CN111999719A - Single photon TOF image sensor for laser radar - Google Patents
Single photon TOF image sensor for laser radar Download PDFInfo
- Publication number
- CN111999719A CN111999719A CN201910391897.8A CN201910391897A CN111999719A CN 111999719 A CN111999719 A CN 111999719A CN 201910391897 A CN201910391897 A CN 201910391897A CN 111999719 A CN111999719 A CN 111999719A
- Authority
- CN
- China
- Prior art keywords
- image sensor
- single photon
- tof image
- time
- avalanche
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000011084 recovery Methods 0.000 claims abstract description 22
- 238000001514 detection method Methods 0.000 claims abstract description 19
- 238000010791 quenching Methods 0.000 claims abstract description 12
- 230000000171 quenching effect Effects 0.000 claims abstract description 10
- 229910021420 polycrystalline silicon Inorganic materials 0.000 claims description 5
- 229920005591 polysilicon Polymers 0.000 claims description 5
- 230000003287 optical effect Effects 0.000 claims description 3
- 238000010276 construction Methods 0.000 claims 1
- 238000006243 chemical reaction Methods 0.000 abstract 1
- 238000010586 diagram Methods 0.000 description 8
- 238000000034 method Methods 0.000 description 6
- 230000009286 beneficial effect Effects 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 238000012545 processing Methods 0.000 description 3
- 230000001960 triggered effect Effects 0.000 description 3
- 238000013461 design Methods 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 238000004364 calculation method Methods 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 238000003384 imaging method Methods 0.000 description 1
- 238000002955 isolation Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000002028 premature Effects 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 230000002123 temporal effect Effects 0.000 description 1
- 238000001161 time-correlated single photon counting Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S7/00—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
- G01S7/48—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
- G01S7/483—Details of pulse systems
- G01S7/486—Receivers
- G01S7/4861—Circuits for detection, sampling, integration or read-out
- G01S7/4863—Detector arrays, e.g. charge-transfer gates
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01J—MEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
- G01J1/00—Photometry, e.g. photographic exposure meter
- G01J1/42—Photometry, e.g. photographic exposure meter using electric radiation detectors
- G01J1/44—Electric circuits
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S17/00—Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
- G01S17/02—Systems using the reflection of electromagnetic waves other than radio waves
- G01S17/06—Systems determining position data of a target
- G01S17/08—Systems determining position data of a target for measuring distance only
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S17/00—Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
- G01S17/88—Lidar systems specially adapted for specific applications
- G01S17/89—Lidar systems specially adapted for specific applications for mapping or imaging
- G01S17/894—3D imaging with simultaneous measurement of time-of-flight at a 2D array of receiver pixels, e.g. time-of-flight cameras or flash lidar
Landscapes
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Computer Networks & Wireless Communication (AREA)
- Radar, Positioning & Navigation (AREA)
- Remote Sensing (AREA)
- Electromagnetism (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Optical Radar Systems And Details Thereof (AREA)
- Light Receiving Elements (AREA)
Abstract
本发明公开了一种单光子TOF传感器,包括:单光子TOF图像传感器探测元件,用于检测入射光子并发生雪崩,产生雪崩电流:单光子TOF图像传感器探测元件,用于检测入射光子并发生雪崩,产生雪崩电流:主动淬灭‑恢复电路,用于淬灭所述单光子TOF图像传感器探测元件的雪崩状态,并将其恢复到盖格模式,同时产生一个数字信号作为STOP信号;时间数字转换器,时间数字转换器,用于计算接收到作为START信号的光脉冲与接收到所述STOP信号的时间差;数字信号读出电路,用于将所述时间差数据读出。本发明采用的主动淬灭电路可有效降低死时间;且易于集成,面积小,可实现大规模的阵列式单光子图像传感器。
The invention discloses a single-photon TOF sensor, comprising: a detection element of a single-photon TOF image sensor for detecting incident photons and generating an avalanche and generating avalanche current; a detection element for a single-photon TOF image sensor for detecting incident photons and generating avalanche , to generate avalanche current: active quenching-recovery circuit, used to quench the avalanche state of the single-photon TOF image sensor detection element, and restore it to Geiger mode, while generating a digital signal as a STOP signal; time-to-digital conversion The device, a time-to-digital converter, is used to calculate the time difference between the light pulse received as the START signal and the STOP signal received; the digital signal readout circuit is used to read out the time difference data. The active quenching circuit adopted in the present invention can effectively reduce the dead time; it is easy to integrate, has a small area, and can realize a large-scale array type single-photon image sensor.
Description
技术领域technical field
本发明涉及单光子TOF图像传感器领域,尤其涉及一种用于激光雷达的单光子TOF图像传感器。The invention relates to the field of single-photon TOF image sensors, in particular to a single-photon TOF image sensor for laser radar.
背景技术Background technique
低成本三维图像传感器近年来在自动驾驶等领域有着良好的应用前景。基于单光子雪崩二极管的三维图像传感器具有很多优点,例如较高的灵敏度可以检测较弱光;其时间分辨率很低,通常在几十到几百皮秒之问;单光子雪崩二极管经过淬灭-恢复之后,输出的信号为数字信号,便于后续的系统电路设计以及信号处理。传统的基于III-V族单光子雪崩二极管工作电压高通常为几十伏特,并且难于与后续电路单片集成,基于CMOS的单光子图像传感器则成本较低,且易于小型化集成。Low-cost 3D image sensors have promising applications in areas such as autonomous driving in recent years. 3D image sensors based on single-photon avalanche diodes have many advantages, such as higher sensitivity to detect weak light; their temporal resolution is very low, usually in the range of tens to hundreds of picoseconds; single-photon avalanche diodes are quenched - After recovery, the output signal is a digital signal, which is convenient for subsequent system circuit design and signal processing. The operating voltage of traditional III-V single-photon avalanche diodes is usually several tens of volts, and it is difficult to monolithically integrate with subsequent circuits. CMOS-based single-photon image sensors have low cost and are easy to miniaturize and integrate.
目前的TOF传感器主要基于两种原理,基于传统光电二极管的间接飞行时间测量,以及基于单光子探测器的直接飞行时间测量。前者利用间接计算相位延时的方法获得距离信息,该种方式对成像系统要求较低但是计算较为复杂且探测距离较短。现有的单光子TOF图像传感器存在的问题是单光子雪崩二极管暗噪声降低了图像传感器的动态范围,且较长的死时间限制了器件的光子计数速率。Current TOF sensors are mainly based on two principles, indirect time-of-flight measurement based on conventional photodiodes, and direct time-of-flight measurement based on single-photon detectors. The former uses the method of indirectly calculating the phase delay to obtain the distance information. This method has lower requirements on the imaging system, but the calculation is more complicated and the detection distance is shorter. The problems of existing single-photon TOF image sensors are that the single-photon avalanche diode dark noise reduces the dynamic range of the image sensor, and the long dead time limits the photon counting rate of the device.
发明内容SUMMARY OF THE INVENTION
(一)要解决的技术问题(1) Technical problems to be solved
本发明的目的在于提供一种用于激光雷达的单光子TOF图像传感器,以至少部分解决上述技术问题。The purpose of the present invention is to provide a single-photon TOF image sensor for lidar, so as to at least partially solve the above technical problems.
(二)技术方案(2) Technical solutions
根据本发明的一方面,提供一种单光子TOF传感器,包括:According to an aspect of the present invention, a single photon TOF sensor is provided, comprising:
单光子TOF图像传感器探测元件,用于检测入射光子并发生雪崩,产生雪崩电流;Single-photon TOF image sensor detection element, used to detect incident photons and avalanche to generate avalanche current;
主动淬灭-恢复电路,用于淬灭所述单光子TOF图像传感器探测元件的雪崩状态,并将其恢复到盖格模式,同时产生一个数字信号作为STOP信号;an active quenching-recovery circuit for quenching the avalanche state of the single-photon TOF image sensor detection element, restoring it to the Geiger mode, and generating a digital signal as a STOP signal;
时间数字转换器,用于计算接收到作为START信号的光脉冲与接收到所述STOP信号的时间差;a time-to-digital converter for calculating the time difference between receiving the optical pulse as the START signal and receiving the STOP signal;
数字信号读出电路,用于将所述时间差数据读出;a digital signal readout circuit for reading out the time difference data;
其中,所述光脉冲发射至所述时间数字转换器的时刻与所述光子入射至所述单光子TOF图像传感器探测元件的时刻相同。Wherein, the moment when the light pulse is emitted to the time-to-digital converter is the same as the moment when the photon is incident on the detection element of the single-photon TOF image sensor.
在进一步的实施方案中,所述单光子TOF图像传感器探测元件为工作在盖格模式的单光子雪崩二极管,且所述单光子雪崩二极管为P+/N-Well结构。In a further implementation, the single-photon TOF image sensor detection element is a single-photon avalanche diode operating in Geiger mode, and the single-photon avalanche diode is a P+/N-Well structure.
在进一步的实施方案中,所述单光子雪崩二极管包括P阱,位于所述单光子雪崩二极管的有源区边缘。In further embodiments, the single-photon avalanche diode includes a P-well located at the edge of the active region of the single-photon avalanche diode.
在进一步的实施方案中,所述单光子雪崩二极管还包括多晶硅保护环,位于所述P阱的上表面。In a further embodiment, the single-photon avalanche diode further includes a polysilicon guard ring located on the upper surface of the P-well.
在进一步的实施方案中,所述主动淬灭-恢复电路是采用带有反馈回路的延时可调的淬灭-恢复电路。In a further embodiment, the active quench-recovery circuit is a quench-recovery circuit with an adjustable time delay with a feedback loop.
在进一步的实施方案中,所述主动淬灭-恢复电路包括:两个反相器、延时链和主动淬灭使能信号电路,其中,三者依次串联形成所述反馈回路。In a further embodiment, the active quench-recovery circuit includes: two inverters, a delay chain and an active quench enable signal circuit, wherein the three are connected in series to form the feedback loop.
在进一步的实施方案中,所述的单光子TOF图像传感器还包括锁相环,与所述时间数字转换器相连,用于提供8相时钟。In a further embodiment, the single-photon TOF image sensor further includes a phase-locked loop, connected to the time-to-digital converter, for providing an 8-phase clock.
在进一步的实施方案中,所述时间数字转换器基于所述锁相环8相时钟计数。In a further embodiment, the time-to-digital converter counts based on the phase locked loop 8-phase clock.
在进一步的实施方案中,所述时间数字转换器包括:In further embodiments, the time-to-digital converter comprises:
START相位插值器与STOP相位插值器,用于分别记录START信号与STOP信号的相对于锁相环8相时钟的相位;The START phase interpolator and the STOP phase interpolator are used to respectively record the phases of the START signal and the STOP signal relative to the phase-locked loop 8-phase clock;
两个基于D触发器的计数器,用来对START信号与STOP信号进行计数;Two counters based on D flip-flops are used to count the START signal and the STOP signal;
以及译码器,用于得到START信号与STOP信号的时间差。and a decoder for obtaining the time difference between the START signal and the STOP signal.
在进一步的实施方案中,所述数字信号读出电路将所述时间差数据并行读出至片外。In a further embodiment, the digital signal readout circuit reads out the time difference data in parallel off-chip.
(三)有益效果(3) Beneficial effects
从上述技术方案可以看出,本发明的单光子TOF图像传感器至少具有以下有益效果:It can be seen from the above technical solutions that the single-photon TOF image sensor of the present invention has at least the following beneficial effects:
(1)在本发明中,保护环结构优化的单光子雪崩二极管采用多晶硅保护环隔离器件置于有源区边缘的P阱的上表面,可有效降低暗噪声有源区与STI之间;(1) In the present invention, the single-photon avalanche diode optimized by the guard ring structure adopts the polysilicon guard ring isolation device to be placed on the upper surface of the P-well at the edge of the active region, which can effectively reduce the dark noise between the active region and the STI;
(2)本发明采用的主动淬灭电路,当单光子TOF图像传感器探测元件在雪崩状态下被触发时其阳极电流升高使得反馈回路打开加速放电,从而可有效降低死时间;(2) In the active quenching circuit adopted in the present invention, when the detection element of the single-photon TOF image sensor is triggered in an avalanche state, its anode current increases so that the feedback loop is opened to accelerate the discharge, thereby effectively reducing the dead time;
(3)本发明的单光子TOF图像传感器易于集成,面积小,可实现大规模的阵列式单光子图像传感器。(3) The single-photon TOF image sensor of the present invention is easy to integrate, has a small area, and can realize a large-scale array type single-photon image sensor.
附图说明Description of drawings
图1为本发明的单光子TOF图像传感器的结构示意图;1 is a schematic structural diagram of a single-photon TOF image sensor of the present invention;
图2为本发明的单光子雪崩二极管像素结构示意图;2 is a schematic structural diagram of a single-photon avalanche diode pixel of the present invention;
图3为本发明的单光子TOF图像传感器的主动淬灭-恢复电路结构示意图;3 is a schematic structural diagram of the active quenching-recovery circuit of the single-photon TOF image sensor of the present invention;
图4为本发明的时间数字转换器电路结构示意图。FIG. 4 is a schematic structural diagram of a time-to-digital converter circuit of the present invention.
具体实施方式Detailed ways
为使本发明的目的、技术方案和优点更加清楚明白,以下结合具体实施例,并参照附图,对本发明作进一步的详细说明。In order to make the objectives, technical solutions and advantages of the present invention more clearly understood, the present invention will be further described in detail below in conjunction with specific embodiments and with reference to the accompanying drawings.
本发明公开了一种用于激光雷达的单光子TOF图像传感器,该图像传感器包括:The invention discloses a single photon TOF image sensor for laser radar, the image sensor comprising:
单光子TOF图像传感器探测元件,用于检测入射光子并发生雪崩,产生雪崩电流;Single-photon TOF image sensor detection element, used to detect incident photons and avalanche to generate avalanche current;
主动淬灭-恢复电路,用于淬灭所述单光子TOF图像传感器探测元件的雪崩状态,并将其恢复到盖格模式,同时产生一个数字信号作为STOP信号;an active quenching-recovery circuit for quenching the avalanche state of the single-photon TOF image sensor detection element, restoring it to the Geiger mode, and generating a digital signal as a STOP signal;
时间数字转换器,用于计算接收到作为START信号的光脉冲与接收到所述STOP信号的时间差;a time-to-digital converter for calculating the time difference between receiving the optical pulse as the START signal and receiving the STOP signal;
数字信号读出电路,用于将所述时间差数据读出;a digital signal readout circuit for reading out the time difference data;
其中,所述光脉冲发射至所述时间数字转换器的时刻与所述光子入射至所述单光子TOF图像传感器探测元件的时刻相同。Wherein, the moment when the light pulse is emitted to the time-to-digital converter is the same as the moment when the photon is incident on the detection element of the single-photon TOF image sensor.
在本实施例中,所述单光子TOF图像传感器探测元件为工作在盖格模式的单光子雪崩二极管。作为优选,所述单光子雪崩二极管是一种基于CMOS工艺的单光子雪崩二极管,其有源区结构为P+/N-well,其边缘可包括一个P阱保护环来降低有源区边缘的场强,防止边缘过早击穿;还可包括一个多晶硅保护环,位于所述P阱的上表面,用于降低暗噪声。In this embodiment, the detection element of the single-photon TOF image sensor is a single-photon avalanche diode working in the Geiger mode. Preferably, the single-photon avalanche diode is a single-photon avalanche diode based on a CMOS process, its active region structure is P+/N-well, and its edge may include a P-well guard ring to reduce the field at the edge of the active region strong to prevent premature breakdown of the edge; a polysilicon guard ring may also be included on the upper surface of the P-well for reducing dark noise.
作为优选,所述主动淬灭-恢复电路是带有反馈回路的延时可调的主动淬灭-恢复电路,当雪崩二极管被触发时其阳极电流升高使得反馈回路打开加速放电,从而降低死时间。所述主动淬灭-恢复电路包括:两个反相器、延时链和主动淬灭使能信号电路,其中,三者依次串联形成所述反馈回路。该反馈回路设计为延时可调,从而实现死时间可调。Preferably, the active quenching-recovery circuit is an active quenching-recovery circuit with an adjustable time delay with a feedback loop. When the avalanche diode is triggered, its anode current increases so that the feedback loop is opened to accelerate the discharge, thereby reducing the death rate. time. The active quenching-recovery circuit includes: two inverters, a delay chain and an active quenching enable signal circuit, wherein the three are connected in series to form the feedback loop. The feedback loop is designed with adjustable time delay, thus realizing adjustable dead time.
在本实施例中,所述单光子TOF图像传感器还包括锁相环,与所述时间数字转换器相连,用于提供8相时钟。In this embodiment, the single-photon TOF image sensor further includes a phase-locked loop, which is connected to the time-to-digital converter and used to provide an 8-phase clock.
作为优选,所述时间转换器是基于锁相环8-相时钟输出计数的时间数字转换器,该时间转换器电路包括两个相位插值器电路、两个计数器和译码器。其中相位插值电路对START与STOP的当前相位进行采样;两个计数器分别用一对相位相反的时钟进行计数,来避免D触发器的亚稳态引起的计数不准确。Preferably, the time converter is a time-to-digital converter based on a phase-locked loop 8-phase clock output counting, and the time converter circuit includes two phase interpolator circuits, two counters and a decoder. Among them, the phase interpolation circuit samples the current phases of START and STOP; the two counters use a pair of clocks with opposite phases to count, to avoid the inaccurate counting caused by the metastability of the D flip-flop.
在本实施例中,所述数字信号读出电路将所述时间差数据读出后,后续的数字信号处理可在片外处理,也可在集成在片上实现。作为优选,数字信号读出电路将时间数字转换器输出的飞行时间信号并行读出。In this embodiment, after the digital signal readout circuit reads out the time difference data, subsequent digital signal processing can be performed off-chip or integrated on-chip. Preferably, the digital signal readout circuit reads out the time-of-flight signals output by the time-to-digital converter in parallel.
在一个具体的示例性实施例中,所述单光子TOF图像传感器的工作流程为:工作在盖格模式的单光子雪崩二极管检测到入射光子并发生雪崩,产生一个巨大的雪崩电流;主动淬灭-恢复电路将单光子雪崩二极管从雪崩状态恢复到盖格模式,并产生一个表示光子到达时间相关的数字信号作为STOP信号;时间数字转换器电路计算作为START信号的发射光脉冲与作为STOP信号的单光子雪崩二极管感应反射光产生的脉冲之间的时间差,即飞行时间;数字信号读出电路将输出的数字信号读出到片外以进行后续的时间相关单光子计数算法实现。下面结合附图对本发明的技术方案进行进一步阐述说明。In a specific exemplary embodiment, the workflow of the single-photon TOF image sensor is as follows: a single-photon avalanche diode working in Geiger mode detects incident photons and avalanches, generating a huge avalanche current; active quenching - The recovery circuit restores the single-photon avalanche diode from the avalanche state to the Geiger mode and generates a digital signal representing the photon arrival time correlation as the STOP signal; the time-to-digital converter circuit calculates the emitted light pulse as the START signal and the STOP signal as the The single-photon avalanche diode senses the time difference between the pulses generated by the reflected light, that is, the time of flight; the digital signal readout circuit reads the output digital signal off-chip for subsequent time-correlated single-photon counting algorithm implementation. The technical solutions of the present invention will be further described below with reference to the accompanying drawings.
如图1所示,图1为本发明提供的单光子TOF图像传感器的结构示意图。所述单光子TOF图像传感器包括:单光子TOF图像传感器探测元件、主动淬灭-恢复电路、数字时间转换器、数字信号读出电路,以及锁相环。其中,单光子TOF图像传感器探测元件、主动淬灭-恢复电路、数字时间转换器和数字信号读出电路依次连接,所述锁相环与所述数字时间转换器连接。所述单光子TOF图像传感器探测元件将检测的入射光子雪崩,产生雪崩电流传入所述主动淬灭-恢复电路,波形相位发生变化输出数字信号作为STOP信号,所述时间数字转换器基于所述锁相环对作为START信号的激光脉冲和所述STOP信号进行级数并得到时间差,所述数字信号读出电路将所述时间差数据读出进行后续处理。As shown in FIG. 1 , FIG. 1 is a schematic structural diagram of a single-photon TOF image sensor provided by the present invention. The single-photon TOF image sensor includes: a single-photon TOF image sensor detection element, an active quenching-recovery circuit, a digital time converter, a digital signal readout circuit, and a phase-locked loop. Wherein, the single-photon TOF image sensor detection element, active quenching-recovery circuit, digital time converter and digital signal readout circuit are connected in sequence, and the phase-locked loop is connected with the digital time converter. The single-photon TOF image sensor detection element avalanches the detected incident photons, generates an avalanche current and transmits it to the active quenching-recovery circuit, and the waveform phase changes to output a digital signal as a STOP signal, and the time-to-digital converter is based on the The phase-locked loop processes the laser pulse as the START signal and the STOP signal to obtain the time difference, and the digital signal readout circuit reads out the time difference data for subsequent processing.
如图2所示,图2为本发明的单光子雪崩二极管像素结构示意图。单光子雪崩二极管是一种基于CMOS工艺实现的单光子雪崩二极管,包括P+/N-well有源区,以及P-well保护环用来降低有源区边缘区场强,防止器件边缘过早击穿;多晶硅保护环以降低暗噪声。As shown in FIG. 2 , FIG. 2 is a schematic structural diagram of a single photon avalanche diode pixel of the present invention. Single-photon avalanche diode is a single-photon avalanche diode based on CMOS process, including P+/N-well active area, and P-well guard ring used to reduce the field strength in the edge area of the active area and prevent the edge of the device from hitting prematurely. wear; polysilicon guard ring to reduce dark noise.
如图3所示,图3为本发明的单光子TOF图像传感器的主动淬灭-恢复电路结构示意图。所述主动淬灭-恢复电路是一种带有反馈回路的主动淬灭-恢复电路,其原理是当雪崩二极管被触发时其阳极电流升高使得反馈回路打开加速放电,从而降低死时间。该反馈回路设计为延时可调,从而实现死时间可调。As shown in FIG. 3 , FIG. 3 is a schematic structural diagram of the active quenching-recovery circuit of the single-photon TOF image sensor of the present invention. The active quenching-recovery circuit is an active quenching-recovery circuit with a feedback loop, the principle of which is that when the avalanche diode is triggered, its anode current increases so that the feedback loop opens to accelerate the discharge, thereby reducing the dead time. The feedback loop is designed with adjustable time delay, thus realizing adjustable dead time.
图4为本发明的时间数字转换器电路实现图。该时间数字转换器基于锁相环8相时钟计数,两个相位插值器分别记录START信号与STOP信号的相对于锁相环8相时钟的相位,计数器用来计算START信号与STOP信号之间的完整计数。本发明的设计中采用了基于一对相位相反的时钟分别计数的双计数器结构来避免计数器的亚稳态引起的计数错误。之后通过译码器得到START与STOP的时间差。本发明的各个部件实施例可以以硬件实现,或者以在一个或者多个处理器上运行的软件模块实现,或者以它们的组合实现。本领域的技术人员应当理解,可以在实践中使用微处理器或者数字信号处理器(DSP)来实现根据本发明实施例的相关设备中的一些或者全部部件的一些或者全部功能。FIG. 4 is an implementation diagram of the time-to-digital converter circuit of the present invention. The time-to-digital converter counts based on the 8-phase clock of the phase-locked loop. Two phase interpolators record the phases of the START signal and the STOP signal respectively relative to the 8-phase clock of the phase-locked loop. The counter is used to calculate the difference between the START signal and the STOP signal. full count. In the design of the present invention, a double counter structure based on a pair of clocks with opposite phases to be counted separately is adopted to avoid counting errors caused by the metastable state of the counter. After that, the time difference between START and STOP is obtained through the decoder. Various component embodiments of the present invention may be implemented in hardware, or in software modules running on one or more processors, or in a combination thereof. Those skilled in the art should understand that a microprocessor or a digital signal processor (DSP) may be used in practice to implement some or all of the functions of some or all of the components in the relevant apparatus according to the embodiments of the present invention.
需要说明的是,本发明中的计数是指时间计数。It should be noted that the count in the present invention refers to a time count.
此外,本领域的技术人员能够理解,尽管在此所述的一些实施例包括其它实施例中所包括的某些特征而不是其它特征,但是不同实施例的特征的组合意味着处于本发明的范围之内并且形成不同的实施例。例如,在权利要求书中,所要求保护的实施例的任意之一都可以以任意的组合方式来使用。Furthermore, those skilled in the art will appreciate that although some of the embodiments described herein include certain features, but not others, included in other embodiments, that combinations of features of different embodiments are intended to be within the scope of the invention within and form different embodiments. For example, in the claims, any of the claimed embodiments may be used in any combination.
以上所述的具体实施例,对本发明的目的、技术方案和有益效果进行了进一步详细说明,应理解的是,以上所述仅为本发明的具体实施例而已,并不用于限制本发明,凡在本发明的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。The specific embodiments described above further describe the purpose, technical solutions and beneficial effects of the present invention in detail. It should be understood that the above-mentioned specific embodiments are only specific embodiments of the present invention, and are not intended to limit the present invention. Within the spirit and principle of the present invention, any modifications, equivalent replacements, improvements, etc. made should be included within the protection scope of the present invention.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910391897.8A CN111999719B (en) | 2019-05-10 | 2019-05-10 | Single photon TOF image sensor for laser radar |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910391897.8A CN111999719B (en) | 2019-05-10 | 2019-05-10 | Single photon TOF image sensor for laser radar |
Publications (2)
Publication Number | Publication Date |
---|---|
CN111999719A true CN111999719A (en) | 2020-11-27 |
CN111999719B CN111999719B (en) | 2024-03-12 |
Family
ID=73461240
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201910391897.8A Active CN111999719B (en) | 2019-05-10 | 2019-05-10 | Single photon TOF image sensor for laser radar |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN111999719B (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114488354A (en) * | 2022-02-10 | 2022-05-13 | 传周半导体科技(上海)有限公司 | Rainfall sensor based on dToF |
CN114551631A (en) * | 2022-01-25 | 2022-05-27 | 西安电子科技大学 | A back-illuminated silicon-based single-photon avalanche diode structure and photodetector |
CN116449337A (en) * | 2023-01-12 | 2023-07-18 | 深圳阜时科技有限公司 | Pixel circuits, photosensors, ToF devices and electronic equipment |
KR20240126285A (en) * | 2023-02-13 | 2024-08-20 | 주식회사 솔리드뷰 | Analog Front End(AFE) device and control method for the same |
Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6545309B1 (en) * | 2002-03-11 | 2003-04-08 | Macronix International Co., Ltd. | Nitride read-only memory with protective diode and operating method thereof |
CN103763485A (en) * | 2014-02-17 | 2014-04-30 | 苏州超锐微电子有限公司 | Single-photon level resolution ratio image capturing chip front-end circuit module for intelligent image sensor |
US20150041625A1 (en) * | 2013-08-06 | 2015-02-12 | Stmicroelectronics (Research & Development) Limited | Time to digital converter and applications thereof |
US20150177369A1 (en) * | 2013-12-23 | 2015-06-25 | Oulun Yliopisto | Distance Measurement Device, Receiver Thereof And Method Of Distance Measurement |
CN105181132A (en) * | 2015-08-10 | 2015-12-23 | 湘潭大学 | Pixel circuit for three-dimensional imaging chip |
CN106712752A (en) * | 2016-12-09 | 2017-05-24 | 南京邮电大学 | Quenching reset circuit for single photon avalanche diode detector |
CN107063452A (en) * | 2017-04-07 | 2017-08-18 | 电子科技大学 | A kind of single-photon avalanche photodiode capacitance quenching circuit |
CN107806931A (en) * | 2017-09-30 | 2018-03-16 | 东南大学 | Gate complementary type Photo Counting System |
CN108270436A (en) * | 2016-12-30 | 2018-07-10 | 中国科学院电子学研究所 | Control code latch cicuit and clock data recovery circuit |
CN109100737A (en) * | 2017-06-21 | 2018-12-28 | 西克股份公司 | For measuring the photoelectric sensor and method of the distance of object |
CN109443555A (en) * | 2018-10-29 | 2019-03-08 | 中国科学院长春光学精密机械与物理研究所 | Based on the single-photon detection system that active restoring circuit is actively quenched |
-
2019
- 2019-05-10 CN CN201910391897.8A patent/CN111999719B/en active Active
Patent Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6545309B1 (en) * | 2002-03-11 | 2003-04-08 | Macronix International Co., Ltd. | Nitride read-only memory with protective diode and operating method thereof |
US20150041625A1 (en) * | 2013-08-06 | 2015-02-12 | Stmicroelectronics (Research & Development) Limited | Time to digital converter and applications thereof |
US20150177369A1 (en) * | 2013-12-23 | 2015-06-25 | Oulun Yliopisto | Distance Measurement Device, Receiver Thereof And Method Of Distance Measurement |
CN103763485A (en) * | 2014-02-17 | 2014-04-30 | 苏州超锐微电子有限公司 | Single-photon level resolution ratio image capturing chip front-end circuit module for intelligent image sensor |
CN105181132A (en) * | 2015-08-10 | 2015-12-23 | 湘潭大学 | Pixel circuit for three-dimensional imaging chip |
CN106712752A (en) * | 2016-12-09 | 2017-05-24 | 南京邮电大学 | Quenching reset circuit for single photon avalanche diode detector |
CN108270436A (en) * | 2016-12-30 | 2018-07-10 | 中国科学院电子学研究所 | Control code latch cicuit and clock data recovery circuit |
CN107063452A (en) * | 2017-04-07 | 2017-08-18 | 电子科技大学 | A kind of single-photon avalanche photodiode capacitance quenching circuit |
CN109100737A (en) * | 2017-06-21 | 2018-12-28 | 西克股份公司 | For measuring the photoelectric sensor and method of the distance of object |
CN107806931A (en) * | 2017-09-30 | 2018-03-16 | 东南大学 | Gate complementary type Photo Counting System |
CN109443555A (en) * | 2018-10-29 | 2019-03-08 | 中国科学院长春光学精密机械与物理研究所 | Based on the single-photon detection system that active restoring circuit is actively quenched |
Non-Patent Citations (2)
Title |
---|
GANG XIE ET AL.: ""Single-photon avalanche diode array with column-level time-to-digital converter for unmanned vehicle"", 《2017 IEEE 2ND INTERNATIONAL CONFERENCE ON OPTO-ELECTRONIC INFORMATION PROCESSING (ICOIP)》, 11 September 2017 (2017-09-11), pages 49 - 54 * |
张常年等: ""基于APD线列的单光子探测计数研究"", 《计算机测量与控制》, vol. 24, no. 9, 25 September 2016 (2016-09-25), pages 184 - 187 * |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114551631A (en) * | 2022-01-25 | 2022-05-27 | 西安电子科技大学 | A back-illuminated silicon-based single-photon avalanche diode structure and photodetector |
CN114488354A (en) * | 2022-02-10 | 2022-05-13 | 传周半导体科技(上海)有限公司 | Rainfall sensor based on dToF |
CN114488354B (en) * | 2022-02-10 | 2024-05-28 | 传周半导体科技(上海)有限公司 | DToF-based rainfall sensor |
CN116449337A (en) * | 2023-01-12 | 2023-07-18 | 深圳阜时科技有限公司 | Pixel circuits, photosensors, ToF devices and electronic equipment |
CN116449337B (en) * | 2023-01-12 | 2024-05-24 | 深圳阜时科技有限公司 | Pixel circuit, photoelectric sensor, toF device and electronic equipment |
KR20240126285A (en) * | 2023-02-13 | 2024-08-20 | 주식회사 솔리드뷰 | Analog Front End(AFE) device and control method for the same |
KR102735202B1 (en) | 2023-02-13 | 2024-11-28 | 주식회사 솔리드뷰 | Analog Front End(AFE) device and control method for the same |
Also Published As
Publication number | Publication date |
---|---|
CN111999719B (en) | 2024-03-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10681295B2 (en) | Time of flight camera with photon correlation successive approximation | |
US11644573B2 (en) | Higher pixel density histogram time of flight sensor with higher pixel density | |
CN111999719A (en) | Single photon TOF image sensor for laser radar | |
US9316735B2 (en) | Proximity detection apparatus and associated methods having single photon avalanche diodes for determining a quality metric based upon the number of events | |
TWI659626B (en) | Time of flight photosensor | |
US10697829B2 (en) | SPAD array structures and methods of operation | |
US9639063B2 (en) | Time to digital converter and applications thereof | |
US11119196B2 (en) | First photon correlated time-of-flight sensor | |
Charbon et al. | SPAD-based sensors | |
US9007118B2 (en) | Circuit for combining signals | |
CN108802753A (en) | Equipment for determining the distance away from object and corresponding method | |
CN105181132B (en) | A pixel circuit for three-dimensional imaging chip | |
CN110462437A (en) | photodetector | |
US20240142584A1 (en) | Lidar time-of-flight signal processing | |
US11726187B2 (en) | High resolution low power inter-correlation SPAD assisted time-of-flight sensor | |
US11181419B2 (en) | Photon sensing with threshold detection using capacitor-based comparator | |
Niclass et al. | A 0.18 μm CMOS single-photon sensor for coaxial laser rangefinders | |
US20230417908A1 (en) | Periodical correlation detection for background light suppression in direct time-of-flight sensor | |
Niclass et al. | Arrays of single photon avalanche diodes in CMOS technology: picosecond timing resolution for range imaging | |
TWI704367B (en) | Distance measuring device and method | |
US20210072360A1 (en) | Photon detecting 3d imaging sensor device | |
Wei et al. | An 8× 8-Pixel LiDAR Receiver with Multi-Echo Recording TDC for Background Light Interference Mitigation | |
Zhang et al. | A SVM combined pixel accumulation technique for SPAD based LiDAR system | |
Kumar et al. | Low power time-of-flight 3D imager system in standard CMOS | |
Villa et al. | SPAD detector for long-distance 3D ranging with sub-nanosecond TDC |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |