为P波和S波的垂向速度,ε和δ是表示VTI介质的各向异性强度的第一无量纲因子和第二无量纲因子;Obtain the Thomsen parameters (V P0 , V S0 ,ε,δ) of the anisotropic medium model of the TTI medium to be migrated and imaged; where V P0 and V P0 are the vertical velocities of the P-wave and S-wave, respectively, and ε and δ is the first dimensionless factor and the second dimensionless factor representing the anisotropic strength of the VTI medium;

根据Thomsen参数与VTI介质弹性参数之间的关系,利用公式

Figure BDA0002664719550000021
计算VTI介质密度归一化弹性矩阵
Figure BDA0002664719550000031
中的弹性参数元素
Figure BDA0002664719550000032
Figure BDA0002664719550000033
According to the relationship between the Thomsen parameters and the elastic parameters of the VTI medium, using the formula
Figure BDA0002664719550000021
Calculation of Density Normalized Elasticity Matrix for VTI Media
Figure BDA0002664719550000031
Elastic parameter element in
Figure BDA0002664719550000032
and
Figure BDA0002664719550000033

根据VTI介质密度归一化弹性矩阵中的弹性参数元素

Figure BDA0002664719550000034
利用Bond变换公式
Figure BDA0002664719550000035
计算TTI介质密度归一化弹性矩阵
Figure BDA0002664719550000036
中的各向异性弹性参数元素a11,a33,a55,a13,a15和a35;Normalize the elastic parameter elements in the elastic matrix according to the density of the VTI medium
Figure BDA0002664719550000034
Use the Bond transform formula
Figure BDA0002664719550000035
Calculation of Density Normalized Elasticity Matrix for TTI Media
Figure BDA0002664719550000036
The anisotropic elastic parameter elements a 11 , a 33 , a 55 , a 13 , a 15 and a 35 in ;

其中,

Figure BDA0002664719550000037
Figure BDA0002664719550000038
均为VTI介质密度归一化弹性矩阵中的弹性参数元素,
Figure BDA0002664719550000039
a11、a12、a13、a15、a22、a23、a25、a33、a35、a44、a46、a55、a66均为TTI介质密度归一化弹性矩阵中的各向异性弹性参数元素,θ0为TTI介质的对称轴倾角。in,
Figure BDA0002664719550000037
and
Figure BDA0002664719550000038
are elastic parameter elements in the VTI medium density normalized elastic matrix,
Figure BDA0002664719550000039
a 11 , a 12 , a 13 , a 15 , a 22 , a 23 , a 25 , a 33 , a 35 , a 44 , a 46 , a 55 , a 66 are all in the TTI medium density normalized elastic matrix Anisotropic elastic parameter element, θ 0 is the inclination angle of the symmetry axis of the TTI medium.

可选的,所述根据所述各向异性介质参数和偏移射线参数,利用二维各向异性射线追踪方程组,分别进行TTI介质中的P波和S波的射线追踪,获得每个炮点出射的P波的各向异性高斯束复值振幅和复值时间及每个检波点出射的S波的各向异性高斯束复值振幅和复值时间,具体包括:Optionally, according to the anisotropic medium parameters and the offset ray parameters, the two-dimensional anisotropic ray tracing equations are used to carry out the ray tracing of the P wave and the S wave in the TTI medium, respectively, to obtain each shot. The complex-valued amplitude and complex-valued time of the anisotropic Gaussian beam of the P-wave emitted from the point and the complex-valued amplitude and complex-valued time of the anisotropic Gaussian beam of the S-wave emitted from each detection point, including:

采用牛顿迭代法求解程函方程

Figure BDA0002664719550000041
获得初始的第一射线参数p10和第三射线参数p30,作为二维各向异性射线追踪方程组的初始的慢度矢量的第一分量p1和第三分量p3;Using Newton's Iterative Method to Solve the Function Equation
Figure BDA0002664719550000041
obtaining the initial first ray parameter p 10 and the third ray parameter p 30 as the first component p 1 and the third component p 3 of the initial slowness vector of the two-dimensional anisotropic ray tracing equation system;

其中,κ12345分别表示程函方程的第一系数、第二系数、第三系数、第四系数和第五系数,

Figure BDA0002664719550000042
Among them, κ 1 , κ 2 , κ 3 , κ 4 , κ 5 represent the first coefficient, the second coefficient, the third coefficient, the fourth coefficient and the fifth coefficient of the function equation, respectively,
Figure BDA0002664719550000042

将初始的慢度矢量的第一分量p1和第三分量p3及初始的射线位置坐标输入二维各向异性射线追踪方程组,利用龙格库塔法求解二维各向异性射线追踪方程组,获得每个炮点和每个检波点出射的P波和S波的中心射线的路径信息和走时信息;Input the first component p 1 and the third component p 3 of the initial slowness vector and the initial ray position coordinates into the two-dimensional anisotropic ray tracing equation system, and use the Runge-Kutta method to solve the two-dimensional anisotropic ray tracing equation group, to obtain the path information and travel time information of the central rays of the P-wave and S-wave emitted from each shot point and each detection point;

根据每个炮点和每个检波点出射的P波和S波的中心射线的路径信息和走时信息,求解各向异性动力学射线方程组,获得每个炮点和每个检波点出射的P波和S波的中心射线的动力学参数;According to the path information and travel time information of the central ray of the P-wave and S-wave emitted from each shot point and each receiver point, solve the anisotropic dynamic ray equation, and obtain the P wave emitted from each shot point and each receiver point. Dynamic parameters of the center ray of waves and S-waves;

根据每个炮点和每个检波点出射的的P波和S波的中心射线的路径信息、走时信息和动力学参数,计算每个炮点出射的P波的各向异性高斯束复值振幅和复值时间及每个检波点出射的S波的各向异性高斯束复值振幅和复值时间。Calculate the complex-valued amplitude of the anisotropic Gaussian beam of the P-wave emitted from each shot point according to the path information, travel time information and dynamic parameters of the central ray of the P-wave and S-wave emitted from each shot point and each detection point and complex-valued time and the complex-valued amplitude and complex-valued time of the anisotropic Gaussian beam of the S-wave emitted from each detection point.

可选的,所述根据每个炮点出射的P波的各向异性高斯束复值振幅和复值时间,构建每个炮点的正向波场,具体包括:Optionally, the forward wave field of each shot point is constructed according to the complex-valued amplitude and complex-valued time of the anisotropic Gaussian beam of the P wave emitted from each shot point, specifically including:

根据每个炮点出射的P波的各向异性高斯束复值振幅和复值时间,构建每炮震源的正向波场为:According to the complex-valued amplitude and complex-valued time of the anisotropic Gaussian beam of the P wave emitted from each shot point, the forward wave field of each shot source is constructed as:

Figure BDA0002664719550000043
Figure BDA0002664719550000043

其中,G(x,xs,ω)为炮点xs的正向波场,

Figure BDA0002664719550000044
Figure BDA0002664719550000045
分别为炮点xs出射的P波各向异性高斯束的复值振幅和复值时间,ω为角频率,
Figure BDA0002664719550000051
为炮点xs出射的P波射线偏移参数矢量,
Figure BDA0002664719550000052
为P波射线偏移参数矢量的水平分量;
Figure BDA0002664719550000053
为P波射线偏移参数矢量的垂直分量;x表示地下任意一点的位置矢量。Among them, G(x,x s ,ω) is the forward wave field of the shot point x s ,
Figure BDA0002664719550000044
and
Figure BDA0002664719550000045
are the complex-valued amplitude and complex-valued time of the P-wave anisotropic Gaussian beam emitted from the shot x s , respectively, ω is the angular frequency,
Figure BDA0002664719550000051
is the offset parameter vector of the P-wave ray emitted from the shot point x s ,
Figure BDA0002664719550000052
is the horizontal component of the P-wave ray migration parameter vector;
Figure BDA0002664719550000053
is the vertical component of the P-wave ray migration parameter vector; x represents the position vector of any point underground.

可选的,所述根据每个检波点出射的S波的各向异性高斯束复值振幅和复值时间,对每炮所述转换PS波共炮点道集地震记录数据进行反向延拓,获得每个检波点的反向波场,具体包括:Optionally, according to the complex-valued amplitude and complex-valued time of the anisotropic Gaussian beam of the S-wave emitted from each detection point, reverse continuation is performed on the converted PS-wave common shot gather seismic record data of each shot. , obtain the reverse wave field of each detection point, including:

根据每个检波点出射的S波的各向异性高斯束复值振幅和复值时间,利用公式

Figure BDA0002664719550000054
对每炮所述转换PS波共炮点道集地震记录数据进行反向延拓,获得每个检波点的反向波场;According to the complex-valued amplitude and complex-valued time of the S-wave emitted from each detection point, the
Figure BDA0002664719550000054
Carry out reverse continuation of the converted PS wave common shot gather seismic record data of each shot to obtain the reverse wave field of each detection point;

其中,R(x,xr,ω)表示检波点xr的反向波场,uPS(xr,xs,ω)为炮点xs和检波点xr的转换PS波共炮点道集地震记录数据,

Figure BDA0002664719550000055
Figure BDA0002664719550000056
分别为检波点xr出射的S波各向异性高斯束的复值振幅和复值时间,
Figure BDA0002664719550000057
为检波点xr出射的S波射线偏移参数矢量,
Figure BDA0002664719550000058
为S波射线偏移参数矢量的水平分量;
Figure BDA0002664719550000059
为S波射线偏移参数矢量的垂直分量;x表示地下任意一点的位置矢量。Among them, R(x,x r ,ω) represents the reverse wave field of the detection point x r , u PS (x r ,x s ,ω) is the converted PS wave common shot point of the shot point x s and the detection point x r Gather seismic record data,
Figure BDA0002664719550000055
and
Figure BDA0002664719550000056
are the complex-valued amplitude and complex-valued time of the S-wave anisotropic Gaussian beam emitted from the detection point x r , respectively,
Figure BDA0002664719550000057
is the S-wave ray migration parameter vector from the detection point x r ,
Figure BDA0002664719550000058
is the horizontal component of the S-wave ray migration parameter vector;
Figure BDA0002664719550000059
is the vertical component of the S-wave ray migration parameter vector; x represents the position vector of any point underground.

可选的,所述基于互相关偏移成像条件,对所述的每炮震源正向波场和检波点反向波场进行成像,获得每炮TTI介质的转换PS波叠前深度偏移剖面,具体包括:Optionally, based on the cross-correlation migration imaging conditions, image the forward wave field of the source and the reverse wave field of the detection point for each shot, and obtain the converted PS wave pre-stack depth migration profile of the TTI medium of each shot. , including:

基于互相关偏移成像条件,利用公式

Figure BDA00026647195500000510
对每个炮点的正向波场和每个检波点的反向波场进行成像,获得每个炮点的TTI介质的转换PS波叠前深度偏移剖面;Based on the cross-correlation migration imaging conditions, using the formula
Figure BDA00026647195500000510
Image the forward wavefield of each shot and the reverse wavefield of each detection point to obtain the converted PS wave prestack depth migration profile of the TTI medium of each shot;

其中,

Figure BDA00026647195500000511
表示炮点xs的转换PS波偏移剖面;sgn(xr-xs)表示校正转换PS波地震记录的极性反转现象的符号函数,
Figure BDA0002664719550000061
uPS(xr,xs,ω)为炮点xs和检波点xr的转换PS波共炮点道集地震记录数据,
Figure BDA0002664719550000062
Figure BDA0002664719550000063
分别为检波点xr出射的S波各向异性高斯束的复值振幅和复值时间,
Figure BDA0002664719550000064
Figure BDA0002664719550000065
分别为炮点xs出射的P波各向异性高斯束的复值振幅和复值时间,i表示复数单位,
Figure BDA0002664719550000066
为P波射线偏移参数矢量的水平分量,
Figure BDA0002664719550000067
为S波射线偏移参数矢量的水平分量;x表示地下任意一点的位置矢量,ω为角频率。in,
Figure BDA00026647195500000511
represents the converted PS-wave migration profile at shot x s ; sgn(x r -x s ) represents the sign function to correct the polarity inversion phenomenon of the converted PS-wave seismic records,
Figure BDA0002664719550000061
u PS (x r , x s , ω) is the converted PS wave common shot gather seismic record data of shot x s and detection point x r ,
Figure BDA0002664719550000062
and
Figure BDA0002664719550000063
are the complex-valued amplitude and complex-valued time of the S-wave anisotropic Gaussian beam emitted from the detection point x r , respectively,
Figure BDA0002664719550000064
and
Figure BDA0002664719550000065
are the complex-valued amplitude and complex-valued time of the P-wave anisotropic Gaussian beam emitted from the shot x s , respectively, i represents the complex unit,
Figure BDA0002664719550000066
is the horizontal component of the P-wave ray migration parameter vector,
Figure BDA0002664719550000067
is the horizontal component of the S-wave ray migration parameter vector; x represents the position vector of any point underground, and ω is the angular frequency.

可选的,所述将每个炮点的TTI介质的转换PS波叠前深度偏移剖面进行叠加,获得TTI介质的转换PS波深度域偏移成像剖面,具体包括:Optionally, superimposing the converted PS wave pre-stack depth migration profile of the TTI medium of each shot point to obtain the converted PS wave depth domain migration imaging profile of the TTI medium, specifically including:

利用公式

Figure BDA0002664719550000068
将每个炮点的TTI介质的转换PS波叠前深度偏移剖面进行叠加,获得TTI介质的转换PS波深度域偏移成像剖面;Use the formula
Figure BDA0002664719550000068
Superimpose the converted PS wave prestack depth migration profile of each shot point in the TTI medium to obtain the converted PS wave depth domain migration imaging profile of the TTI medium;

其中,N表示转换PS波共炮点道集地震记录的炮点的数量,IPS(x)表示最终的TTI介质转换PS波深度域偏移成像剖面,x表示地下任意一点的位置矢量。Among them, N represents the number of shot points recorded by the converted PS wave common shot gather, I PS (x) represents the final TTI medium converted PS wave depth domain migration imaging profile, and x represents the position vector of any point underground.

一种TTI介质转换PS波精确束偏移成像系统,所述成像系统包括:A TTI medium conversion PS wave precise beam shifting imaging system, the imaging system includes:

参数获取模块,用于获取待偏移成像的TTI介质的转换PS波共炮点道集地震记录数据、各向异性介质参数和偏移射线参数;The parameter acquisition module is used to acquire the converted PS wave common shot gather seismic record data, anisotropic medium parameters and migration ray parameters of the TTI medium to be migrated and imaged;

射线追踪模块,用于根据所述各向异性介质参数和偏移射线参数,利用二维各向异性射线追踪方程组,分别进行TTI介质中的P波和S波的射线追踪,获得每个炮点出射的P波的各向异性高斯束复值振幅和复值时间及每个检波点出射的S波的各向异性高斯束复值振幅和复值时间;The ray tracing module is used to carry out the ray tracing of the P wave and the S wave in the TTI medium respectively by using the two-dimensional anisotropic ray tracing equation system according to the anisotropic medium parameters and the offset ray parameters, and obtain each shot The complex-valued amplitude and complex-valued time of the anisotropic Gaussian beam of the P-wave exiting from the point and the complex-valued amplitude and complex-valued time of the anisotropic Gaussian beam of the S-wave exiting from each detection point;

正向波场构建模块,用于根据每个炮点出射的P波的各向异性高斯束复值振幅和复值时间,构建每个炮点的正向波场;The forward wave field building module is used to construct the forward wave field of each shot point according to the complex-valued amplitude and complex-valued time of the anisotropic Gaussian beam of the P wave emitted from each shot point;

反向波场构建模块,用于根据每个检波点出射的S波的各向异性高斯束复值振幅和复值时间,对每炮所述转换PS波共炮点道集地震记录数据进行反向延拓,获得每个检波点的反向波场;The inverse wave field building module is used to invert the common shot gather seismogram data of the converted PS waves of each shot according to the complex-valued amplitude and complex-valued time of the anisotropic Gaussian beam of the S-wave emitted from each detection point. Continue in the direction to obtain the reverse wave field of each detection point;

单炮点转换PS波叠前深度偏移剖面计算模块,用于基于互相关偏移成像条件,对每个炮点的正向波场和每个检波点的反向波场进行成像,获得每个炮点的TTI介质的转换PS波叠前深度偏移剖面;The single-shot conversion PS wave prestack depth migration profile calculation module is used to image the forward wave field of each shot and the reverse wave field of each detection point based on the cross-correlation migration imaging conditions, and obtain each Prestack depth migration profile of converted PS wave in TTI medium of 1 shot;

转换PS波深度域偏移成像剖面计算模块,用于将每个炮点的TTI介质的转换PS波叠前深度偏移剖面进行叠加,获得TTI介质的转换PS波深度域偏移成像剖面。The converted PS wave depth domain migration imaging profile calculation module is used to superimpose the converted PS wave prestack depth migration profile of each shot point of the TTI medium to obtain the converted PS wave depth domain migration imaging profile of the TTI medium.

可选的,所述参数获取模块,具体包括:Optionally, the parameter acquisition module specifically includes:

Thomsen参数获取子模块,用于获取待偏移成像的TTI介质的各向异性介质模型的Thomsen参数(VP0,VS0,ε,δ);其中,VP0、VP0分别为P波和S波的垂向速度,ε和δ是表示VTI介质的各向异性强度的第一无量纲因子和第二无量纲因子;The Thomsen parameter acquisition sub-module is used to acquire the Thomsen parameters (V P0 , V S0 , ε, δ) of the anisotropic medium model of the TTI medium to be migrated for imaging; wherein, V P0 and V P0 are the P wave and S, respectively the vertical velocity of the wave, ε and δ are the first dimensionless factor and the second dimensionless factor representing the anisotropic strength of the VTI medium;

VTI介质的弹性参数计算子模块,用于根据Thomsen参数与VTI介质弹性参数之间的关系,利用公式

Figure BDA0002664719550000071
计算VTI介质密度归一化弹性矩阵
Figure BDA0002664719550000072
中的弹性参数元素
Figure BDA0002664719550000073
Figure BDA0002664719550000074
The elastic parameter calculation sub-module of the VTI medium is used to calculate the relationship between the Thomsen parameter and the elastic parameter of the VTI medium by using the formula
Figure BDA0002664719550000071
Calculation of Density Normalized Elasticity Matrix for VTI Media
Figure BDA0002664719550000072
Elastic parameter element in
Figure BDA0002664719550000073
and
Figure BDA0002664719550000074

VTI介质的弹性参数计算子模块,用于根据VTI介质密度归一化弹性矩阵中的弹性参数元素

Figure BDA0002664719550000075
利用Bond变换公式
Figure BDA0002664719550000081
计算TTI介质密度归一化弹性矩阵
Figure BDA0002664719550000082
中的各向异性弹性参数元素a11,a33,a55,a13,a15和a35;Elastic parameter calculation sub-module for VTI media to normalize elastic parameter elements in the elastic matrix according to the density of the VTI media
Figure BDA0002664719550000075
Use the Bond transform formula
Figure BDA0002664719550000081
Calculation of Density Normalized Elasticity Matrix for TTI Media
Figure BDA0002664719550000082
The anisotropic elastic parameter elements a 11 , a 33 , a 55 , a 13 , a 15 and a 35 in ;

其中,

Figure BDA0002664719550000083
Figure BDA0002664719550000084
均为VTI介质密度归一化弹性矩阵中的弹性参数元素,
Figure BDA0002664719550000085
a11、a12、a13、a15、a22、a23、a25、a33、a35、a44、a46、a55、a66均为TTI介质密度归一化弹性矩阵中的各向异性弹性参数元素,θ0为TTI介质的对称轴倾角。in,
Figure BDA0002664719550000083
and
Figure BDA0002664719550000084
are elastic parameter elements in the VTI medium density normalized elastic matrix,
Figure BDA0002664719550000085
a 11 , a 12 , a 13 , a 15 , a 22 , a 23 , a 25 , a 33 , a 35 , a 44 , a 46 , a 55 , a 66 are all in the TTI medium density normalized elastic matrix Anisotropic elastic parameter element, θ 0 is the inclination angle of the symmetry axis of the TTI medium.

可选的,所述射线追踪模块,具体包括:Optionally, the ray tracing module specifically includes:

二维各向异性射线追踪方程组的初始参数获取子模块,用于采用牛顿迭代法求解程函方程

Figure BDA0002664719550000086
获得初始的第一射线参数p10和第三射线参数p30,作为二维各向异性射线追踪方程组的初始的慢度矢量的第一分量p1和第三分量p3;Initial parameter acquisition submodule for two-dimensional anisotropic ray-tracing equations for solving function equations using Newton's iteration method
Figure BDA0002664719550000086
obtaining the initial first ray parameter p 10 and the third ray parameter p 30 as the first component p 1 and the third component p 3 of the initial slowness vector of the two-dimensional anisotropic ray tracing equation system;

其中,κ12345分别表示程函方程的第一系数、第二系数、第三系数、第四系数和第五系数,

Figure BDA0002664719550000087
Among them, κ 1 , κ 2 , κ 3 , κ 4 , κ 5 represent the first coefficient, the second coefficient, the third coefficient, the fourth coefficient and the fifth coefficient of the function equation, respectively,
Figure BDA0002664719550000087

路径信息和走时信息获取子模块,用于将初始的慢度矢量的第一分量p1和第三分量p3及初始的射线位置坐标输入二维各向异性射线追踪方程组,利用龙格库塔法求解二维各向异性射线追踪方程组,获得每个炮点和每个检波点出射的P波和S波的中心射线的路径信息和走时信息;The path information and travel time information acquisition sub-module is used to input the first component p 1 and the third component p 3 of the initial slowness vector and the initial ray position coordinates into the two-dimensional anisotropic ray tracing equation system, using the Runge library The tower method solves the two-dimensional anisotropic ray tracing equation system, and obtains the path information and travel time information of the central ray of the P-wave and S-wave emitted from each shot point and each detection point;

动力学参数获取子模块,用于根据每个炮点和每个检波点出射的P波和S波的中心射线的路径信息和走时信息,求解动力学射线方程组,获得每个炮点和每个检波点出射的P波和S波的中心射线的动力学参数;The dynamic parameter acquisition sub-module is used to solve the dynamic ray equation system according to the path information and travel time information of the central rays of the P-wave and S-wave emitted from each shot point and each detection point, and obtain each shot point and each Dynamic parameters of the central rays of the P-wave and S-wave emitted from each detection point;

复值振幅和复值时间计算子模块,用于根据每个炮点和每个检波点出射的的P波和S波的中心射线的路径信息、走时信息和动力学参数,计算每个炮点出射的P波的各向异性高斯束复值振幅和复值时间及每个检波点出射的S波的各向异性高斯束复值振幅和复值时间。The complex-valued amplitude and complex-valued time calculation sub-module is used to calculate each shot point according to the path information, travel time information and dynamic parameters of the central rays of the P-wave and S-wave emitted from each shot point and each receiver point The anisotropic Gaussian beam complex-valued amplitude and complex-valued time of the outgoing P-wave and the anisotropic Gaussian-beam complex-valued amplitude and complex-valued time of the S-wave outgoing from each detection point.

根据本发明提供的具体实施例,本发明公开了以下技术效果:According to the specific embodiments provided by the present invention, the present invention discloses the following technical effects:

本发明公开了一种TTI介质转换PS波精确束偏移成像方法,所述成像方法包括如下步骤:获取待偏移成像的TTI介质的转换PS波共炮点道集地震记录数据、各向异性介质参数和偏移射线参数;根据所述各向异性介质参数和偏移射线参数,利用二维各向异性射线追踪方程组,分别进行TTI介质中的P波和S波的射线追踪,获得每个炮点出射的P波的各向异性高斯束复值振幅和复值时间及每个检波点出射的S波的各向异性高斯束复值振幅和复值时间;根据每个炮点出射的P波的各向异性高斯束复值振幅和复值时间,构建每个炮点的正向波场;根据每个检波点出射的S波的各向异性高斯束复值振幅和复值时间,对每炮所述转换PS波共炮点道集地震记录数据进行反向延拓,获得每个检波点的反向波场;基于互相关偏移成像条件,对每个炮点的正向波场和每个检波点的反向波场进行成像,获得每个炮点的TTI介质的转换PS波叠前深度偏移剖面;将每个炮点的TTI介质的转换PS波叠前深度偏移剖面进行叠加,获得TTI介质的转换PS波深度域偏移成像剖面。本发明充分考虑了各向异性因素对转换PS波地震波场的影响,能够对存在TTI介质的地下构造准确偏移归位,克服了各向异性对转换PS波偏移的影响,提高了获取的TTI介质中转换PS波的叠前深度偏移成像剖面的精度。The invention discloses a precise beam migration imaging method of a TTI medium converted PS wave. The imaging method includes the following steps: acquiring the converted PS wave common shot gather seismic record data, anisotropy and imaging of the TTI medium to be migrated and imaged Medium parameters and migration ray parameters; according to the anisotropic medium parameters and migration ray parameters, using the two-dimensional anisotropic ray tracing equations, respectively carry out the ray tracing of the P wave and the S wave in the TTI medium, and obtain each The anisotropic Gaussian beam complex-valued amplitude and complex-valued time of the P-wave emitted from each shot point and the anisotropic Gaussian-beam complex-valued amplitude and complex-valued time of the S-wave emitted from each detection point; The complex-valued amplitude and complex-valued time of the anisotropic Gaussian beam of the P wave are used to construct the forward wave field of each shot point; Perform reverse continuation of the converted PS wave common shot gather seismic record data of each shot to obtain the reverse wave field of each detection point; based on the cross-correlation migration imaging conditions, the forward wave of each shot point The field and the reverse wave field of each detection point are imaged to obtain the converted PS wave prestack depth migration profile of the TTI medium of each shot point; the converted PS wave prestack depth migration of the TTI medium of each shot point The profiles are superimposed to obtain the converted PS wave depth domain migration imaging profile of the TTI medium. The invention fully considers the influence of anisotropy factors on the converted PS wave seismic wave field, can accurately migrate and reset the underground structure with TTI medium, overcome the influence of anisotropy on the converted PS wave migration, and improve the obtained Accuracy of prestack depth-migrated imaging profiles of converted PS waves in TTI media.

附图说明Description of drawings

为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。In order to more clearly illustrate the embodiments of the present invention or the technical solutions in the prior art, the accompanying drawings required in the embodiments will be briefly introduced below. Obviously, the drawings in the following description are only some of the present invention. In the embodiments, for those of ordinary skill in the art, other drawings can also be obtained according to these drawings without creative labor.

图1为本发明提供的一种TTI介质转换PS波精确束偏移成像方法的流程图;FIG. 1 is a flow chart of a method for precise beam shift imaging of TTI medium conversion PS wave provided by the present invention;

图2为本发明具体实施方式一提供的水平层状TTI介质模型图;2 is a model diagram of a horizontal layered TTI medium provided by Embodiment 1 of the present invention;

图3为本发明具体实施方式一提供的水平层状TTI介质模型的单炮转换PS波地震记录图;Fig. 3 is the single shot conversion PS wave seismic record diagram of the horizontal layered TTI medium model provided by the specific embodiment one of the present invention;

图4为本发明具体实施方式一提供的水平层状TTI介质模型的单炮转换PS波叠前深度偏移剖面;其中,图4(a)利用各向同性偏移方法得到的水平层状TTI介质模型的偏移剖面,图4(b)为利用本发明的方法得到的水平层状TTI介质模型的偏移剖面;Fig. 4 is the single shot conversion PS wave prestack depth migration profile of the horizontal layered TTI medium model provided by the specific embodiment of the present invention; wherein, Fig. 4(a) uses the isotropic migration method to obtain the horizontal layered TTI The migration profile of the medium model, Fig. 4(b) is the migration profile of the horizontal layered TTI medium model obtained by the method of the present invention;

图5为本发明具体实施方式二提供的逆冲TTI介质模型图;5 is a diagram of a thrust TTI medium model provided by Embodiment 2 of the present invention;

图6为本发明具体实施方式二提供的逆冲TTI介质模型的多炮叠加转换PS波叠前深度偏移剖面;其中,图6(a)为利用利用各向同性偏移方法得到的逆冲TTI介质模型的偏移剖面,图6(b)为利用本发明的方法得到的逆冲TTI介质模型的偏移剖面。Fig. 6 is the multi-shot superposition transformation PS wave prestack depth migration profile of the thrust TTI medium model provided by the specific embodiment 2 of the present invention; wherein, Fig. 6(a) is the thrust obtained by utilizing the isotropic migration method The migration profile of the TTI medium model, Fig. 6(b) is the migration profile of the thrust TTI medium model obtained by the method of the present invention.

具体实施方式Detailed ways

本发明的目的是提供种TTI介质转换PS波精确束偏移成像方法及系统,以克服各向异性对转换PS波偏移的影响,提高获取的TTI介质中转换PS波的叠前深度偏移成像剖面的精度。The purpose of the present invention is to provide a precise beam migration imaging method and system for converted PS wave in TTI medium, so as to overcome the influence of anisotropy on the migration of converted PS wave and improve the pre-stack depth migration of converted PS wave in acquired TTI medium Accuracy of imaging profiles.

为使本发明的上述目的、特征和优点能够更加明显易懂,下面结合附图和具体实施方式对发明作进一步详细的说明。In order to make the above objects, features and advantages of the present invention more clearly understood, the invention will be described in further detail below with reference to the accompanying drawings and specific embodiments.

如图1所示,本发明提供一种TTI介质转换PS波精确束偏移成像方法,所述成像方法包括如下步骤:As shown in FIG. 1 , the present invention provides a TTI medium-converted PS wave precise beam shift imaging method, and the imaging method includes the following steps:

步骤101,获取待偏移成像的TTI介质的转换PS波共炮点道集地震记录数据、各向异性介质参数和偏移射线参数。Step 101: Acquire the converted PS wave common shot gather seismic record data, anisotropic medium parameters and migration ray parameters of the TTI medium to be migrated and imaged.

所述获取待偏移成像的TTI介质的各向异性参数,具体包括:The obtaining of the anisotropy parameters of the TTI medium to be migrated and imaging specifically includes:

读取待进行偏移成像的各向异性介质模型的Thomsen参数(VP0,VS0,ε,δ),根据Thomsen参数与VTI介质弹性参数之间的关系,可以获得由Thomsen参数表征的VTI介质密度归一化弹性矩阵

Figure BDA0002664719550000111
中的弹性参数元素
Figure BDA0002664719550000112
具体为:Read the Thomsen parameters (V P0 , V S0 , ε, δ) of the anisotropic medium model to be migrated and imaged. According to the relationship between the Thomsen parameters and the elastic parameters of the VTI medium, the VTI medium characterized by the Thomsen parameters can be obtained. Density Normalized Elasticity Matrix
Figure BDA0002664719550000111
Elastic parameter element in
Figure BDA0002664719550000112
Specifically:

Figure BDA0002664719550000113
Figure BDA0002664719550000113

式(1)中,Thomsen参数VP0、VP0分别为P波和S波的垂向速度,ε和δ是表示VTI介质各向异性强度的无量纲因子;In formula (1), the Thomsen parameters V P0 and V P0 are the vertical velocities of the P-wave and S-wave respectively, and ε and δ are dimensionless factors representing the anisotropic strength of the VTI medium;

根据所述的VTI介质密度归一化的弹性参数,通过Bond变换,获得TTI介质密度归一化弹性矩阵

Figure BDA0002664719550000114
中的各向异性弹性参数元素a11,a33,a55,a13,a15,a35,具体为:According to the elastic parameters normalized by the density of the VTI medium, through Bond transformation, the normalized elastic matrix of the density of the TTI medium is obtained
Figure BDA0002664719550000114
The anisotropic elastic parameter elements a 11 ,a 33 ,a 55 ,a 13 ,a 15 ,a 35 in , specifically:

Figure BDA0002664719550000115
Figure BDA0002664719550000115

Figure BDA0002664719550000116
Figure BDA0002664719550000116

Figure BDA0002664719550000117
Figure BDA0002664719550000117

Figure BDA0002664719550000118
Figure BDA0002664719550000118

Figure BDA0002664719550000119
Figure BDA0002664719550000119

Figure BDA00026647195500001110
Figure BDA00026647195500001110

式(2)中,θ0为TTI介质的对称轴倾角。In formula (2), θ 0 is the inclination angle of the symmetry axis of the TTI medium.

其中,

Figure BDA0002664719550000121
Figure BDA0002664719550000122
均为VTI介质密度归一化弹性矩阵中的弹性参数元素,
Figure BDA0002664719550000123
a11、a12、a13、a15、a22、a23、a25、a33、a35、a44、a46、a55、a66均为TTI介质密度归一化弹性矩阵中的各向异性弹性参数元素,θ0为TTI介质的对称轴倾角。本发明的运算中只用到了
Figure BDA0002664719550000124
Figure BDA0002664719550000125
a11、a33、a55、a13、a15和a35,无需其他元素的计算。in,
Figure BDA0002664719550000121
and
Figure BDA0002664719550000122
are elastic parameter elements in the VTI medium density normalized elastic matrix,
Figure BDA0002664719550000123
a 11 , a 12 , a 13 , a 15 , a 22 , a 23 , a 25 , a 33 , a 35 , a 44 , a 46 , a 55 , a 66 are all in the TTI medium density normalized elastic matrix Anisotropic elastic parameter element, θ 0 is the inclination angle of the symmetry axis of the TTI medium. In the operation of the present invention, only the
Figure BDA0002664719550000124
and
Figure BDA0002664719550000125
a 11 , a 33 , a 55 , a 13 , a 15 and a 35 , without calculation of other elements.

步骤102,根据所述各向异性介质参数和偏移射线参数,利用二维各向异性射线追踪方程组,分别进行TTI介质中的P波和S波的射线追踪,获得每个炮点出射的P波的各向异性高斯束复值振幅和复值时间及每个检波点出射的S波的各向异性高斯束复值振幅和复值时间。Step 102, according to the parameters of the anisotropic medium and the offset ray parameters, using the two-dimensional anisotropic ray tracing equations, respectively carry out the ray tracing of the P wave and the S wave in the TTI medium, and obtain the ray tracing of each shot point. The complex-valued amplitude and complex-valued time of the anisotropic Gaussian beam of the P-wave and the complex-valued amplitude and complex-valued time of the anisotropic Gaussian beam of the S-wave emitted from each detection point.

步骤102,根据所述各向异性介质参数和偏移射线参数,利用二维各向异性射线追踪方程组,分别进行TTI介质中的P波和S波的射线追踪,获得每个炮点出射的P波的各向异性高斯束复值振幅和复值时间及每个检波点出射的S波的各向异性高斯束复值振幅和复值时间,具体包括:Step 102, according to the parameters of the anisotropic medium and the offset ray parameters, using the two-dimensional anisotropic ray tracing equations, respectively carry out the ray tracing of the P wave and the S wave in the TTI medium, and obtain the ray tracing of each shot point. The complex-valued amplitude and complex-valued time of the anisotropic Gaussian beam of the P-wave and the complex-valued amplitude and complex-valued time of the anisotropic Gaussian beam of the S-wave emitted from each detection point, including:

二维各向异性射线追踪方程组为:The two-dimensional anisotropic ray tracing equations are:

Figure BDA0002664719550000131
Figure BDA0002664719550000131

Figure BDA0002664719550000132
Figure BDA0002664719550000132

Figure BDA0002664719550000133
Figure BDA0002664719550000133

Figure BDA0002664719550000134
Figure BDA0002664719550000134

式(3)中,τ是沿射线的旅行时,xi(i=1,3)是直角坐标系中的坐标,

Figure BDA0002664719550000135
是慢度矢量的分量,akl=ckl/ρ(k,l=1,3,or 5)为TTI介质密度归一化的弹性参数,
Figure BDA0002664719550000136
为Christoffel矩阵特征向量的分量。所述二维各向异性射线追踪方程组(式(3))对于TTI介质中P波和S波具有相同的形式,m=1和m=2分别表示P波和S波;In formula (3), τ is the travel time along the ray, x i (i=1,3) is the coordinate in the Cartesian coordinate system,
Figure BDA0002664719550000135
is the component of the slowness vector, a kl =c kl /ρ(k,l=1,3,or 5) is the elastic parameter normalized by the density of the TTI medium,
Figure BDA0002664719550000136
are the components of the eigenvectors of the Christoffel matrix. The two-dimensional anisotropic ray tracing equations (equation (3)) have the same form for P-wave and S-wave in TTI medium, and m=1 and m=2 represent P-wave and S-wave respectively;

所述分别实现TTI介质中的P波和S波的射线追踪,进而获得相应的P波和S波各向异性高斯束的复值振幅和复值时间,具体包括:The ray tracing of the P-wave and S-wave in the TTI medium is respectively realized, and then the complex-valued amplitude and complex-valued time of the corresponding P-wave and S-wave anisotropic Gaussian beams are obtained, specifically including:

(a)根据各向异性介质中P波和S波的程函方程Gm(xi0,pi0)=1,得到相应波型初始射线参数p10和p30之间满足如下关系式:(a) According to the functional equation G m (x i0 , p i0 )=1 of the P-wave and S-wave in the anisotropic medium, the following relational expressions are obtained between the initial ray parameters p 10 and p 30 of the corresponding wave modes:

Figure BDA0002664719550000137
Figure BDA0002664719550000137

式(4)中In formula (4)

Figure BDA0002664719550000141
Figure BDA0002664719550000141

κ2=(a15a33-a13a35)p10 κ 2 =(a 15 a 33 -a 13 a 35 )p 10

Figure BDA0002664719550000142
Figure BDA0002664719550000142

Figure BDA0002664719550000143
Figure BDA0002664719550000143

Figure BDA0002664719550000144
Figure BDA0002664719550000144

(b)对于(a)中所述的初始射线参数p10和p30的四次方程(式(4)),采用牛顿迭代法进行求解,对于每个初始射线参数p10,获取相应的初始射线参数p30,进而获得P波和S波各向异性射线追踪相应的初始条件,具体为:(b) For the quartic equations (equation (4)) of the initial ray parameters p 10 and p 30 described in (a), use the Newton iteration method to solve, and for each initial ray parameter p 10 , obtain the corresponding initial ray parameter p 30 , and then obtain the corresponding initial conditions of P-wave and S-wave anisotropic ray tracing, specifically:

二维各向异性射线追踪方程组的初始条件具体为:The initial conditions of the two-dimensional anisotropic ray tracing equations are as follows:

Figure BDA0002664719550000145
Figure BDA0002664719550000145

式(6)中,(x10,x30)是射线追踪初始位置的坐标,对于所述P波和S波射线追踪其初始位置是已知的;In formula (6), (x 10 , x 30 ) are the coordinates of the initial position of the ray tracing, and the initial positions of the P-wave and S-wave ray tracing are known;

(c)根据(b)中所述P波和S波各向异性射线追踪相应的初始条件,利用龙格库塔法计算二维各向异性射线追踪方程组,求解相应的TTI介质中P波和S波射线追踪,获得相应的P波和S波中心射线的路径和走时信息;(c) According to the corresponding initial conditions of the P-wave and S-wave anisotropic ray tracing described in (b), use the Runge-Kutta method to calculate the two-dimensional anisotropic ray tracing equations, and solve the corresponding P wave in the TTI medium and S-wave ray tracing to obtain the path and travel time information of the corresponding P-wave and S-wave central rays;

(d)在(c)中所述的P波和S波中心射线路径上,利用各向异性动力学射线方程组求取相应射线的动力学参数,具体为:(d) On the central ray paths of the P-wave and S-wave described in (c), use the anisotropic dynamical ray equations to obtain the dynamic parameters of the corresponding rays, specifically:

各向异性介质中动力学射线方程组为:The dynamic ray equations in anisotropic medium are:

Figure BDA0002664719550000146
Figure BDA0002664719550000146

式(7)中,P和Q是射线的动力学参数,B1、B2、B3是相应波型Christoffel矩阵特征值Gm对于射线法线方向n以及法线方向射线参数pn的导数;In formula (7), P and Q are the dynamic parameters of the ray, and B 1 , B 2 , and B 3 are the derivatives of the Christoffel matrix eigenvalue G m of the corresponding wave mode to the ray normal direction n and the ray parameter p n in the normal direction. ;

(e)基于(c)中所述的P波和S波中心射线的走时信息以及(d)中所述的相应射线的动力学参数,获取相应的P波和S波各向异性高斯束的复值振幅A和复值时间T,具体为:(e) Based on the travel time information of the P-wave and S-wave central rays described in (c) and the dynamic parameters of the corresponding rays described in (d), obtain the corresponding P-wave and S-wave anisotropic Gaussian beams Complex-valued amplitude A and complex-valued time T, specifically:

Figure BDA0002664719550000151
Figure BDA0002664719550000151

式(8)中,

Figure BDA0002664719550000152
是初始振幅,其中V0是射线初始位置相应波型的群速度,L0是相应波型各向异性高斯束的初始束宽,ωr是参考频率;V是沿射线路径相应波型的群速度,n是射线附近位置到中心射线的垂直距离。In formula (8),
Figure BDA0002664719550000152
is the initial amplitude, where V0 is the group velocity of the corresponding mode at the initial position of the ray, L0 is the initial beamwidth of the corresponding mode anisotropic Gaussian beam, ωr is the reference frequency; V is the group of the corresponding mode along the ray path Velocity, n is the vertical distance from the position near the ray to the center ray.

步骤103,根据每个炮点出射的P波的各向异性高斯束复值振幅和复值时间,构建每个炮点的正向波场。Step 103 , construct the forward wave field of each shot point according to the complex-valued amplitude and complex-valued time of the P-wave emitted from each shot point.

步骤103所述根据每个炮点出射的P波的各向异性高斯束复值振幅和复值时间,构建每个炮点的正向波场,具体包括:In step 103, the forward wave field of each shot is constructed according to the complex-valued amplitude and complex-valued time of the anisotropic Gaussian beam of the P wave emitted from each shot, specifically including:

根据转换PS波共炮点道集地震记录读取每炮的震源位置坐标,确定震源位置处;According to the converted PS wave common shot gather seismic records, read the source position coordinates of each shot, and determine the source position;

利用震源位置处出射的P波各向异性高斯束构建震源位置处的正向波场,具体为:The forward wave field at the source position is constructed by using the anisotropic Gaussian beam of the P wave emitted at the source position, which is specifically:

Figure BDA0002664719550000153
Figure BDA0002664719550000153

式(9)中,G(x,xs,ω)为震源位置xs处的正向波场,

Figure BDA0002664719550000154
Figure BDA0002664719550000155
分别为震源出射的P波各向异性高斯束的复值振幅和复值时间,ω为角频率,
Figure BDA0002664719550000156
为震源出射的P波射线参数矢量。In formula (9), G(x,x s ,ω) is the forward wave field at the source position x s ,
Figure BDA0002664719550000154
and
Figure BDA0002664719550000155
are the complex-valued amplitude and complex-valued time of the P-wave anisotropic Gaussian beam emitted from the source, respectively, ω is the angular frequency,
Figure BDA0002664719550000156
is the parameter vector of the P-wave rays emitted by the source.

步骤104,根据每个检波点出射的S波的各向异性高斯束复值振幅和复值时间,对每炮所述转换PS波共炮点道集地震记录数据进行反向延拓,获得每个检波点的反向波场。Step 104, according to the complex-valued amplitude and complex-valued time of the anisotropic Gaussian beam of the S-wave emitted from each detection point, reversely extend the converted PS-wave common shot gather seismic record data of each shot to obtain each shot. The reverse wavefield of a receiver point.

步骤104所述根据每个检波点出射的S波的各向异性高斯束复值振幅和复值时间,对每炮所述转换PS波共炮点道集地震记录数据进行反向延拓,获得每个检波点的反向波场,具体包括:In step 104, according to the complex-valued amplitude and complex-valued time of the anisotropic Gaussian beam of the S-wave emitted from each detection point, reverse continuation is performed on the converted PS-wave common shot gather seismic record data of each shot to obtain: The reverse wave field of each detection point, including:

检波点的精确束波场反向延拓公式为:The exact beam field reverse extension formula of the detection point is:

Figure BDA0002664719550000161
Figure BDA0002664719550000161

式(10)中,R(x,xr,ω)表示反向延拓波场,uPS(xr,xs,ω)为TTI介质中转换PS波共炮点道集地震记录频谱,

Figure BDA0002664719550000162
Figure BDA0002664719550000163
分别为检波点xr出射的S波各向异性高斯束的复值振幅和复值时间,
Figure BDA0002664719550000164
为检波点出射的S波射线参数矢量。In formula (10), R(x, x r , ω) represents the reverse continuation wave field, u PS (x r , x s , ω) is the converted PS wave common shot gather seismic record spectrum in TTI medium,
Figure BDA0002664719550000162
and
Figure BDA0002664719550000163
are the complex-valued amplitude and complex-valued time of the S-wave anisotropic Gaussian beam emitted from the detection point x r , respectively,
Figure BDA0002664719550000164
is the S-wave ray parameter vector emitted from the detection point.

步骤105,基于互相关偏移成像条件,对每个炮点的正向波场和每个检波点的反向波场进行成像,获得每个炮点的TTI介质的转换PS波叠前深度偏移剖面。Step 105, based on the cross-correlation migration imaging conditions, image the forward wave field of each shot and the reverse wave field of each detection point, and obtain the converted PS wave prestack depth migration of the TTI medium of each shot. Move the profile.

TTI介质中单炮转换PS波精确束偏移成像公式为:The precise beam offset imaging formula of single-shot converted PS wave in TTI medium is:

Figure BDA0002664719550000165
Figure BDA0002664719550000165

式(11)中,

Figure BDA0002664719550000166
表示单炮转换PS波偏移剖面;利用符号函数sgn(xr-xs)校正转换PS波地震记录的极性反转现象,符号函数满足如下关系:In formula (11),
Figure BDA0002664719550000166
Represents the single-shot converted PS wave migration profile; the sign function sgn(x r -x s ) is used to correct the polarity inversion phenomenon of the converted PS wave seismic records, and the sign function satisfies the following relationship:

Figure BDA0002664719550000167
Figure BDA0002664719550000167

步骤106,将每个炮点的TTI介质的转换PS波叠前深度偏移剖面进行叠加,获得TTI介质的转换PS波深度域偏移成像剖面。Step 106 , superimposing the converted PS wave prestack depth migration profiles of the TTI medium of each shot point to obtain the converted PS wave depth domain migration imaging profile of the TTI medium.

具体的,将所有单炮偏移剖面进行叠加,获得最终的TTI介质中转换PS波深度域偏移成像剖面,具体为:Specifically, all single shot migration profiles are superimposed to obtain the final converted PS wave depth domain migration imaging profile in TTI medium, which is as follows:

Figure BDA0002664719550000168
Figure BDA0002664719550000168

式(13)中,N表示转换PS波共炮点道集地震记录的炮数,IPS(x)表示最终的TTI介质转换PS波深度域偏移成像剖面。In Equation (13), N represents the number of shots recorded in the converted PS wave common shot gather seismic record, and I PS (x) represents the final TTI medium converted PS wave depth domain migration imaging profile.

本发明还提供一种TTI介质转换PS波精确束偏移成像系统,所述成像系统包括:The present invention also provides a TTI medium-converted PS-wave precise beam shift imaging system, the imaging system comprising:

参数获取模块,用于获取待偏移成像的TTI介质的转换PS波共炮点道集地震记录数据、各向异性介质参数和偏移射线参数。The parameter acquisition module is used to acquire the converted PS wave common shot gather seismic record data, anisotropic medium parameters and migration ray parameters of the TTI medium to be migrated and imaged.

所述参数获取模块,具体包括:The parameter acquisition module specifically includes:

Thomsen参数获取子模块,用于获取待偏移成像的TTI介质的各向异性介质模型的Thomsen参数(VP0,VS0,ε,δ);其中,VP0、VP0分别为P波和S波的垂向速度,ε和δ是表示VTI介质的各向异性强度的第一无量纲因子和第二无量纲因子。The Thomsen parameter acquisition sub-module is used to acquire the Thomsen parameters (V P0 , V S0 , ε, δ) of the anisotropic medium model of the TTI medium to be migrated for imaging; wherein, V P0 and V P0 are the P wave and S, respectively The vertical velocity of the wave, ε and δ are the first and second dimensionless factors representing the anisotropic strength of the VTI medium.

VTI介质的弹性参数计算子模块,用于根据Thomsen参数与VTI介质弹性参数之间的关系,利用公式

Figure BDA0002664719550000171
计算VTI介质密度归一化弹性矩阵
Figure BDA0002664719550000172
中的弹性参数元素
Figure BDA0002664719550000173
Figure BDA0002664719550000174
The elastic parameter calculation sub-module of the VTI medium is used to calculate the relationship between the Thomsen parameter and the elastic parameter of the VTI medium by using the formula
Figure BDA0002664719550000171
Calculation of Density Normalized Elasticity Matrix for VTI Media
Figure BDA0002664719550000172
Elastic parameter element in
Figure BDA0002664719550000173
and
Figure BDA0002664719550000174

VTI介质的弹性参数计算子模块,用于根据VTI介质密度归一化弹性矩阵中的弹性参数元素

Figure BDA0002664719550000175
利用Bond变换公式
Figure BDA0002664719550000176
计算TTI介质密度归一化弹性矩阵
Figure BDA0002664719550000181
中的各向异性弹性参数元素a11,a33,a55,a13,a15和a35。Elastic parameter calculation sub-module for VTI media to normalize elastic parameter elements in the elastic matrix according to the density of the VTI media
Figure BDA0002664719550000175
Use the Bond transform formula
Figure BDA0002664719550000176
Calculation of Density Normalized Elasticity Matrix for TTI Media
Figure BDA0002664719550000181
The anisotropic elastic parameters in the elements a 11 , a 33 , a 55 , a 13 , a 15 and a 35 .

其中,

Figure BDA0002664719550000182
Figure BDA0002664719550000183
均为VTI介质密度归一化弹性矩阵中的弹性参数元素,
Figure BDA0002664719550000184
a11、a12、a13、a15、a22、a23、a25、a33、a35、a44、a46、a55、a66均为TTI介质密度归一化弹性矩阵中的各向异性弹性参数元素,θ0为TTI介质的对称轴倾角。本发明的运算中只用到了
Figure BDA0002664719550000185
Figure BDA0002664719550000186
a11、a33、a55、a13、a15和a35,无需其他元素的计算。in,
Figure BDA0002664719550000182
and
Figure BDA0002664719550000183
are elastic parameter elements in the VTI medium density normalized elastic matrix,
Figure BDA0002664719550000184
a 11 , a 12 , a 13 , a 15 , a 22 , a 23 , a 25 , a 33 , a 35 , a 44 , a 46 , a 55 , a 66 are all in the TTI medium density normalized elastic matrix Anisotropic elastic parameter element, θ 0 is the inclination angle of the symmetry axis of the TTI medium. In the operation of the present invention, only the
Figure BDA0002664719550000185
and
Figure BDA0002664719550000186
a 11 , a 33 , a 55 , a 13 , a 15 and a 35 , without calculation of other elements.

射线追踪模块,用于根据所述各向异性介质参数和偏移射线参数,利用二维各向异性射线追踪方程组,分别进行TTI介质中的P波和S波的射线追踪,获得每个炮点出射的P波的各向异性高斯束复值振幅和复值时间及每个检波点出射的S波的各向异性高斯束复值振幅和复值时间。The ray tracing module is used to carry out the ray tracing of the P wave and the S wave in the TTI medium respectively by using the two-dimensional anisotropic ray tracing equation system according to the anisotropic medium parameters and the offset ray parameters, and obtain each shot The complex-valued amplitude and complex-valued time of the anisotropic Gaussian beam of the P-wave emitted from the point and the complex-valued amplitude and complex-valued time of the anisotropic Gaussian beam of the S-wave emitted from each detection point.

所述射线追踪模块,具体包括:The ray tracing module specifically includes:

二维各向异性射线追踪方程组的初始参数获取子模块,用于采用牛顿迭代法求解程函方程

Figure BDA0002664719550000187
获得初始的第一射线参数p10和第三射线参数p30,作为二维各向异性射线追踪方程组的初始的慢度矢量的第一分量p1和第三分量p3。Initial parameter acquisition submodule for two-dimensional anisotropic ray-tracing equations for solving function equations using Newton's iteration method
Figure BDA0002664719550000187
The initial first ray parameter p 10 and the third ray parameter p 30 are obtained as the first component p 1 and the third component p 3 of the initial slowness vector of the two-dimensional anisotropic ray tracing equation system.

其中,κ12345分别表示程函方程的第一系数、第二系数、第三系数、第四系数和第五系数,

Figure BDA0002664719550000188
Among them, κ 1 , κ 2 , κ 3 , κ 4 , κ 5 represent the first coefficient, the second coefficient, the third coefficient, the fourth coefficient and the fifth coefficient of the function equation, respectively,
Figure BDA0002664719550000188

路径信息和走时信息获取子模块,用于将初始的慢度矢量的第一分量p1和第三分量p3及初始的射线位置坐标输入二维各向异性射线追踪方程组,利用龙格库塔法求解二维各向异性射线追踪方程组,获得每个炮点和每个检波点出射的P波和S波的中心射线的路径信息和走时信息。The path information and travel time information acquisition sub-module is used to input the first component p 1 and the third component p 3 of the initial slowness vector and the initial ray position coordinates into the two-dimensional anisotropic ray tracing equation system, using the Runge library The tower method solves the two-dimensional anisotropic ray tracing equation system, and obtains the path information and travel time information of the central ray of the P-wave and S-wave emitted from each shot point and each detection point.

动力学参数获取子模块,用于根据每个炮点和每个检波点出射的P波和S波的中心射线的路径信息和走时信息,求解各向异性动力学射线方程组,获得每个炮点和每个检波点出射的P波和S波的中心射线的动力学参数。The dynamic parameter acquisition sub-module is used to solve the anisotropic dynamic ray equation system according to the path information and travel time information of the central ray of the P-wave and S-wave emitted from each shot point and each detection point, and obtain each shot Dynamic parameters of the center ray of the P- and S-waves at each detection point.

复值振幅和复值时间计算子模块,用于根据每个炮点和每个检波点出射的的P波和S波的中心射线的路径信息、走时信息和动力学参数,计算每个炮点出射的P波的各向异性高斯束复值振幅和复值时间及每个检波点出射的S波的各向异性高斯束复值振幅和复值时间。The complex-valued amplitude and complex-valued time calculation sub-module is used to calculate each shot point according to the path information, travel time information and dynamic parameters of the central rays of the P-wave and S-wave emitted from each shot point and each receiver point The anisotropic Gaussian beam complex-valued amplitude and complex-valued time of the outgoing P-wave and the anisotropic Gaussian-beam complex-valued amplitude and complex-valued time of the S-wave outgoing from each detection point.

正向波场构建模块,用于根据每个炮点出射的P波的各向异性高斯束复值振幅和复值时间,构建每个炮点的正向波场。The forward wavefield building block is used to construct the forward wavefield of each shot based on the complex-valued amplitude and complex-valued time of the anisotropic Gaussian beam of the P-wave emitted from each shot.

反向波场构建模块,用于根据每个检波点出射的S波的各向异性高斯束复值振幅和复值时间,对每炮所述转换PS波共炮点道集地震记录数据进行反向延拓,获得每个检波点的反向波场。The inverse wave field building module is used to invert the common shot gather seismogram data of the converted PS waves of each shot according to the complex-valued amplitude and complex-valued time of the anisotropic Gaussian beam of the S-wave emitted from each detection point. Continue in the direction to obtain the reverse wave field of each detection point.

单炮点转换PS波叠前深度偏移剖面计算模块,用于基于互相关偏移成像条件,对每个炮点的正向波场和每个检波点的反向波场进行成像,获得每个炮点的TTI介质的转换PS波叠前深度偏移剖面。The single-shot conversion PS wave prestack depth migration profile calculation module is used to image the forward wave field of each shot and the reverse wave field of each detection point based on the cross-correlation migration imaging conditions, and obtain each Converted PS-wave prestack depth-migration profile of a TTI medium for one shot.

转换PS波深度域偏移成像剖面计算模块,用于将每个炮点的TTI介质的转换PS波叠前深度偏移剖面进行叠加,获得TTI介质的转换PS波深度域偏移成像剖面。The converted PS wave depth domain migration imaging profile calculation module is used to superimpose the converted PS wave prestack depth migration profile of each shot point of the TTI medium to obtain the converted PS wave depth domain migration imaging profile of the TTI medium.

具体实施方式一:Specific implementation one:

图2是本发明提供的水平层状TTI介质模型,模型各向异性参数如图2所示,模型网格为301ⅹ301,纵横向网格间距均为10m。在此模型表面中间位置设置单个爆炸震源(炮点),震源子波为Ricker子波,主频为30Hz,地震记录采样时间设置为3s,采样间隔为2ms。采用中间放炮两边接收观测系统,道间距为10m。图3是图2所示水平层状TTI介质模型的单炮转换PS波地震记录,从图3中可以清晰地看到转换PS波的极性反转现象。图4是图2所示水平层状TTI介质模型的单炮转换PS波叠前深度偏移剖面,其中图4(a)是利用各向同性偏移方法得到的偏移剖面,图4(b)是利用本发明方法得到的偏移剖面。从图4(a)中可以看到,由于忽略各向异性的影响,各向同性偏移方法不能将模型中反射界面准确归位,剖面中存在明显的成像错误。从图4(b)中可以看到,本发明方法能够使反射界面完全归位,得到准确的偏移成像剖面。通过对水平层状TTI介质模型进行单炮转换PS波偏移测试,验证了本发明方法的有效性。Fig. 2 is a horizontal layered TTI medium model provided by the present invention, the model anisotropy parameters are shown in Fig. 2, the model grid is 301ⅹ301, and the vertical and horizontal grid spacings are both 10m. A single explosion source (shot point) is set in the middle of the surface of this model, the source wavelet is Ricker wavelet, the main frequency is 30Hz, the sampling time of seismic recording is set to 3s, and the sampling interval is 2ms. The receiver and observation system on both sides of the middle shot is adopted, and the track spacing is 10m. Fig. 3 is the single-shot converted PS wave seismic record of the horizontal layered TTI medium model shown in Fig. 2. From Fig. 3, the polarity reversal phenomenon of the converted PS wave can be clearly seen. Fig. 4 is the single-shot converted PS wave prestack depth migration profile of the horizontal layered TTI medium model shown in Fig. 2, in which Fig. 4(a) is the migration profile obtained by the isotropic migration method, and Fig. 4(b) ) is the offset profile obtained by the method of the present invention. As can be seen from Fig. 4(a), since the influence of anisotropy is ignored, the isotropic migration method cannot accurately locate the reflection interface in the model, and there are obvious imaging errors in the section. It can be seen from Fig. 4(b) that the method of the present invention can completely return the reflection interface to obtain an accurate offset imaging section. The effectiveness of the method of the present invention is verified by performing a single-shot conversion PS wave migration test on a horizontal layered TTI medium model.

具体实施方式二:Specific implementation two:

图5是本发明提供的逆冲TTI介质模型,模型各向异性参数如图5所示,模型网格为401ⅹ201,纵横向网格间距均为10m,模型中具有一个不同对称轴倾角的逆冲岩片构造。在此模型表面上设置77个爆炸震源,炮间距为50m,震源子波为主频25Hz的Ricker子波,每炮401道接收,道间距为10m。图6是图5所示逆冲TTI介质模型的多炮叠加转换PS波叠前深度偏移剖面,其中图6(a)是利用各向同性偏移方法得到的偏移剖面,图6(b)是利用本发明方法得到的偏移剖面。从图6中可以看到,对于如图6(a)所示的各向同性偏移剖面,逆冲岩片构造下覆的水平界面成像向上抬起,逆冲岩片构造中的倾斜界面成像位置不准确,而且反射界面附近存在明显的发散能量和较强的噪音干扰,如图6(a)中箭头所示。从图6(b)中可以看到,本发明方法对于逆冲TTI介质模型得到了准确的聚焦成像,且消除了噪音干扰,本发明方法相比于图6(a)所示的各向同性偏移成像效果具有明显的提高,进一步验证了本发明方法是一种适用于TTI介质转换PS波地震数据的准确有效的偏移方法。Fig. 5 is the thrust TTI medium model provided by the present invention, the model anisotropy parameter is shown in Fig. 5, the model grid is 401 × 201, the vertical and horizontal grid spacing is 10m, and the model has thrust with different symmetry axis inclination angles rock structure. On the surface of this model, 77 explosion sources are set, the distance between the guns is 50m, the source wavelet is Ricker wavelet with the main frequency of 25Hz, and 401 channels are received for each gun, and the distance between the channels is 10m. Fig. 6 is the multi-shot superposition converted PS wave prestack depth migration profile of the thrust TTI medium model shown in Fig. 5, in which Fig. 6(a) is the migration profile obtained by the isotropic migration method, Fig. 6(b) ) is the offset profile obtained by the method of the present invention. It can be seen from Fig. 6 that for the isotropic migration profile shown in Fig. 6(a), the imaging position of the horizontal interface under the thrust slat structure is lifted upward, and the imaging position of the inclined interface in the thrust slat structure is not It is accurate, and there is obvious divergent energy and strong noise interference near the reflection interface, as shown by the arrow in Fig. 6(a). It can be seen from Fig. 6(b) that the method of the present invention obtains accurate focusing imaging for the thrust TTI medium model and eliminates noise interference. Compared with the isotropic method shown in Fig. 6(a), the method of the present invention The migration imaging effect is obviously improved, which further verifies that the method of the present invention is an accurate and effective migration method suitable for TTI medium-converted PS wave seismic data.

本发明包括:获取TTI介质转换PS波共炮点道集地震记录数据、TTI介质各向异性参数和偏移射线参数;实现TTI介质中P波和S波的射线追踪,获得相应的P波和S波各向异性高斯束的复值振幅和复值时间;利用所得的P波各向异性高斯束复值振幅和复值时间,构建每一炮震源处的正向波场;对每炮TTI介质转换PS波地震记录进行反向延拓,获取每一炮对应检波点的精确束反向延拓波场;对所述的每炮震源正向波场和检波点反向波场进行成像,获得每炮TTI介质转换PS波的叠前深度偏移剖面;将所有单炮偏移剖面进行叠加,获得最终的TTI介质中转换PS波深度域偏移成像剖面。采用本发明方法,可以有效解决各向异性对转换PS波偏移的影响,获得TTI介质中转换PS波高精度的叠前深度偏移成像剖面。The invention includes: acquiring the seismic recording data of the TTI medium converted PS wave common shot gather, the anisotropy parameter of the TTI medium and the migration ray parameter; realizing the ray tracing of the P wave and the S wave in the TTI medium, and obtaining the corresponding P wave and The complex-valued amplitude and complex-valued time of the S-wave anisotropic Gaussian beam; the obtained P-wave anisotropic Gaussian beam complex-valued amplitude and complex-valued time are used to construct the forward wave field at the source of each shot; for each shot TTI The medium-converted PS wave seismic record is reversely extended to obtain the precise beam reverse extension wavefield of each shot corresponding to the detection point; the forward wavefield of each shot source and the reverse wavefield of the detection point are imaged, The pre-stack depth migration profile of each shot of the TTI medium converted PS wave is obtained; all single shot migration profiles are superimposed to obtain the final converted PS wave depth domain migration imaging profile in the TTI medium. By adopting the method of the invention, the influence of anisotropy on the migration of the converted PS wave can be effectively solved, and a high-precision pre-stack depth migration imaging section of the converted PS wave in the TTI medium can be obtained.

根据本发明提供的具体实施例,本发明公开了以下技术效果:According to the specific embodiments provided by the present invention, the present invention discloses the following technical effects:

1)本发明充分考虑了各向异性因素对转换PS波地震波场的影响,能够对存在TTI介质的地下构造准确偏移归位;2)本发明方法不受各向异性强弱限制,适应于强各向异性介质;3)本发明采用精确束反向延拓波场公式,在波场延拓计算过程中不做近似处理,可获得高精度的转换PS波偏移成像剖面;4)本发明方法不受观测系统的限制,适用于不规则采集的转换PS波地震数据;5)本发明可以广泛用于转换PS波地震勘探领域中,对于具有各向异性介质的复杂构造有更加明显的成像效果。1) The present invention fully considers the influence of anisotropy factors on the converted PS wave seismic wave field, and can accurately offset and reset the underground structures with TTI medium; 2) The method of the present invention is not limited by the strength of anisotropy, and is suitable for strong anisotropic medium; 3) the present invention adopts the precise beam reverse continuation wave field formula, does not do approximation processing in the wave field continuation calculation process, and can obtain a high-precision converted PS wave migration imaging profile; 4) this The inventive method is not limited by the observation system, and is suitable for irregularly collected converted PS wave seismic data; 5) the present invention can be widely used in the field of converted PS wave seismic exploration, and has more obvious effects on complex structures with anisotropic media. Imaging effect.

本说明书中各个实施例采用递进的方式描述,每个实施例重点说明的都是与其他实施例的不同之处,各个实施例之间相同相似部分互相参见即可。The various embodiments in this specification are described in a progressive manner, and each embodiment focuses on the differences from other embodiments, and the same and similar parts between the various embodiments can be referred to each other.

本文中应用了具体个例对发明的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本发明的方法及其核心思想,所描述的实施例仅仅是本发明的一部分实施例,而不是全部的实施例,基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。The principles and implementations of the invention are described herein by using specific examples. The descriptions of the above embodiments are only used to help understand the method and the core idea of the present invention, and the described embodiments are only a part of the embodiments of the present invention. , rather than all the embodiments. Based on the embodiments of the present invention, all other embodiments obtained by those of ordinary skill in the art without creative work shall fall within the protection scope of the present invention.

Claims (10)

1.一种TTI介质转换PS波精确束偏移成像方法,其特征在于,所述成像方法包括如下步骤:1. a TTI medium conversion PS wave precise beam shift imaging method, is characterized in that, described imaging method comprises the steps: 获取待偏移成像的TTI介质的转换PS波共炮点道集地震记录数据、各向异性介质参数和偏移射线参数;Obtain the converted PS wave common shot gather seismic record data, anisotropic medium parameters and migration ray parameters of the TTI medium to be migrated and imaged; 根据所述各向异性介质参数和偏移射线参数,利用二维各向异性射线追踪方程组,分别进行TTI介质中的P波和S波的射线追踪,获得每个炮点出射的P波的各向异性高斯束复值振幅和复值时间及每个检波点出射的S波的各向异性高斯束复值振幅和复值时间;According to the parameters of the anisotropic medium and the offset ray, the two-dimensional anisotropic ray tracing equations are used to carry out the ray tracing of the P wave and the S wave in the TTI medium, respectively, and the ray tracing of the P wave emitted from each shot point is obtained. The complex-valued amplitude and complex-valued time of the anisotropic Gaussian beam and the complex-valued amplitude and complex-valued time of the anisotropic Gaussian beam of the S-wave emitted from each detection point; 根据每个炮点出射的P波的各向异性高斯束复值振幅和复值时间,构建每个炮点的正向波场;According to the complex-valued amplitude and complex-valued time of the anisotropic Gaussian beam of the P wave emitted from each shot, the forward wave field of each shot is constructed; 根据每个检波点出射的S波的各向异性高斯束复值振幅和复值时间,对每炮所述转换PS波共炮点道集地震记录数据进行反向延拓,获得每个检波点的反向波场;According to the complex-valued amplitude and complex-valued time of the anisotropic Gaussian beam of the S-wave emitted from each detection point, the reverse continuation of the converted PS-wave common shot gather seismographic record data of each shot is performed to obtain each detection point The reverse wave field of ; 基于互相关偏移成像条件,对每个炮点的正向波场和每个检波点的反向波场进行成像,获得每个炮点的TTI介质的转换PS波叠前深度偏移剖面;Based on the cross-correlation migration imaging conditions, the forward wavefield of each shot and the reverse wavefield of each detection point were imaged, and the converted PS wave prestack depth migration profile of the TTI medium of each shot was obtained; 将每个炮点的TTI介质的转换PS波叠前深度偏移剖面进行叠加,获得TTI介质的转换PS波深度域偏移成像剖面。The pre-stack depth migration profiles of the converted PS waves of the TTI medium of each shot are superimposed to obtain the converted PS wave depth domain migration imaging profiles of the TTI medium. 2.根据权利要求1所述的TTI介质转换PS波精确束偏移成像方法,其特征在于,获取待偏移成像的TTI介质的各向异性介质参数,具体包括:2. The TTI medium-converted PS-wave precise beam shifting imaging method according to claim 1, wherein acquiring the anisotropic medium parameters of the TTI medium to be shifted and imaging specifically comprises: 获取待偏移成像的TTI介质的各向异性介质模型的Thomsen参数(VP0,VS0,ε,δ);其中,VP0、VS0分别为P波和S波的垂向速度,ε和δ是表示VTI介质的各向异性强度的第一无量纲因子和第二无量纲因子;Obtain the Thomsen parameters (V P0 , V S0 , ε, δ) of the anisotropic medium model of the TTI medium to be migrated and imaged; where, V P0 and V S0 are the vertical velocities of the P-wave and S-wave, respectively, ε and δ is the first dimensionless factor and the second dimensionless factor representing the anisotropic strength of the VTI medium; 根据Thomsen参数与VTI介质弹性参数之间的关系,利用公式
Figure FDA0002664719540000011
计算VTI介质密度归一化弹性矩阵
Figure FDA0002664719540000021
中的弹性参数元素
Figure FDA0002664719540000022
Figure FDA0002664719540000023
According to the relationship between the Thomsen parameters and the elastic parameters of the VTI medium, using the formula
Figure FDA0002664719540000011
Calculation of Density Normalized Elasticity Matrix for VTI Media
Figure FDA0002664719540000021
Elastic parameter element in
Figure FDA0002664719540000022
and
Figure FDA0002664719540000023
根据VTI介质密度归一化弹性矩阵中的弹性参数元素
Figure FDA0002664719540000024
利用Bond变换公式
Figure FDA0002664719540000025
计算TTI介质密度归一化弹性矩阵
Figure FDA0002664719540000026
中的各向异性弹性参数元素a11,a33,a55,a13,a15和a35
Normalize the elastic parameter elements in the elastic matrix according to the density of the VTI medium
Figure FDA0002664719540000024
Use the Bond transform formula
Figure FDA0002664719540000025
Calculation of Density Normalized Elasticity Matrix for TTI Media
Figure FDA0002664719540000026
The anisotropic elastic parameter elements a 11 , a 33 , a 55 , a 13 , a 15 and a 35 in ;
其中,
Figure FDA0002664719540000027
Figure FDA0002664719540000028
均为VTI介质密度归一化弹性矩阵中的弹性参数元素,
Figure FDA0002664719540000029
a11、a12、a13、a15、a22、a23、a25、a33、a35、a44、a46、a55、a66均为TTI介质密度归一化弹性矩阵中的各向异性弹性参数元素,θ°为TTI介质的对称轴倾角。
in,
Figure FDA0002664719540000027
and
Figure FDA0002664719540000028
are elastic parameter elements in the VTI medium density normalized elastic matrix,
Figure FDA0002664719540000029
a 11 , a 12 , a 13 , a 15 , a 22 , a 23 , a 25 , a 33 , a 35 , a 44 , a 46 , a 55 , a 66 are all in the TTI medium density normalized elastic matrix Anisotropic elastic parameter element, θ° is the inclination angle of the symmetry axis of the TTI medium.
3.根据权利要求2所述的TTI介质转换PS波精确束偏移成像方法,其特征在于,所述根据所述各向异性介质参数和偏移射线参数,利用二维各向异性射线追踪方程组,分别进行TTI介质中的P波和S波的射线追踪,获得每个炮点出射的P波的各向异性高斯束复值振幅和复值时间及每个检波点出射的S波的各向异性高斯束复值振幅和复值时间,具体包括:3. The TTI medium conversion PS wave precise beam migration imaging method according to claim 2, wherein, according to the anisotropic medium parameters and the migration ray parameters, a two-dimensional anisotropic ray tracing equation is used ray tracing of the P-wave and S-wave in the TTI medium, respectively, to obtain the complex-valued amplitude and complex-valued time of the anisotropic Gaussian beam of the P-wave emitted from each shot point, as well as the difference of the S-wave output from each detection point. Anisotropic Gaussian beam complex-valued amplitude and complex-valued time, including: 采用牛顿迭代法求解程函方程
Figure FDA0002664719540000031
获得初始的第一射线参数p10和第三射线参数p30,作为二维各向异性射线追踪方程组的初始的慢度矢量的第一分量p1和第三分量p3
Using Newton's Iterative Method to Solve the Function Equation
Figure FDA0002664719540000031
obtaining the initial first ray parameter p 10 and the third ray parameter p 30 as the first component p 1 and the third component p 3 of the initial slowness vector of the two-dimensional anisotropic ray tracing equation system;
其中,κ12345分别表示,程函方程的第一系数、第二系数、第三系数、第四系数和第五系数,
Figure FDA0002664719540000032
Among them, κ 1 , κ 2 , κ 3 , κ 4 , κ 5 respectively represent the first coefficient, second coefficient, third coefficient, fourth coefficient and fifth coefficient of the function equation,
Figure FDA0002664719540000032
将初始的慢度矢量的第一分量p1和第三分量p3及初始的射线位置坐标输入二维各向异性射线追踪方程组,利用龙格库塔法求解二维各向异性射线追踪方程组,获得每个炮点和每个检波点出射的P波和S波的中心射线的路径信息和走时信息;Input the first component p 1 and the third component p 3 of the initial slowness vector and the initial ray position coordinates into the two-dimensional anisotropic ray tracing equation system, and use the Runge-Kutta method to solve the two-dimensional anisotropic ray tracing equation group, to obtain the path information and travel time information of the central rays of the P-wave and S-wave emitted from each shot point and each detection point; 根据每个炮点和每个检波点出射的P波和S波的中心射线的路径信息和走时信息,求解各向异性动力学射线方程组,获得每个炮点和每个检波点出射的P波和S波的中心射线的动力学参数;According to the path information and travel time information of the central ray of the P-wave and S-wave emitted from each shot point and each receiver point, solve the anisotropic dynamic ray equation, and obtain the P wave emitted from each shot point and each receiver point. Dynamic parameters of the center ray of waves and S-waves; 根据每个炮点和每个检波点出射的的P波和S波的中心射线的路径信息、走时信息和动力学参数,计算每个炮点出射的P波的各向异性高斯束复值振幅和复值时间及每个检波点出射的S波的各向异性高斯束复值振幅和复值时间。Calculate the complex-valued amplitude of the anisotropic Gaussian beam of the P-wave emitted from each shot point according to the path information, travel time information and dynamic parameters of the central ray of the P-wave and S-wave emitted from each shot point and each detection point and complex-valued time and the complex-valued amplitude and complex-valued time of the anisotropic Gaussian beam of the S-wave emitted from each detection point.
4.根据权利要求1所述的TTI介质转换PS波精确束偏移成像方法,其特征在于,所述根据每个炮点出射的P波的各向异性高斯束复值振幅和复值时间,构建每个炮点的正向波场,具体包括:4. TTI medium conversion PS wave precise beam shift imaging method according to claim 1, is characterized in that, described according to the anisotropic Gaussian beam complex-valued amplitude and complex-valued time of the P wave that each shot point exits, Construct the forward wavefield for each shot, including: 根据每个炮点出射的P波的各向异性高斯束复值振幅和复值时间,构建每炮震源的正向波场为:According to the complex-valued amplitude and complex-valued time of the anisotropic Gaussian beam of the P wave emitted from each shot point, the forward wave field of each shot source is constructed as:
Figure FDA0002664719540000033
Figure FDA0002664719540000033
其中,G(x,xs,ω)为炮点xs的正向波场,
Figure FDA0002664719540000041
Figure FDA0002664719540000042
分别为炮点xs出射的P波各向异性高斯束的复值振幅和复值时间,ω为角频率,
Figure FDA0002664719540000043
为炮点xs出射的P波射线偏移参数矢量,
Figure FDA0002664719540000044
为P波射线偏移参数矢量的水平分量;
Figure FDA0002664719540000045
为P波射线偏移参数矢量的垂直分量;x表示地下任意一点的位置矢量,i为复数单位。
Among them, G(x,x s ,ω) is the forward wave field of the shot point x s ,
Figure FDA0002664719540000041
and
Figure FDA0002664719540000042
are the complex-valued amplitude and complex-valued time of the P-wave anisotropic Gaussian beam emitted from the shot x s , respectively, ω is the angular frequency,
Figure FDA0002664719540000043
is the offset parameter vector of the P-wave ray emitted from the shot point x s ,
Figure FDA0002664719540000044
is the horizontal component of the P-wave ray migration parameter vector;
Figure FDA0002664719540000045
is the vertical component of the P-wave ray migration parameter vector; x represents the position vector of any point underground, and i is a complex unit.
5.根据权利要求1所述的TTI介质转换PS波精确束偏移成像方法,其特征在于,所述根据每个检波点出射的S波的各向异性高斯束复值振幅和复值时间,对每炮所述转换PS波共炮点道集地震记录数据进行反向延拓,获得每个检波点的反向波场,具体包括:5. The TTI medium-converted PS-wave precise beam-shift imaging method according to claim 1, wherein the anisotropic Gaussian beam complex-valued amplitude and complex-valued time of the S-wave emitted from each detection point, Perform reverse continuation of the converted PS wave common shot gather seismic record data of each shot to obtain the reverse wave field of each detection point, specifically including: 根据每个检波点出射的S波的各向异性高斯束复值振幅和复值时间,利用公式
Figure FDA0002664719540000046
对每炮所述转换PS波共炮点道集地震记录数据进行反向延拓,获得每个检波点的反向波场;
According to the complex-valued amplitude and complex-valued time of the S-wave emitted from each detection point, the
Figure FDA0002664719540000046
Carry out reverse continuation of the converted PS wave common shot gather seismic record data of each shot to obtain the reverse wave field of each detection point;
其中,R(x,xr,ω)表示检波点xr的反向波场,uPS(xr,xs,ω)为炮点xs和检波点xr的转换PS波共炮点道集地震记录数据,
Figure FDA0002664719540000047
Figure FDA0002664719540000048
分别为检波点xr出射的S波各向异性高斯束的复值振幅和复值时间,
Figure FDA0002664719540000049
为检波点xr出射的S波射线偏移参数矢量,
Figure FDA00026647195400000410
为S波射线偏移参数矢量的水平分量;
Figure FDA00026647195400000411
为S波射线偏移参数矢量的垂直分量;x表示地下任意一点的位置矢量,i为复数单位,ω为角频率。
Among them, R(x,x r ,ω) represents the reverse wave field of the detection point x r , u PS (x r ,x s ,ω) is the converted PS wave common shot point of the shot point x s and the detection point x r Gather seismic record data,
Figure FDA0002664719540000047
and
Figure FDA0002664719540000048
are the complex-valued amplitude and complex-valued time of the S-wave anisotropic Gaussian beam emitted from the detection point x r , respectively,
Figure FDA0002664719540000049
is the S-wave ray migration parameter vector from the detection point x r ,
Figure FDA00026647195400000410
is the horizontal component of the S-wave ray migration parameter vector;
Figure FDA00026647195400000411
is the vertical component of the S-wave ray migration parameter vector; x represents the position vector of any point underground, i is a complex unit, and ω is the angular frequency.
6.根据权利要求1所述的TTI介质转换PS波精确束偏移成像方法,其特征在于,所述基于互相关偏移成像条件,对每个炮点的正向波场和每个检波点的反向波场进行成像,获得每个炮点的TTI介质的转换PS波叠前深度偏移剖面,具体包括:6. TTI medium conversion PS wave precise beam migration imaging method according to claim 1, is characterized in that, described based on cross-correlation migration imaging condition, to the forward wave field of each shot point and each detection point The reversed wavefield of the TTI medium is imaged to obtain the converted PS wave prestack depth migration profile of each shot point, including: 基于互相关偏移成像条件,利用公式
Figure FDA00026647195400000412
对每个炮点的正向波场和每个检波点的反向波场进行成像,获得每个炮点的TTI介质的转换PS波叠前深度偏移剖面;
Based on the cross-correlation migration imaging conditions, using the formula
Figure FDA00026647195400000412
Image the forward wavefield of each shot and the reverse wavefield of each detection point to obtain the converted PS wave prestack depth migration profile of the TTI medium of each shot;
其中,
Figure FDA0002664719540000051
表示炮点xs的转换PS波偏移剖面;sgn(xr-xs)表示校正转换PS波地震记录的极性反转现象的符号函数,
Figure FDA0002664719540000052
uPS(xr,xs,ω)为炮点xs和检波点xr的转换PS波共炮点道集地震记录数据,
Figure FDA0002664719540000053
Figure FDA0002664719540000054
分别为检波点xr出射的S波各向异性高斯束的复值振幅和复值时间,
Figure FDA0002664719540000055
Figure FDA0002664719540000056
分别为炮点xs出射的P波各向异性高斯束的复值振幅和复值时间,i表示复数单位,
Figure FDA0002664719540000057
为P波射线偏移参数矢量的水平分量,
Figure FDA0002664719540000058
为S波射线偏移参数矢量的水平分量,x表示地下任意一点的位置矢量,ω为角频率。
in,
Figure FDA0002664719540000051
represents the converted PS-wave migration profile at shot x s ; sgn(x r -x s ) represents the sign function to correct the polarity inversion phenomenon of the converted PS-wave seismic records,
Figure FDA0002664719540000052
u PS (x r , x s , ω) is the converted PS wave common shot gather seismic record data of shot x s and detection point x r ,
Figure FDA0002664719540000053
and
Figure FDA0002664719540000054
are the complex-valued amplitude and complex-valued time of the S-wave anisotropic Gaussian beam emitted from the detection point x r , respectively,
Figure FDA0002664719540000055
and
Figure FDA0002664719540000056
are the complex-valued amplitude and complex-valued time of the P-wave anisotropic Gaussian beam emitted from the shot x s , respectively, i represents the complex unit,
Figure FDA0002664719540000057
is the horizontal component of the P-wave ray migration parameter vector,
Figure FDA0002664719540000058
is the horizontal component of the S-wave ray migration parameter vector, x represents the position vector of any point underground, and ω is the angular frequency.
7.根据权利要求6所述的TTI介质转换PS波精确束偏移成像方法,其特征在于,所述将每个炮点的TTI介质的转换PS波叠前深度偏移剖面进行叠加,获得TTI介质的转换PS波深度域偏移成像剖面,具体包括:7. TTI medium conversion PS wave precise beam migration imaging method according to claim 6, is characterized in that, described by the conversion PS wave prestack depth migration profile of the TTI medium of each shot point is superimposed, obtains TTI The converted PS wave depth domain migration imaging profile of the medium, including: 利用公式
Figure FDA0002664719540000059
将每个炮点的TTI介质的转换PS波叠前深度偏移剖面进行叠加,获得TTI介质的转换PS波深度域偏移成像剖面;
Use the formula
Figure FDA0002664719540000059
Superimpose the converted PS wave prestack depth migration profile of each shot point in the TTI medium to obtain the converted PS wave depth domain migration imaging profile of the TTI medium;
其中,N表示转换PS波共炮点道集地震记录的炮点的数量,IPS(x)表示最终的TTI介质转换PS波深度域偏移成像剖面,x表示地下任意一点的位置矢量。Among them, N represents the number of shot points recorded by the converted PS wave common shot gather, I PS (x) represents the final TTI medium converted PS wave depth domain migration imaging profile, and x represents the position vector of any point underground.
8.一种TTI介质转换PS波精确束偏移成像系统,其特征在于,所述成像系统包括:8. A TTI medium converted PS wave precise beam shift imaging system, wherein the imaging system comprises: 参数获取模块,用于获取待偏移成像的TTI介质的转换PS波共炮点道集地震记录数据、各向异性介质参数和偏移射线参数;The parameter acquisition module is used to acquire the converted PS wave common shot gather seismic record data, anisotropic medium parameters and migration ray parameters of the TTI medium to be migrated and imaged; 射线追踪模块,用于根据所述各向异性介质参数和偏移射线参数,利用二维各向异性射线追踪方程组,分别进行TTI介质中的P波和S波的射线追踪,获得每个炮点出射的P波的各向异性高斯束复值振幅和复值时间及每个检波点出射的S波的各向异性高斯束复值振幅和复值时间;The ray tracing module is used to carry out the ray tracing of the P wave and the S wave in the TTI medium respectively by using the two-dimensional anisotropic ray tracing equation system according to the anisotropic medium parameters and the offset ray parameters, and obtain each shot The complex-valued amplitude and complex-valued time of the anisotropic Gaussian beam of the P-wave exiting from the point and the complex-valued amplitude and complex-valued time of the anisotropic Gaussian beam of the S-wave exiting from each detection point; 正向波场构建模块,用于根据每个炮点出射的P波的各向异性高斯束复值振幅和复值时间,构建每个炮点的正向波场;The forward wave field building module is used to construct the forward wave field of each shot point according to the complex-valued amplitude and complex-valued time of the anisotropic Gaussian beam of the P wave emitted from each shot point; 反向波场构建模块,用于根据每个检波点出射的S波的各向异性高斯束复值振幅和复值时间,对每炮所述转换PS波共炮点道集地震记录数据进行反向延拓,获得每个检波点的反向波场;The inverse wave field building module is used to invert the common shot gather seismogram data of the converted PS waves of each shot according to the complex-valued amplitude and complex-valued time of the anisotropic Gaussian beam of the S-wave emitted from each detection point. Continue in the direction to obtain the reverse wave field of each detection point; 单炮点转换PS波叠前深度偏移剖面计算模块,用于基于互相关偏移成像条件,对每个炮点的正向波场和每个检波点的反向波场进行成像,获得每个炮点的TTI介质的转换PS波叠前深度偏移剖面;The single-shot conversion PS wave prestack depth migration profile calculation module is used to image the forward wave field of each shot and the reverse wave field of each detection point based on the cross-correlation migration imaging conditions, and obtain each Prestack depth migration profile of converted PS wave in TTI medium of 1 shot; 转换PS波深度域偏移成像剖面计算模块,用于将每个炮点的TTI介质的转换PS波叠前深度偏移剖面进行叠加,获得TTI介质的转换PS波深度域偏移成像剖面。The converted PS wave depth domain migration imaging profile calculation module is used to superimpose the converted PS wave prestack depth migration profile of each shot point of the TTI medium to obtain the converted PS wave depth domain migration imaging profile of the TTI medium. 9.根据权利要求8所述的TTI介质转换PS波精确束偏移成像系统,其特征在于,所述参数获取模块,具体包括:9. The TTI medium conversion PS wave precise beam offset imaging system according to claim 8, wherein the parameter acquisition module specifically comprises: Thomsen参数获取子模块,用于获取待偏移成像的TTI介质的各向异性介质模型的Thomsen参数(VP0,VS0,ε,δ);其中,VP0、VP0分别为P波和S波的垂向速度,ε和δ是表示VTI介质的各向异性强度的第一无量纲因子和第二无量纲因子;The Thomsen parameter acquisition sub-module is used to acquire the Thomsen parameters (V P0 , V S0 , ε, δ) of the anisotropic medium model of the TTI medium to be migrated for imaging; wherein, V P0 and V P0 are the P wave and S, respectively the vertical velocity of the wave, ε and δ are the first dimensionless factor and the second dimensionless factor representing the anisotropic strength of the VTI medium; VTI介质的弹性参数计算子模块,用于根据Thomsen参数与VTI介质弹性参数之间的关系,利用公式
Figure FDA0002664719540000061
计算VTI介质密度归一化弹性矩阵
Figure FDA0002664719540000062
中的弹性参数元素
Figure FDA0002664719540000063
Figure FDA0002664719540000064
The elastic parameter calculation sub-module of the VTI medium is used to calculate the relationship between the Thomsen parameter and the elastic parameter of the VTI medium by using the formula
Figure FDA0002664719540000061
Calculation of Density Normalized Elasticity Matrix for VTI Media
Figure FDA0002664719540000062
Elastic parameter element in
Figure FDA0002664719540000063
and
Figure FDA0002664719540000064
VTI介质的弹性参数计算子模块,用于根据VTI介质密度归一化弹性矩阵中的弹性参数元素
Figure FDA0002664719540000071
利用Bond变换公式
Figure FDA0002664719540000072
计算TTI介质密度归一化弹性矩阵
Figure FDA0002664719540000073
中的各向异性弹性参数元素a11,a33,a55,a13,a15和a35
Elastic parameter calculation sub-module for VTI media to normalize elastic parameter elements in the elastic matrix according to the density of the VTI media
Figure FDA0002664719540000071
Use the Bond transform formula
Figure FDA0002664719540000072
Calculation of Density Normalized Elasticity Matrix for TTI Media
Figure FDA0002664719540000073
The anisotropic elastic parameter elements a 11 , a 33 , a 55 , a 13 , a 15 and a 35 in ;
其中,
Figure FDA0002664719540000074
Figure FDA0002664719540000075
均为VTI介质密度归一化弹性矩阵中的弹性参数元素,
Figure FDA0002664719540000076
a11、a12、a13、a15、a22、a23、a25、a33、a35、a44、a46、a55、a66均为TTI介质密度归一化弹性矩阵中的各向异性弹性参数元素,θ°为TTI介质的对称轴倾角。
in,
Figure FDA0002664719540000074
and
Figure FDA0002664719540000075
are elastic parameter elements in the VTI medium density normalized elastic matrix,
Figure FDA0002664719540000076
a 11 , a 12 , a 13 , a 15 , a 22 , a 23 , a 25 , a 33 , a 35 , a 44 , a 46 , a 55 , a 66 are all in the TTI medium density normalized elastic matrix Anisotropic elastic parameter element, θ° is the inclination angle of the symmetry axis of the TTI medium.
10.根据权利要求8所述的TTI介质转换PS波精确束偏移成像系统,其特征在于,所述射线追踪模块,具体包括:10. The TTI medium-converted PS-wave precise beam shifting imaging system according to claim 8, wherein the ray tracing module specifically comprises: 二维各向异性射线追踪方程组的初始参数获取子模块,用于采用牛顿迭代法求解程函方程
Figure FDA0002664719540000077
获得初始的第一射线参数p10和第三射线参数p30,作为二维各向异性射线追踪方程组的初始的慢度矢量的第一分量p1和第三分量p3
Initial parameter acquisition submodule for two-dimensional anisotropic ray-tracing equations for solving function equations using Newton's iteration method
Figure FDA0002664719540000077
obtaining the initial first ray parameter p 10 and the third ray parameter p 30 as the first component p 1 and the third component p 3 of the initial slowness vector of the two-dimensional anisotropic ray tracing equation system;
其中,κ12345分别表示程函方程的第一系数、第二系数、第三系数、第四系数和第五系数,
Figure FDA0002664719540000081
Among them, κ 1 , κ 2 , κ 3 , κ 4 , κ 5 represent the first coefficient, the second coefficient, the third coefficient, the fourth coefficient and the fifth coefficient of the function equation, respectively,
Figure FDA0002664719540000081
路径信息和走时信息获取子模块,用于将初始的慢度矢量的第一分量p1和第三分量p3及初始的射线位置坐标输入二维各向异性射线追踪方程组,利用龙格库塔法求解二维各向异性射线追踪方程组,获得每个炮点和每个检波点出射的P波和S波的中心射线的路径信息和走时信息;The path information and travel time information acquisition sub-module is used to input the first component p 1 and the third component p 3 of the initial slowness vector and the initial ray position coordinates into the two-dimensional anisotropic ray tracing equation system, using the Runge library The tower method solves the two-dimensional anisotropic ray tracing equation system, and obtains the path information and travel time information of the central ray of the P-wave and S-wave emitted from each shot point and each detection point; 动力学参数获取子模块,用于根据每个炮点和每个检波点出射的P波和S波的中心射线的路径信息和走时信息,求解各向异性动力学射线方程组,获得每个炮点和每个检波点出射的P波和S波的中心射线的动力学参数;The dynamic parameter acquisition sub-module is used to solve the anisotropic dynamic ray equation system according to the path information and travel time information of the central ray of the P-wave and S-wave emitted from each shot point and each detection point, and obtain each shot Dynamic parameters of the center rays of the P-wave and S-wave emitted from the point and each detection point; 复值振幅和复值时间计算子模块,用于根据每个炮点和每个检波点出射的的P波和S波的中心射线的路径信息、走时信息和动力学参数,计算每个炮点出射的P波的各向异性高斯束复值振幅和复值时间及每个检波点出射的S波的各向异性高斯束复值振幅和复值时间。The complex-valued amplitude and complex-valued time calculation sub-module is used to calculate each shot point according to the path information, travel time information and dynamic parameters of the central rays of the P-wave and S-wave emitted from each shot point and each receiver point The anisotropic Gaussian beam complex-valued amplitude and complex-valued time of the outgoing P-wave and the anisotropic Gaussian-beam complex-valued amplitude and complex-valued time of the S-wave outgoing from each detection point.
CN202010915044.2A 2020-09-03 2020-09-03 TTI medium conversion PS wave precise beam offset imaging method and system Active CN111999770B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010915044.2A CN111999770B (en) 2020-09-03 2020-09-03 TTI medium conversion PS wave precise beam offset imaging method and system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010915044.2A CN111999770B (en) 2020-09-03 2020-09-03 TTI medium conversion PS wave precise beam offset imaging method and system

Publications (2)

Publication Number Publication Date
CN111999770A true CN111999770A (en) 2020-11-27
CN111999770B CN111999770B (en) 2024-01-16

Family

ID=73466179

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010915044.2A Active CN111999770B (en) 2020-09-03 2020-09-03 TTI medium conversion PS wave precise beam offset imaging method and system

Country Status (1)

Country Link
CN (1) CN111999770B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115903032A (en) * 2022-10-25 2023-04-04 中国矿业大学(北京) Underground fluid storage space and migration channel detection method and device
US11953633B1 (en) * 2022-10-24 2024-04-09 China University Of Petroleum (East China) Method, device and computer device for decoupling anisotropic elastic wave

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB8805489D0 (en) * 1987-03-31 1988-04-07 Amoco Corp Method for depth imaging multicomponent seismic data
US5293352A (en) * 1993-01-07 1994-03-08 Western Atlas International, Inc. Method for removing noise due to near surface scatterers
WO2010014379A2 (en) * 2008-07-30 2010-02-04 Chevron U.S.A. Inc. Method for propagating pseudo acoustic quasi-p waves in anisotropic media
CN102116870A (en) * 2011-02-12 2011-07-06 中国石油大学(华东) Elastic wave gaussian beam pre-stack depth migration technology
CN103995288A (en) * 2014-05-13 2014-08-20 中国石油天然气集团公司 Gauss beam prestack depth migration method and device
CN105549081A (en) * 2016-01-29 2016-05-04 中国石油大学(华东) Anisotropic medium common shot domain Gaussian beam migration imaging method
US20160306058A1 (en) * 2015-04-16 2016-10-20 The Board Of Trustees Of The Leland Stanford Junior Univerisity Reverse time migration based on geometric mean for imaging seismic sources
CN106291687A (en) * 2016-07-21 2017-01-04 中国地质科学院地质研究所 Anisotropy many ripples Gaussian beam pre-stack depth migration imaging method
CN106842300A (en) * 2016-12-21 2017-06-13 中国石油大学(华东) A kind of high efficiency multi-component seismic data true amplitude migration imaging method
CN108363101A (en) * 2018-02-02 2018-08-03 西安石油大学 A kind of inclined shaft crosshole seismic Gaussian beam pre-stack depth migration imaging method
CN109856679A (en) * 2019-03-26 2019-06-07 中国海洋石油集团有限公司 A kind of anisotropic medium elastic wave Gaussian beam offset imaging method and system
US20200124755A1 (en) * 2018-10-22 2020-04-23 Pgs Geophysical As Correction of source motion effects in seismic data recorded in a marine survey using a moving source

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB8805489D0 (en) * 1987-03-31 1988-04-07 Amoco Corp Method for depth imaging multicomponent seismic data
US5293352A (en) * 1993-01-07 1994-03-08 Western Atlas International, Inc. Method for removing noise due to near surface scatterers
WO2010014379A2 (en) * 2008-07-30 2010-02-04 Chevron U.S.A. Inc. Method for propagating pseudo acoustic quasi-p waves in anisotropic media
CN102116870A (en) * 2011-02-12 2011-07-06 中国石油大学(华东) Elastic wave gaussian beam pre-stack depth migration technology
CN103995288A (en) * 2014-05-13 2014-08-20 中国石油天然气集团公司 Gauss beam prestack depth migration method and device
US20160306058A1 (en) * 2015-04-16 2016-10-20 The Board Of Trustees Of The Leland Stanford Junior Univerisity Reverse time migration based on geometric mean for imaging seismic sources
CN105549081A (en) * 2016-01-29 2016-05-04 中国石油大学(华东) Anisotropic medium common shot domain Gaussian beam migration imaging method
CN106291687A (en) * 2016-07-21 2017-01-04 中国地质科学院地质研究所 Anisotropy many ripples Gaussian beam pre-stack depth migration imaging method
CN106842300A (en) * 2016-12-21 2017-06-13 中国石油大学(华东) A kind of high efficiency multi-component seismic data true amplitude migration imaging method
CN108363101A (en) * 2018-02-02 2018-08-03 西安石油大学 A kind of inclined shaft crosshole seismic Gaussian beam pre-stack depth migration imaging method
US20200124755A1 (en) * 2018-10-22 2020-04-23 Pgs Geophysical As Correction of source motion effects in seismic data recorded in a marine survey using a moving source
CN109856679A (en) * 2019-03-26 2019-06-07 中国海洋石油集团有限公司 A kind of anisotropic medium elastic wave Gaussian beam offset imaging method and system

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
俞岱;杨飞龙;孙渊;边瑞峰;王颖;: "井间地震高斯束叠前深度偏移成像方法", 物探化探计算技术, no. 02, pages 74 - 82 *
江玉乐,雷宛: "各向异性介质地震波传播与成像", 中国石油大学出版社, pages: 74 - 82 *
韩建光等: "二维各向异性多波高斯束叠前深度偏移", 《地球物理学进展》, 15 June 2017 (2017-06-15), pages 1130 - 1139 *
黄建平等: "双复杂条件下弹性波非倾斜叠加精确束偏移方法研究", 石油物探, vol. 54, no. 1, pages 56 - 63 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20240134075A1 (en) * 2022-10-23 2024-04-25 China University Of Petroleum (East China) Method, device and computer device for decoupling anisotropic elastic wave
US11953633B1 (en) * 2022-10-24 2024-04-09 China University Of Petroleum (East China) Method, device and computer device for decoupling anisotropic elastic wave
CN115903032A (en) * 2022-10-25 2023-04-04 中国矿业大学(北京) Underground fluid storage space and migration channel detection method and device
CN115903032B (en) * 2022-10-25 2023-12-15 中国矿业大学(北京) Underground fluid storage space and migration channel detection method and device

Also Published As

Publication number Publication date
CN111999770B (en) 2024-01-16

Similar Documents

Publication Publication Date Title
CN101937100B (en) Pre-stack depth migration method
US6839658B2 (en) Seismic processing with general non-hyperbolic travel-time corrections
CN107505651B (en) Seismic first break and back wave combine slope chromatography imaging method
CN102937721B (en) Limited frequency tomography method for utilizing preliminary wave travel time
CN109738945B (en) Method for directly generating construction diagram by using prestack depth migration result
CN109669212B (en) Seismic data processing method, stratum quality factor estimation method and device
CN109856679B (en) Anisotropic medium elastic wave Gaussian beam migration imaging method and system
CN104570125A (en) Method for improving imaging velocity model precision by utilizing well data
GB2377495A (en) Estimation of time shift caused by subsurface velocity anisotropy
CN106291687A (en) Anisotropy many ripples Gaussian beam pre-stack depth migration imaging method
CN111045077B (en) A Full Waveform Inversion Method for Land Seismic Data
Zhang et al. Angle gathers from reverse time migration
CN111158049A (en) Seismic reverse time migration imaging method based on scattering integration method
CN109839660A (en) A method of velocity depth model is established using prestack trace gather data
CN107167843A (en) Many ripple time-domain matching process and device
CN107656308B (en) A kind of common scattering point pre-stack time migration imaging method based on time depth scanning
CN104570116A (en) Geological marker bed-based time difference analyzing and correcting method
CN105629299A (en) Travel-time table and angle table acquisition method for angle domain prestack depth migration and imaging method
CN111352153A (en) A Microseismic Interferometry Localization Method Based on Instantaneous Phase Cross-correlation Weighting
CN111999770A (en) Precise beam offset imaging method and system for converting TTI medium into PS wave
CN102565852B (en) Angle domain pre-stack offset data processing method aiming to detect oil-gas-bearing property of reservoir
CN110780341B (en) Anisotropic seismic imaging method
CN106353798A (en) Multi-component joint Gaussian beam pre-stack reverse-time migration imaging method
CN105093327B (en) The vector mean filter method of multi-component earthquake data
Kazei et al. Amplitude-based DAS logging: Turning DAS VSP amplitudes into subsurface elastic properties

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant