CN111997198A - Novel deployable annular stretch-draw overall structure - Google Patents

Novel deployable annular stretch-draw overall structure Download PDF

Info

Publication number
CN111997198A
CN111997198A CN201910446064.7A CN201910446064A CN111997198A CN 111997198 A CN111997198 A CN 111997198A CN 201910446064 A CN201910446064 A CN 201910446064A CN 111997198 A CN111997198 A CN 111997198A
Authority
CN
China
Prior art keywords
node
type
rods
class
cables
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201910446064.7A
Other languages
Chinese (zh)
Other versions
CN111997198B (en
Inventor
袁行飞
马烁
刘宏创
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang University ZJU
Original Assignee
Zhejiang University ZJU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang University ZJU filed Critical Zhejiang University ZJU
Priority to CN201910446064.7A priority Critical patent/CN111997198B/en
Publication of CN111997198A publication Critical patent/CN111997198A/en
Application granted granted Critical
Publication of CN111997198B publication Critical patent/CN111997198B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/342Structures covering a large free area, whether open-sided or not, e.g. hangars, halls
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B7/00Roofs; Roof construction with regard to insulation
    • E04B7/08Vaulted roofs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/08Means for collapsing antennas or parts thereof

Landscapes

  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Aerials With Secondary Devices (AREA)

Abstract

The invention provides a novel expandable annular tensioning integral structure, which comprises 2p (p >3) horizontal rods, 2p stabilizing rods, 4p oblique cables, p vertical cables, p I-type nodes, p II-type nodes and 2p III-type nodes; wherein, the I-type node is connected with 2 adjacent horizontal rods; the II-type node is connected with 2 horizontal rods, 2 stabilizing rods and 4 oblique cables; the class III node is connected with 1 stabilizing rod, 2 oblique cables and 1 vertical cable; the annular tensioning integral structure in the unfolding state is characterized in that 2p equal-length horizontal rods are connected end to end through a type I node and a type II node to form a regular p-shaped edge with the radius of R as an inner ring, and each type II node of the regular polygon is connected with 2 stabilizer bars with the length of h and the included angle of 2 alpha; the plane where the stabilizer bar on each class II node is located is a normal plane where a regular polygon circumcircles the node. The invention makes up the defects of the existing expandable annular tensioning integral structure in form, and provides an expandable annular tensioning integral structure system capable of balancing annular pressure and having high storage ratio.

Description

Novel deployable annular stretch-draw overall structure
Technical Field
The invention relates to the technical field of tensioning integral structures and deployable structures, in particular to a novel deployable annular tensioning integral structure.
Background
The integral tensioning structure is a prestress self-balancing structure system consisting of a compression bar bearing axial force and a pull rope. The rigidity of the whole tensioning structure is composed of material rigidity and geometric rigidity, and the level of the geometric rigidity is influenced by the magnitude of the prestress. The integral tensioning structure has the advantages of light weight, novel shape, large span and the like, and is widely concerned by the academic and engineering fields.
The expandable structure is a structure that can be folded and expanded. When the folding type bed is in a folding state, the whole volume is small, and the transportation is convenient; under the drive of external force, the structure gradually expands to the working state and then locks to the stable state. The expandable structure has certain application in the fields of space navigation, building structures, military engineering and the like. For the deployable structure, it is always desirable to have a better structural solution in the structure of the advantages of light weight, simple structure, being beneficial to balancing the circumferential pressure, high storage ratio and the like.
Disclosure of Invention
The invention aims to provide a novel expandable annular tensioning integral structure which is simple and efficient and can balance annular pressure. In order to achieve the purpose, the invention is realized by the following technical scheme:
a novel annular tension integral structure comprises 2p (p)>3) The device comprises a plurality of horizontal rods, 2p stabilizing rods, 4p oblique cables, p vertical cables, p type I nodes, p type II nodes and 2p type III nodes; wherein, the I-type node is connected with 2 adjacent horizontal rods; the II-type node is connected with 2 horizontal rods, 2 stabilizing rods and 4 oblique cables; the class III node is connected with 1 stabilizing rod, 2 oblique cables and 1 vertical cable; the annular tensioning integral structure in the unfolding state is characterized in that 2p equal-length horizontal rods are connected end to end through a type I node and a type II node to form a regular p-shaped edge with the radius of R as an inner ring, and each type II node of the regular polygon is connected with 2 stabilizer bars with the length of h and the included angle of 2 alpha; the plane where the stabilizer bar on each class II node is located is a normal plane where a regular polygon circumcircles and passes through the node; the expandable annular tension integral structure is in mirror symmetry about the plane of the regular polygon, is in rotational symmetry about the normal of the regular polygon, and has a rotation angle of
Figure BDA0002073674300000021
In the unfolded state, the type I and type II nodes are rigidly connected; in the contracted state, class IAnd the second-class node is hinged in a one-way mode, and the annular tensioning integral structure enters a contraction state after 2p horizontal rods are folded along the normal polygon plane.
Further, the structure has four groups of members, 2p horizontal rods are the 1 st group of members; the 2p stabilizer bars are members of the 2 nd group; 4p oblique cables are members of a group 3; p vertical cables are members of the 4 th group; the members of the same set have uniform lengths and are prestressed in the expanded state.
Furthermore, when the structure is unfolded, the class I node and the class II node are rigidly connected with the horizontal rod, and the structure has prestress to form a structure capable of bearing load; when the structure is folded, the type I node and the type II node are hinged with the horizontal rods in a one-way mode, 2p horizontal rods are folded, the prestress of the structure disappears, and the mechanism is formed; the III-class node is a hinged node, and the pressure lever unit and the inhaul cable unit can rotate at the node.
Compared with the prior art, the invention has the following advantages:
the invention provides a novel expandable annular tensioning integral structure system which can balance annular pressure and is simple and efficient. The invention is composed of a compression bar and a guy cable which bear axial force, and the structural rigidity has the contribution of prestress rigidity, thereby saving a large amount of materials and reducing the dead weight. Because the contraction mode of the structure is that the horizontal rods are folded, the structure is higher in storage. The invention does not need to change the number and the length of the components to convert the system into a mechanism or a structure, and the structure can be driven to open and close only by folding and unfolding the horizontal rods. The invention has application value in the aspects of deployable antennas and stadium dome structures.
Drawings
Fig. 1 is a top view of a novel deployable ring-shaped tensioned monolithic structure of the present invention.
Fig. 2 is a side view of a novel deployable ring-shaped tensioned monolithic structure of the invention.
Fig. 3 is a perspective view of a novel deployable ring-shaped tensioned monolithic structure of the present invention.
FIG. 4 is a schematic view of a class I node of a novel expandable annular tensioned monolithic structure according to the present invention in an expanded state.
Fig. 5 is a schematic view of a type i node folding state of the novel deployable annular tensioned monolithic structure of the invention.
FIG. 6 is a schematic view of a type II node unfolding state of the novel unfoldable annular tension monolithic structure.
FIG. 7 is a schematic view of a type II node folding state of the novel deployable ring-shaped tensioned monolithic structure of the invention.
Fig. 8 is a schematic view of the folding process of the novel deployable ring-shaped tensioned monolithic structure of the invention.
Detailed Description
The following describes embodiments of the present invention in further detail with reference to the accompanying drawings.
As shown in fig. 1, 2 and 3, a novel expandable annular tension monolithic structure includes 2p (p >3) horizontal rods 1, p upper stabilizer rods 2, p lower stabilizer rods 3, 4p oblique cables 4 and p vertical cables 5, p class i nodes 6, p class ii nodes 7 and 2p class iii nodes 8; the specific composition of the whole novel annular tension integral structure is uniquely determined by the following parameters: the number p of regular polygon nodes of the inner ring, the external circle radius R of the regular polygon of the inner ring, the length h of the stabilizer bar and the included angle alpha between the stabilizer bar and the horizontal plane.
In the unfolded state, the same group of components have the same length and prestress or the same length and prestress as much as possible; the horizontal rod 1, the upper stabilizer bar 2 and the lower stabilizer bar 3 have pre-stress, the inclined cable 4 and the vertical cable 5 have pre-stress, and the overall structure has self-balance pre-stress.
The stabilizing bars 2 and 3 are connected with the oblique cables 4 and the vertical cables 5 through II type nodes 7 and III type nodes 8, and the oblique cables 4 and the vertical cables 5 can rotate at the nodes.
As shown in fig. 4, the gusset plate 9 of the type i gusset 6 has 4 openings, and the plate thickness is one third of the thickness of the horizontal rod 1; two ends of the horizontal rod 1 are respectively provided with two open holes and a slot with the thickness of one third of the wall thickness of the rod piece; in the unfolded state, the two holes of the horizontal rod 1 and the two holes of the gusset plate 9 are fixed through pins, the unidirectional hinge freedom degree can be locked, and at the moment, the two horizontal rods 1 are rigidly connected into a horizontal rod with the length being two times.
As shown in fig. 5, in the folded state, the external opening of the horizontal rod 1 is connected with the internal opening of the gusset plate 9 by a pin, so as to ensure the one-way hinge joint of the horizontal rod 1 and the gusset plate 9; the horizontal bar is folded upwards to reach the folded state of the structure.
As shown in fig. 6, the radial gusset 10 of the class ii node 7 has two openings; two openings are respectively arranged on the two normal gusset plates 11; two holes on the radial gusset plate 10 are unidirectionally hinged with the upper stabilizer bar 2 and the lower stabilizer bar 3 through pins; in the unfolded state, the two holes of the normal gusset plate 11 and the two holes of the horizontal rod 1 are fixed through pins, the unidirectional hinge freedom degree is locked, and at the moment, the horizontal rod 1 and the class II node 7 are in rigid connection.
As shown in fig. 7, in the folded state, the inner opening of the normal gusset plate 11 is connected with the outer opening of the horizontal rod 1 by a pin, so as to ensure the one-way hinge joint of the horizontal rod and the class ii gusset 7; the horizontal rod 1, the upper stabilizer bar 2 and the lower stabilizer bar 3 are all folded upwards to reach the folded state of the structure.
As shown in fig. 8, the folding process of the novel expandable annular tension integral structure comprises the steps of removing the fixing pins of the horizontal rod 1 and the type i node 6 and the type ii node 7, and changing rigid connection into unidirectional hinge connection; the two horizontal rods 1 connected with the type I node 6 are folded upwards in a vertical plane passing through the horizontal rods, and meanwhile, the upper stabilizer bar 2 and the lower stabilizer bar 3 are folded upwards in the vertical plane; in the folding process, the inclined cables 4 and the vertical cables 5 are loosened, the structure is changed into a mechanism, and the horizontal projection area is continuously reduced.
The above node construction is only a preferred embodiment of the present invention, and it should be noted that, for those skilled in the art, several modifications and decorations can be made without departing from the spirit of the present invention, and these modifications and decorations should also be regarded as being within the protection scope of the present invention.

Claims (4)

1. The utility model provides a novel can expand annular stretch-draw overall structure which characterized in that: the device comprises 2p horizontal rods, 2p stabilizing rods, 4p oblique cables, p vertical cables, p I type nodes, p II type nodes and 2p III type nodes, wherein p is a natural number more than 3; wherein, the I-type node is connected with 2 adjacent horizontal rods; the II-type node is connected with 2 horizontal rods, 2 stabilizing rods and 4 oblique cables; IIIThe class node is connected with 1 stabilizing rod, 2 oblique cables and 1 vertical cable; the annular tensioning integral structure in the unfolding state is characterized in that 2p equal-length horizontal rods are connected end to end through a type I node and a type II node to form a regular p-shaped edge with the radius of R as an inner ring, and each type II node of the regular polygon is connected with 2 stabilizer bars with the length of h and the included angle of 2 alpha; the plane where the stabilizer bar on each class II node is located is a normal plane where a regular polygon circumcircles and passes through the node; the expandable annular tension integral structure is in mirror symmetry about the plane of the regular polygon, is in rotational symmetry about the normal of the regular polygon, and has a rotation angle of
Figure FDA0002073674290000011
In the unfolded state, the type I and type II nodes are rigidly connected; under the contraction state, the type I and type II nodes are hinged in a single direction, and the annular tensioning integral structure enters the contraction state after 2p horizontal rods are folded along the plane of the regular polygon method.
2. The novel deployable ring-shaped tensioned monolithic structure according to claim 1, wherein: the structure has four groups of components, and 2p horizontal compression rods are members in a group 1; the 2p stabilizer bars are members of the 2 nd group; 4p oblique cables are members of a group 3; the p vertical cables are members in the 4 th group, and the members in the same group have consistent length and prestress.
3. The novel deployable ring-shaped tensioned monolithic structure according to claim 1, wherein: the horizontal rod and the stabilizer bar have pre-stress, the inclined cable and the vertical cable have pre-stress, and the overall structure has self-balance pre-stress.
4. The novel deployable ring-shaped tensioned monolithic structure according to claim 1, wherein: the connection mode of the class I node and the class II node and the pressure rod is one-way hinge joint in the contraction process and the contraction state, and the rotation direction is a regular polygon normal plane where the pressure rod is located; under the unfolding state, the connection between the class I node and the class II node and the horizontal pressure rod is fixed through a locking mechanism, and the unidirectional hinge is changed into rigid connection.
CN201910446064.7A 2019-05-27 2019-05-27 Can open up annular stretch-draw overall structure Active CN111997198B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910446064.7A CN111997198B (en) 2019-05-27 2019-05-27 Can open up annular stretch-draw overall structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910446064.7A CN111997198B (en) 2019-05-27 2019-05-27 Can open up annular stretch-draw overall structure

Publications (2)

Publication Number Publication Date
CN111997198A true CN111997198A (en) 2020-11-27
CN111997198B CN111997198B (en) 2021-04-27

Family

ID=73461905

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910446064.7A Active CN111997198B (en) 2019-05-27 2019-05-27 Can open up annular stretch-draw overall structure

Country Status (1)

Country Link
CN (1) CN111997198B (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113216492A (en) * 2021-04-13 2021-08-06 浙江工业大学 Deployable saddle-shaped cable net structure based on sliding cable
CN114293455A (en) * 2021-10-11 2022-04-08 郑孝群 One-pull road bridge and its manufacture and construction
CN114575461A (en) * 2022-03-16 2022-06-03 中山大学 Nested annular tensioning integral structure spliced in modularization mode
CN115064859A (en) * 2022-07-28 2022-09-16 广州航海学院 Cable rod antenna folding and unfolding mechanism and spacecraft

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201172905Y (en) * 2008-04-11 2008-12-31 晟元集团有限公司 String annular canopy structure
US20100269421A1 (en) * 2007-06-13 2010-10-28 Murray Ellen Domed Steel Roof Frame
US20120090251A1 (en) * 2010-07-07 2012-04-19 Apple Inc. Glass Building Panel And Building Made Therefrom
CN102619280A (en) * 2012-03-08 2012-08-01 东南大学 Folding cable rod dome structure
CN202611068U (en) * 2012-03-08 2012-12-19 东南大学 Dome structure of deployable cable pole
CN105350646A (en) * 2015-10-23 2016-02-24 东南大学 Two-dimensional tensegrity structure unit based on hexagon geometry
CN106400967A (en) * 2016-09-19 2017-02-15 东南大学 Radial retractable net rack structure
CN207700487U (en) * 2017-12-27 2018-08-07 南京工程学院 It is a kind of uniformly to intersect tensioning cable dome structure

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100269421A1 (en) * 2007-06-13 2010-10-28 Murray Ellen Domed Steel Roof Frame
CN201172905Y (en) * 2008-04-11 2008-12-31 晟元集团有限公司 String annular canopy structure
US20120090251A1 (en) * 2010-07-07 2012-04-19 Apple Inc. Glass Building Panel And Building Made Therefrom
CN102619280A (en) * 2012-03-08 2012-08-01 东南大学 Folding cable rod dome structure
CN202611068U (en) * 2012-03-08 2012-12-19 东南大学 Dome structure of deployable cable pole
CN105350646A (en) * 2015-10-23 2016-02-24 东南大学 Two-dimensional tensegrity structure unit based on hexagon geometry
CN106400967A (en) * 2016-09-19 2017-02-15 东南大学 Radial retractable net rack structure
CN207700487U (en) * 2017-12-27 2018-08-07 南京工程学院 It is a kind of uniformly to intersect tensioning cable dome structure

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113216492A (en) * 2021-04-13 2021-08-06 浙江工业大学 Deployable saddle-shaped cable net structure based on sliding cable
CN114293455A (en) * 2021-10-11 2022-04-08 郑孝群 One-pull road bridge and its manufacture and construction
CN114293455B (en) * 2021-10-11 2024-04-05 郑孝群 One-pull road bridge and its manufacture and construction
CN114575461A (en) * 2022-03-16 2022-06-03 中山大学 Nested annular tensioning integral structure spliced in modularization mode
CN115064859A (en) * 2022-07-28 2022-09-16 广州航海学院 Cable rod antenna folding and unfolding mechanism and spacecraft
CN115064859B (en) * 2022-07-28 2023-12-15 广州航海学院 Cable pole antenna folding and unfolding mechanism and spacecraft

Also Published As

Publication number Publication date
CN111997198B (en) 2021-04-27

Similar Documents

Publication Publication Date Title
CN111997198B (en) Can open up annular stretch-draw overall structure
CN102605861B (en) Deployable cable pole dome structure
US20170362791A1 (en) Tower support structure
CN109196173B (en) Beam connector for arch structure
CN202611068U (en) Dome structure of deployable cable pole
CN104847163A (en) Assembly-free hinge-locked foldable tent
CN102605887A (en) Cable-pole type deployable structure
CN113879563B (en) Double-module extensible tensioning integral structure with self-extensible folding hinge
CN114687450A (en) Spoke type cable-bearing crossed grid semi-rigid tension structure system
JP3700952B2 (en) Support
CN113047440A (en) Double-layer radiation beam string structure with wind-resistant cable and construction method thereof
CN109811891B (en) Flexible full-tension structure system, pretension design method and construction method
CN202611067U (en) Cable-strut folding grid structure
CN114703970A (en) Dicyclo cable large-span steel construction
RU2442249C1 (en) Unfolding large dimensioned cosmic reflectors and the method of performance of terrestrial tests
CN102605862A (en) Cable-pole type foldable grid structure
CN211007252U (en) Space chord steel-concrete composite floor
CN202611061U (en) Rope-rod type extensible structure
CN115064859B (en) Cable pole antenna folding and unfolding mechanism and spacecraft
CN112095880A (en) Giant lattice awning structure with prestressed stay cables
CN217680384U (en) Radiation truss braced system
RU40641U1 (en) CONSTRUCTION OF QUICKLY CONSTRUCTED Dismountable FRAMES OF THE "INFINITY" SHELLS
CN215829388U (en) Construction platform for offshore cast-in-place pile
RU2581909C1 (en) Prefabricated frame structure and method for installation thereof
CN219974072U (en) Top anti-collapse structure of retractable awning and awning

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant