CN111996408A - Preparation method of oxide ceramic particle reinforced Cu-based composite material - Google Patents
Preparation method of oxide ceramic particle reinforced Cu-based composite material Download PDFInfo
- Publication number
- CN111996408A CN111996408A CN202010873930.3A CN202010873930A CN111996408A CN 111996408 A CN111996408 A CN 111996408A CN 202010873930 A CN202010873930 A CN 202010873930A CN 111996408 A CN111996408 A CN 111996408A
- Authority
- CN
- China
- Prior art keywords
- powder
- composite material
- temperature
- ceramic particle
- copper
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000002131 composite material Substances 0.000 title claims abstract description 51
- 239000002245 particle Substances 0.000 title claims abstract description 29
- 229910052574 oxide ceramic Inorganic materials 0.000 title claims abstract description 25
- 239000011224 oxide ceramic Substances 0.000 title claims abstract description 25
- 238000002360 preparation method Methods 0.000 title claims abstract description 20
- 239000000843 powder Substances 0.000 claims abstract description 80
- OERNJTNJEZOPIA-UHFFFAOYSA-N zirconium nitrate Chemical compound [Zr+4].[O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O OERNJTNJEZOPIA-UHFFFAOYSA-N 0.000 claims abstract description 44
- 239000010949 copper Substances 0.000 claims abstract description 43
- QGZKDVFQNNGYKY-UHFFFAOYSA-O Ammonium Chemical compound [NH4+] QGZKDVFQNNGYKY-UHFFFAOYSA-O 0.000 claims abstract description 33
- XTVVROIMIGLXTD-UHFFFAOYSA-N copper(II) nitrate Chemical compound [Cu+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O XTVVROIMIGLXTD-UHFFFAOYSA-N 0.000 claims abstract description 33
- BNGXYYYYKUGPPF-UHFFFAOYSA-M (3-methylphenyl)methyl-triphenylphosphanium;chloride Chemical compound [Cl-].CC1=CC=CC(C[P+](C=2C=CC=CC=2)(C=2C=CC=CC=2)C=2C=CC=CC=2)=C1 BNGXYYYYKUGPPF-UHFFFAOYSA-M 0.000 claims abstract description 23
- 238000005245 sintering Methods 0.000 claims abstract description 23
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims abstract description 21
- SBYXRAKIOMOBFF-UHFFFAOYSA-N copper tungsten Chemical compound [Cu].[W] SBYXRAKIOMOBFF-UHFFFAOYSA-N 0.000 claims abstract description 21
- 229910052739 hydrogen Inorganic materials 0.000 claims abstract description 21
- 239000001257 hydrogen Substances 0.000 claims abstract description 21
- 229910018072 Al 2 O 3 Inorganic materials 0.000 claims abstract description 19
- 239000011812 mixed powder Substances 0.000 claims abstract description 15
- 238000007731 hot pressing Methods 0.000 claims abstract description 8
- 239000002994 raw material Substances 0.000 claims abstract description 8
- 239000011159 matrix material Substances 0.000 claims abstract description 5
- 239000000243 solution Substances 0.000 claims description 46
- 238000003756 stirring Methods 0.000 claims description 27
- 239000000463 material Substances 0.000 claims description 17
- 230000009467 reduction Effects 0.000 claims description 15
- 239000011259 mixed solution Substances 0.000 claims description 14
- 239000002243 precursor Substances 0.000 claims description 14
- 239000007921 spray Substances 0.000 claims description 9
- 238000001354 calcination Methods 0.000 claims description 8
- 229910000831 Steel Inorganic materials 0.000 claims description 7
- 239000008367 deionised water Substances 0.000 claims description 7
- 229910021641 deionized water Inorganic materials 0.000 claims description 7
- 230000002572 peristaltic effect Effects 0.000 claims description 7
- -1 polytetrafluoroethylene Polymers 0.000 claims description 7
- 229920001343 polytetrafluoroethylene Polymers 0.000 claims description 7
- 239000004810 polytetrafluoroethylene Substances 0.000 claims description 7
- 238000001694 spray drying Methods 0.000 claims description 7
- 238000005507 spraying Methods 0.000 claims description 7
- 239000010959 steel Substances 0.000 claims description 7
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 7
- 238000010438 heat treatment Methods 0.000 claims description 5
- 230000035515 penetration Effects 0.000 claims description 5
- 238000001816 cooling Methods 0.000 claims description 2
- 238000000034 method Methods 0.000 abstract description 11
- 239000000919 ceramic Substances 0.000 abstract description 4
- 230000007797 corrosion Effects 0.000 abstract description 4
- 238000005260 corrosion Methods 0.000 abstract description 4
- 230000008569 process Effects 0.000 abstract description 3
- 230000005611 electricity Effects 0.000 abstract description 2
- 239000012535 impurity Substances 0.000 abstract description 2
- 230000003993 interaction Effects 0.000 abstract description 2
- 239000013078 crystal Substances 0.000 abstract 1
- 238000009776 industrial production Methods 0.000 abstract 1
- 239000000203 mixture Substances 0.000 abstract 1
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 24
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 12
- 229910052593 corundum Inorganic materials 0.000 description 12
- 229910001845 yogo sapphire Inorganic materials 0.000 description 12
- 229910052802 copper Inorganic materials 0.000 description 8
- 229910001080 W alloy Inorganic materials 0.000 description 7
- 229910052751 metal Inorganic materials 0.000 description 7
- 239000002184 metal Substances 0.000 description 7
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 6
- 238000011160 research Methods 0.000 description 4
- 229910052721 tungsten Inorganic materials 0.000 description 4
- 238000003825 pressing Methods 0.000 description 3
- 239000010937 tungsten Substances 0.000 description 3
- 241000282414 Homo sapiens Species 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 239000007791 liquid phase Substances 0.000 description 2
- 150000002739 metals Chemical class 0.000 description 2
- 230000008855 peristalsis Effects 0.000 description 2
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 2
- 229910000881 Cu alloy Inorganic materials 0.000 description 1
- 238000002679 ablation Methods 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000008595 infiltration Effects 0.000 description 1
- 238000001764 infiltration Methods 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000004663 powder metallurgy Methods 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C1/00—Making non-ferrous alloys
- C22C1/04—Making non-ferrous alloys by powder metallurgy
- C22C1/05—Mixtures of metal powder with non-metallic powder
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F3/00—Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
- B22F3/12—Both compacting and sintering
- B22F3/14—Both compacting and sintering simultaneously
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F9/00—Making metallic powder or suspensions thereof
- B22F9/16—Making metallic powder or suspensions thereof using chemical processes
- B22F9/18—Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds
- B22F9/20—Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds starting from solid metal compounds
- B22F9/22—Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds starting from solid metal compounds using gaseous reductors
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C9/00—Alloys based on copper
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Manufacturing & Machinery (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Powder Metallurgy (AREA)
Abstract
本发明涉及一种氧化物陶瓷粒子增强Cu基复合材料及其制备方法。本发明属于复合材料领域,以硝酸铝(或硝酸锆)、硝酸铜和偏钨酸铵为原料,分别配制成一定浓度溶液并混合均匀,采用旋风式喷雾干燥法制取复合粉末前驱体,经焙烧得到Al2O3‑WO3‑CuO混合粉末;再将Al2O3‑WO3‑CuO经高纯氢气还原后得到Al2O3掺杂铜钨复合粉末,将复合粉末直接经真空热压烧结制备出Al2O3陶瓷粒子增强Cu基复合材料,其中也可用ZrO2‑WO3‑CuO混合粉末以得到ZrO2,其效果与Al2O3效果相同。本发明工艺过程简单,所制备的Al2O3陶瓷粒子增强Cu基复合材料成分均匀,晶粒细小均匀,杂质含量极低,综合性能指标良好,可以用于受电、高温、磨损和腐蚀交互作用的苛刻工况,且适合大规模工业化生产,具有广阔工业应用前景。The invention relates to an oxide ceramic particle reinforced Cu-based composite material and a preparation method thereof. The invention belongs to the field of composite materials. The aluminum nitrate (or zirconium nitrate), copper nitrate and ammonium metatungstate are used as raw materials, respectively prepared into solutions of a certain concentration and mixed evenly. Al 2 O 3 ‑WO 3 ‑CuO mixed powder was obtained; then Al 2 O 3 ‑WO 3 ‑CuO was reduced by high-purity hydrogen to obtain Al 2 O 3 doped copper-tungsten composite powder, and the composite powder was directly subjected to vacuum hot pressing The Al 2 O 3 ceramic particles reinforced Cu matrix composite material is prepared by sintering, and ZrO 2 ‑WO 3 ‑CuO can also be mixed with powder to obtain ZrO 2 , the effect of which is the same as that of Al 2 O 3 . The process of the invention is simple, the prepared Al 2 O 3 ceramic particle reinforced Cu-based composite material has uniform composition, fine and uniform crystal grains, extremely low impurity content, good comprehensive performance indicators, and can be used for electricity receiving, high temperature, wear and corrosion interaction. It is suitable for large-scale industrial production and has broad industrial application prospects.
Description
技术领域technical field
本发明属于金属及其复合材料领域,具体涉及一种氧化物陶瓷粒子增强Cu基复合材料的制备方法。The invention belongs to the field of metals and composite materials thereof, and particularly relates to a preparation method of an oxide ceramic particle reinforced Cu-based composite material.
背景技术Background technique
金属铜(Cu)是人类最早使用的金属之一,其具有导热性和导电性高、延展性好、耐腐蚀性好、成形加工性优异等突出特点,从而广泛应用于电缆和电气、电子元件、军工破甲武器、电磁炮轨道等领域。然而,随着科技发展日新月异,金属铜的使用范围越来越广,相应对其使用要求越来越高。单一金属铜已难以满足人类的发展需求,在此背景下,各种各样的铜合金或铜基复合材料应运而生。在实际工况中,各种因素交互作用,对材料的服役性能要求非常高,比如受电、磨损、腐蚀和核辐射交互作用的苛刻工况,要求材料具有良好的综合性能,如导电性好、强度高、硬度高、耐磨损、耐腐蚀等,实现结构与功能的一体化,而现有材料难以满足要求。Metal copper (Cu) is one of the earliest metals used by human beings. It has outstanding characteristics such as high thermal conductivity and electrical conductivity, good ductility, good corrosion resistance, and excellent formability, so it is widely used in cables and electrical and electronic components. , military armor-piercing weapons, electromagnetic gun tracks and other fields. However, with the rapid development of science and technology, the use of metal copper is getting wider and wider, and the requirements for its use are getting higher and higher. A single metal copper has been difficult to meet the development needs of human beings. Under this background, various copper alloys or copper-based composite materials have emerged as the times require. In actual working conditions, various factors interact, and the service performance requirements of materials are very high. For example, the harsh working conditions of the interaction of electricity, wear, corrosion and nuclear radiation require materials to have good comprehensive properties, such as good electrical conductivity. , high strength, high hardness, wear resistance, corrosion resistance, etc., to achieve the integration of structure and function, and the existing materials are difficult to meet the requirements.
铜钨合金兼具金属钨的高熔点、高密度、高强度和金属铜的高导电导热、优异的耐电弧烧蚀等特点,从而军工、电子、航空航天、机械等工程领域得到了广泛应用。但目前研究和应用的大多是高钨型铜钨合金(W含量大于50%),对高铜型铜钨合金(Cu含量大于50%)研究较少。科技发展日新月异,对高铜型铜钨合金的应用需求越来越强烈。近年来,陶瓷颗粒尤其是氧化物陶瓷粒子增强铜钨复合材料因拥有一系列优异性能成为研究热点之一。Copper-tungsten alloy has the characteristics of high melting point, high density, high strength of metal tungsten, high electrical conductivity and thermal conductivity of metal copper, excellent resistance to arc ablation, etc., so it has been widely used in military, electronics, aerospace, machinery and other engineering fields. However, most of the current research and applications are high-tungsten copper-tungsten alloys (W content greater than 50%), and less research on high-copper copper-tungsten alloys (Cu content greater than 50%). With the rapid development of science and technology, the application demand for high-copper-type copper-tungsten alloys is getting stronger and stronger. In recent years, ceramic particles, especially oxide ceramic particles, reinforced copper-tungsten composites have become one of the research hotspots due to their excellent properties.
由于Cu、W元素之间的性能差异较大,使得两种粉末冶金法烧结过程中存在互不相溶或溶解度很弱的现象,造成合金的烧结性能很差,如晶粒粗大、致密度很低等,极大地限制了Cu-W合金的应用范围。目前,国内外对高钨含量Cu-W合金的研究较多,其制备方法主要有熔渗法和高温液相烧结法。但这两种制备方法在制备高铜含量Cu-W合金方面很难实施。原因在于,第一,因为W含量少很难形成W骨架,第二,由于Cu含量高,一旦形成液相试样将会坍塌。因此,为制备高性能氧化物陶瓷粒子增强铜钨复合材料,需探索新的制备工艺。Due to the large difference in properties between Cu and W elements, the two powder metallurgy sintering processes are incompatible with each other or have weak solubility, resulting in poor sintering properties of the alloy, such as coarse grains and high density. low, which greatly limits the application range of Cu-W alloys. At present, there are many researches on Cu-W alloys with high tungsten content at home and abroad, and its preparation methods mainly include infiltration method and high temperature liquid phase sintering method. However, these two preparation methods are difficult to implement in the preparation of Cu-W alloys with high copper content. The reasons are, first, that it is difficult to form a W skeleton because the W content is low, and second, because the Cu content is high, the sample will collapse once a liquid phase is formed. Therefore, in order to prepare high-performance oxide ceramic particles reinforced copper-tungsten composites, it is necessary to explore new preparation processes.
发明内容SUMMARY OF THE INVENTION
鉴于现有技术中所存在的问题,本发明公开了一种氧化物陶瓷粒子增强Cu基复合材料及其制备方法,采用的技术方案是,具体方法为:In view of the problems existing in the prior art, the present invention discloses an oxide ceramic particle reinforced Cu-based composite material and a preparation method thereof. The technical solution adopted is that the specific method is:
步骤一、选用纯度大于99.99%的硝酸铜粉末、偏钨酸铵粉末和硝酸铝粉末为原料,按Cu:W:Al2O3重量比控制在(77~94.95):(5~20):(0.05~3)计算出所需硝酸铜粉末、偏钨酸铵粉末和硝酸铝粉末,采用高精天平称重后,备用;Step 1. Select copper nitrate powder, ammonium metatungstate powder and aluminum nitrate powder with a purity greater than 99.99% as raw materials, and control the weight ratio of Cu:W:Al 2 O 3 to (77~94.95): (5~20): (0.05~3) Calculate the required copper nitrate powder, ammonium metatungstate powder and aluminum nitrate powder, and use a high-precision balance to weigh them for later use;
步骤二、分别将步骤一所称取的硝酸铝、硝酸铜和偏钨酸铵粉末,缓慢加入到预先加有去离子水的3个烧杯中,然后将烧杯放入超声波震荡器进行超声震荡,同时启动电动搅拌器,选用搅拌棒的材料为聚四氟乙烯,进行慢速搅拌,制备出偏钨酸铵溶液A、硝酸铝溶液B、硝酸铜溶液C,备用;Step 2. The aluminum nitrate, copper nitrate and ammonium metatungstate powders taken in step 1 are respectively slowly added to 3 beakers pre-added with deionized water, and then the beakers are put into an ultrasonic oscillator for ultrasonic vibration, At the same time, start the electric stirrer, select the material of the stirring rod to be polytetrafluoroethylene, and carry out slow stirring to prepare ammonium metatungstate solution A, aluminum nitrate solution B, and copper nitrate solution C, for standby;
步骤三、将步骤二中所配制的偏钨酸铵溶液A和硝酸铝溶液B依次缓慢倒入硝酸铜溶液C中,同时进行超声震荡和电动搅拌,得到混合溶液;Step 3, slowly pour the ammonium metatungstate solution A and the aluminum nitrate solution B prepared in the step 2 into the copper nitrate solution C successively, and simultaneously perform ultrasonic vibration and electric stirring to obtain a mixed solution;
步骤四、将旋风式喷雾干燥机开机通电,将蠕动泵管插入步骤三所配制的混合溶液中,开始进行喷雾干燥操作,喷雾完成后,卸下集料器取料,得到复合粉末前驱体;Step 4. Power on the cyclone spray dryer, insert the peristaltic pump tube into the mixed solution prepared in step 3, and start the spray drying operation. After the spraying is completed, remove the aggregator and reclaim the material to obtain the composite powder precursor;
步骤五、将步骤四得到的前驱体粉末在高温马弗炉中进行焙烧,得到Al2O3-WO3-CuO混合粉末;Step 5, calcining the precursor powder obtained in Step 4 in a high temperature muffle furnace to obtain Al 2 O 3 -WO 3 -CuO mixed powder;
步骤六、将步骤五所得到的Al2O3-WO3-CuO混合粉末在高纯氢气气氛中进行第一次还原,In step 6, the Al 2 O 3 -WO 3 -CuO mixed powder obtained in step 5 is subjected to the first reduction in a high-purity hydrogen atmosphere,
然后变换控制参数进行第二次还原,得到Al2O3掺杂铜钨复合粉末;Then, the control parameters are changed for the second reduction to obtain Al 2 O 3 doped copper-tungsten composite powder;
步骤七、将步骤六所得到的Al2O3掺杂铜钨复合粉末填充到耐热钢制作的模具中,进行真空热压烧结,烧结完成后随炉降温冷却至260℃;Step 7: Fill the Al 2 O 3 doped copper-tungsten composite powder obtained in Step 6 into a mold made of heat-resistant steel, and perform vacuum hot pressing sintering. After sintering is completed, the temperature is cooled to 260° C. with the furnace;
步骤八、将冷却至260℃的试样取出,迅速放于温度在-150~-160℃之间的低温环境0.5~1h,最终得到Al2O3氧化物陶瓷粒子增强Cu基复合材料。Step 8: Take out the sample cooled to 260°C and quickly place it in a low temperature environment with a temperature between -150°C and -160°C for 0.5-1h, and finally obtain an Al 2 O 3 oxide ceramic particle reinforced Cu-based composite material.
本发明公开了一种氧化物陶瓷粒子增强Cu基复合材料及其制备方法,采用的另外一种技术方案是,具体方法为:The invention discloses an oxide ceramic particle reinforced Cu-based composite material and a preparation method thereof. Another technical solution adopted is that the specific method is as follows:
步骤一、选用纯度大于99.99%的硝酸铜粉末、偏钨酸铵粉末和硝酸锆粉末为原料,按Cu:W:ZrO2重量比控制在(77~94.95):(5~20):(0.05~3)计算出所需硝酸铜粉末、偏钨酸铵粉末和硝酸锆粉末,采用高精天平称重后,备用;Step 1. Select copper nitrate powder, ammonium metatungstate powder and zirconium nitrate powder with a purity greater than 99.99% as raw materials, and control the weight ratio of Cu:W:ZrO 2 to (77-94.95): (5-20): (0.05 ~3) Calculate the required copper nitrate powder, ammonium metatungstate powder and zirconium nitrate powder, and use a high-precision balance to weigh them for later use;
步骤二、分别将步骤一所称取的硝酸锆、硝酸铜和偏钨酸铵粉末,缓慢加入到预先加有去离子水的3个烧杯中,然后将烧杯放入超声波震荡器进行超声震荡,同时启动电动搅拌器,选用搅拌棒的材料为聚四氟乙烯,进行慢速搅拌,制备出偏钨酸铵溶液A、硝酸锆溶液D、硝酸铜溶液C,备用;Step 2. The zirconium nitrate, copper nitrate and ammonium metatungstate powders weighed in step 1 are slowly added to 3 beakers pre-added with deionized water, and then the beakers are put into an ultrasonic oscillator for ultrasonic vibration, At the same time, start the electric stirrer, select the material of the stirring rod as polytetrafluoroethylene, and carry out slow stirring to prepare the ammonium metatungstate solution A, the zirconium nitrate solution D, and the copper nitrate solution C, which are ready for use;
步骤三、将步骤二中所配制的偏钨酸铵溶液A和硝酸锆溶液D依次缓慢倒入硝酸铜溶液C中,同时进行超声震荡和电动搅拌,得到混合溶液;Step 3, slowly pour the ammonium metatungstate solution A and the zirconium nitrate solution D prepared in the step 2 into the copper nitrate solution C successively, and simultaneously perform ultrasonic vibration and electric stirring to obtain a mixed solution;
步骤四、将旋风式喷雾干燥机开机通电,将蠕动泵管插入步骤三所配制的混合溶液中,开始进行喷雾干燥操作,喷雾完成后,卸下集料器取料,得到复合粉末前驱体;Step 4. Power on the cyclone spray dryer, insert the peristaltic pump tube into the mixed solution prepared in step 3, and start the spray drying operation. After the spraying is completed, remove the aggregator and reclaim the material to obtain the composite powder precursor;
步骤五、将步骤四得到的前驱体粉末在高温马弗炉中进行焙烧,得到ZrO2-WO3-CuO混合粉末;Step 5, calcining the precursor powder obtained in step 4 in a high temperature muffle furnace to obtain ZrO 2 -WO 3 -CuO mixed powder;
步骤六、将步骤五所得到的ZrO2-WO3-CuO混合粉末在高纯氢气气氛中进行第一次还原,然后变换控制参数进行第二次还原,得到ZrO2掺杂铜钨复合粉末;Step 6, performing the first reduction of the ZrO 2 -WO 3 -CuO mixed powder obtained in the step 5 in a high-purity hydrogen atmosphere, and then changing the control parameters for the second reduction to obtain ZrO 2 doped copper-tungsten composite powder;
步骤七、将步骤六所得到的ZrO2掺杂铜钨复合粉末填充到耐热钢制作的模具中,进行真空热压烧结,烧结完成后随炉降温冷却至260℃;Step 7: Fill the ZrO 2 doped copper-tungsten composite powder obtained in Step 6 into a mold made of heat-resistant steel, and perform vacuum hot pressing sintering.
步骤八、将冷却至260℃的试样取出,迅速放于温度在-150~-160℃之间的低温环境0.5~1h,最终得到ZrO2氧化物陶瓷粒子增强Cu基复合材料。Step 8: Take out the sample cooled to 260°C and quickly place it in a low temperature environment with a temperature between -150°C and -160°C for 0.5-1 h, and finally obtain a ZrO 2 oxide ceramic particle reinforced Cu matrix composite material.
作为本发明的一种优选方案,步骤二中的3个烧杯中浓度控制在1~1.5mol/L,搅拌速率为30~50r/min。As a preferred solution of the present invention, the concentration in the three beakers in step 2 is controlled at 1-1.5 mol/L, and the stirring rate is 30-50 r/min.
作为本发明的一种优选方案,步骤三所述的电动搅拌时间为10-20min。As a preferred solution of the present invention, the electric stirring time described in step 3 is 10-20min.
作为本发明的一种优选方案,步骤四对所述旋风式喷雾干燥机的操作参数如为:温度270~280℃,风机60~65%,通针速率5s/次,蠕动率40~50%,出口温度控制在105~110℃。As a preferred solution of the present invention, the operating parameters of the cyclone spray dryer in step 4 are as follows: temperature 270-280°C, fan 60-65%, needle penetration rate 5s/time, peristalsis rate 40-50% , the outlet temperature is controlled at 105 ~ 110 ℃.
作为本发明的一种优选方案,步骤五在高温马弗炉中进行焙烧的温度为500~515℃,时间为2.1~2.5h。As a preferred solution of the present invention, in step 5, the roasting temperature in the high-temperature muffle furnace is 500-515° C., and the time is 2.1-2.5 h.
作为本发明的一种优选方案,步骤六第一次氢气气氛中的还原控制参数为:氢气流量2~3L/h,温度350~450℃,时间1.5~2.5h;第二次氢气气氛中的还原控制参数为:氢气流量2~3L/h,温度710~800℃,时间1.5~2.5h。As a preferred solution of the present invention, the reduction control parameters in the first hydrogen atmosphere in step 6 are: hydrogen flow rate 2-3 L/h, temperature 350-450 °C, time 1.5-2.5 h; The reduction control parameters are: hydrogen flow rate of 2 to 3 L/h, temperature of 710 to 800°C, and time of 1.5 to 2.5 hours.
作为本发明的一种优选方案,步骤七烧结完成后随炉降温时参数控制如下:烧结温度800~850℃、保温时间1~1.5h、轴向压力35~45MPa、真空度10-3~10-6Pa、升温速率50~60℃/min。As a preferred solution of the present invention, after the sintering in step 7 is completed, the parameters are controlled as follows: sintering temperature 800-850°C, holding time 1-1.5h, axial pressure 35-45MPa, vacuum degree 10-3-10 -6Pa, heating rate 50~60℃/min.
本发明的有益效果:本发明工艺过程简单,所制备的Al2O3(或ZrO2)陶瓷粒子增强Cu基复合材料综合性能指标良好(晶粒度最低至20nm,杂质含量低至10ppm以下,最高电导率达85.1%IACS,最高致密度达99.99%,最高抗拉强度达560MPa,最高硬度达76.1HBW),可以用于受电、高温、磨损和腐蚀交互作用的苛刻工况。Beneficial effects of the present invention: the technological process of the present invention is simple, and the prepared Al 2 O 3 (or ZrO 2 ) ceramic particle reinforced Cu-based composite material has good comprehensive performance indicators (the grain size is as low as 20nm, and the impurity content is as low as 10ppm or less, The highest conductivity is up to 85.1% IACS, the highest density is up to 99.99%, the highest tensile strength is up to 560MPa, and the highest hardness is up to 76.1HBW).
具体实施方式Detailed ways
实施例1Example 1
本发明所述的一种氧化物陶瓷粒子增强Cu基复合材料的制备方法,采用的技术方案是,具体方法为:The preparation method of an oxide ceramic particle reinforced Cu-based composite material according to the present invention adopts the technical scheme, and the specific method is as follows:
步骤一、选用纯度大于99.99%的硝酸铜粉末、偏钨酸铵粉末和硝酸铝(或硝酸锆)粉末为原料,按Cu:W:Al2O3(或ZrO2)重量比控制在77:5:0.05计算出所需硝酸铜粉末、偏钨酸铵粉末和硝酸铝(或硝酸锆)粉末,采用高精天平称重后,备用;Step 1. Select copper nitrate powder, ammonium metatungstate powder and aluminum nitrate (or zirconium nitrate) powder with a purity greater than 99.99% as raw materials, and calculate according to the weight ratio of Cu:W:Al2O3 (or ZrO2) at 77:5:0.05 Take out the required copper nitrate powder, ammonium metatungstate powder and aluminum nitrate (or zirconium nitrate) powder, and use a high-precision balance to weigh them for later use;
步骤二、分别将步骤一所称取的硝酸铝(或硝酸锆)、硝酸铜和偏钨酸铵粉末,缓慢加入到预先加有去离子水的3个烧杯中,浓度控制在1mol/L,然后将烧杯放入超声波震荡器进行超声震荡,同时启动电动搅拌器,搅拌棒的材料为聚四氟乙烯,进行慢速搅拌,搅拌速率30r/min,制备出溶液A、B(D)、C,备用;Step 2, respectively, the aluminum nitrate (or zirconium nitrate), copper nitrate and ammonium metatungstate powder taken in step 1 are slowly added into 3 beakers with deionized water in advance, and the concentration is controlled at 1mol/L, Then put the beaker into the ultrasonic oscillator for ultrasonic vibration, and start the electric stirrer at the same time. The material of the stirring rod is polytetrafluoroethylene, and the stirring is carried out at a slow speed, and the stirring rate is 30r/min to prepare solutions A, B (D), and C. ,spare;
步骤三、将步骤二中所配制的偏钨酸铵溶液A和硝酸铝溶液B(或硝酸锆溶液D)依次缓慢倒入硝酸铜溶液C中,同时进行超声震荡和电动搅拌10min,得到混合溶液;Step 3. The ammonium metatungstate solution A and the aluminum nitrate solution B (or the zirconium nitrate solution D) prepared in the step 2 are slowly poured into the copper nitrate solution C successively, and ultrasonic vibration and electric stirring are carried out simultaneously for 10min to obtain a mixed solution ;
步骤四、将旋风式喷雾干燥机开机通电,并设定参数如下:温度270℃,风机60%,通针速率5s/次,蠕动率40%,出口温度控制在105℃。将蠕动泵管插入步骤三所配制的混合溶液中,开始进行喷雾干燥操作。喷雾完成后,卸下集料器取料,得到复合粉末前驱体;Step 4. Power on the cyclone spray dryer, and set the parameters as follows: temperature 270°C, fan 60%, needle penetration rate 5s/time, peristalsis rate 40%, and outlet temperature controlled at 105°C. Insert the peristaltic pump tube into the mixed solution prepared in step 3, and start the spray drying operation. After the spraying is completed, the aggregator is unloaded and the material is taken to obtain the composite powder precursor;
步骤五、将步骤四得到的前驱体粉末在高温马弗炉中进行焙烧,温度500℃,时间2.1h,得到Al2O3-WO3-CuO或ZrO2-WO3-CuO混合粉末;Step 5: calcining the precursor powder obtained in Step 4 in a high-temperature muffle furnace at a temperature of 500° C. and a time of 2.1 h to obtain Al2O3-WO3-CuO or ZrO2-WO3-CuO mixed powder;
步骤六、将步骤五所得到的Al2O3-WO3-CuO或ZrO2-WO3-CuO混合粉末在高纯氢气气氛中进行还原:氢气流量2L/h,温度350℃,时间1.5h;然后变换控制参数进行第二次还原:氢气流量2L/h,温度710℃,时间1.5h,得到Al2O3(或ZrO2)掺杂铜钨复合粉末;Step 6. Reducing the Al2O3-WO3-CuO or ZrO2-WO3-CuO mixed powder obtained in step 5 in a high-purity hydrogen atmosphere: hydrogen flow rate 2L/h, temperature 350°C, time 1.5h; then change the control parameters to carry out the first step. Secondary reduction: hydrogen flow rate 2L/h, temperature 710°C, time 1.5h, to obtain Al2O3 (or ZrO2) doped copper-tungsten composite powder;
步骤七、将步骤六所得到的Al2O3(或ZrO2)掺杂铜钨复合粉末不经冷压成型,直接将混合粉体填充到耐热钢制作的模具中,进行真空热压烧结,烧结完成后随炉降温冷却至260℃,参数控制如下:烧结温度800℃、保温时间1h、轴向压力35MPa、真空度10-3Pa、升温速率50℃/min;Step 7. The Al2O3 (or ZrO2) doped copper-tungsten composite powder obtained in step 6 is directly filled into a mold made of heat-resistant steel without cold-pressing, and vacuum hot-pressing sintering is performed. After the sintering is completed Cool down with the furnace to 260°C, and the parameters are controlled as follows: sintering temperature 800°C, holding time 1h, axial pressure 35MPa, vacuum degree 10-3Pa, heating rate 50°C/min;
步骤八、将冷却至260℃的试样取出,迅速放于温度在-150~-160℃之间的低温环境0.5h,最终得到Al2O3(或ZrO2)氧化物陶瓷粒子增强Cu基复合材料。Step 8: Take out the sample cooled to 260°C and quickly place it in a low temperature environment with a temperature between -150°C and -160°C for 0.5h to finally obtain an Al2O3 (or ZrO2) oxide ceramic particle reinforced Cu-based composite material.
实施例2Example 2
本发明所述的一种氧化物陶瓷粒子增强Cu基复合材料的制备方法,采用的技术方案是,具体方法为:The preparation method of an oxide ceramic particle reinforced Cu-based composite material according to the present invention adopts the technical scheme, and the specific method is as follows:
步骤一、选用纯度大于99.99%的硝酸铜粉末、偏钨酸铵粉末和硝酸铝(或硝酸锆)粉末为原料,按Cu:W:Al2O3(或ZrO2)重量比控制在94.95:20:3计算出所需硝酸铜粉末、偏钨酸铵粉末和硝酸铝(或硝酸锆)粉末,采用高精天平称重后,备用;Step 1. Select copper nitrate powder, ammonium metatungstate powder and aluminum nitrate (or zirconium nitrate) powder with a purity greater than 99.99% as raw materials, and calculate according to the weight ratio of Cu:W:Al2O3 (or ZrO2) at 94.95:20:3 Take out the required copper nitrate powder, ammonium metatungstate powder and aluminum nitrate (or zirconium nitrate) powder, and use a high-precision balance to weigh them for later use;
步骤二、分别将步骤一所称取的硝酸铝(或硝酸锆)、硝酸铜和偏钨酸铵粉末,缓慢加入到预先加有去离子水的3个烧杯中,浓度控制在1.5mol/L,然后将烧杯放入超声波震荡器进行超声震荡,同时启动电动搅拌器,搅拌棒的材料为聚四氟乙烯进行慢速搅拌,搅拌速率50r/min,制备出溶液A、B、C,备用;Step 2. The aluminum nitrate (or zirconium nitrate), copper nitrate and ammonium metatungstate powders taken in step 1 are slowly added to 3 beakers with deionized water in advance, and the concentration is controlled at 1.5mol/L , then put the beaker into the ultrasonic oscillator for ultrasonic vibration, and start the electric stirrer at the same time, the material of the stirring rod is polytetrafluoroethylene, and the stirring speed is 50r/min, and the solutions A, B, and C are prepared for standby;
步骤三、将步骤二中所配制的偏钨酸铵溶液A和硝酸铝溶液B(或硝酸锆溶液D)依次缓慢倒入硝酸铜溶液C中,同时进行超声震荡和电动搅拌20min,得到混合溶液;Step 3. The ammonium metatungstate solution A and the aluminum nitrate solution B (or the zirconium nitrate solution D) prepared in the step 2 are slowly poured into the copper nitrate solution C successively, and ultrasonic vibration and electric stirring are carried out simultaneously for 20min to obtain a mixed solution ;
步骤四、将旋风式喷雾干燥机开机通电,并设定参数如下:温度280℃,风机65%,通针速率5s/次,蠕动率50%,出口温度控制在110℃。将蠕动泵管插入步骤三所配制的混合溶液中,开始进行喷雾干燥操作。喷雾完成后,卸下集料器取料,得到复合粉末前驱体;Step 4. Power on the cyclone spray dryer, and set the parameters as follows: temperature 280°C, fan 65%, needle penetration rate 5s/time, creep rate 50%, and outlet temperature controlled at 110°C. Insert the peristaltic pump tube into the mixed solution prepared in step 3, and start the spray drying operation. After the spraying is completed, the aggregator is unloaded and the material is taken to obtain the composite powder precursor;
步骤五、将步骤四得到的前驱体粉末在高温马弗炉中进行焙烧,温度515℃,时间2.5h,得到Al2O3-WO3-CuO或ZrO2-WO3-CuO混合粉末;Step 5, calcining the precursor powder obtained in Step 4 in a high temperature muffle furnace at a temperature of 515° C. and a time of 2.5 hours to obtain Al2O3-WO3-CuO or ZrO2-WO3-CuO mixed powder;
步骤六、将步骤五所得到的Al2O3-WO3-CuO或ZrO2-WO3-CuO混合粉末在高纯氢气气氛中进行还原:氢气流量3L/h,温度450℃,时间2.5h;然后变换控制参数进行第二次还原:氢气流量3L/h,温度800℃,时间2.5h,得到Al2O3(或ZrO2)掺杂铜钨复合粉末;Step 6: Reducing the Al2O3-WO3-CuO or ZrO2-WO3-CuO mixed powder obtained in step 5 in a high-purity hydrogen atmosphere: hydrogen flow rate 3L/h, temperature 450°C, time 2.5h; then change the control parameters to carry out the first step. Secondary reduction: hydrogen flow rate 3L/h, temperature 800°C, time 2.5h, to obtain Al2O3 (or ZrO2) doped copper-tungsten composite powder;
步骤七、将步骤六所得到的Al2O3(或ZrO2)掺杂铜钨复合粉末不经冷压成型,直接将混合粉体填充到耐热钢制作的模具中,进行真空热压烧结,烧结完成后随炉降温冷却至260℃,参数控制如下:烧结温度850℃、保温时间1.5h、轴向压力45MPa、真空度10-6Pa、升温速率60℃/min;Step 7. The Al2O3 (or ZrO2) doped copper-tungsten composite powder obtained in step 6 is directly filled into a mold made of heat-resistant steel without cold-pressing, and vacuum hot-pressing sintering is performed. After the sintering is completed With the furnace cooling down to 260℃, the parameters are controlled as follows: sintering temperature 850℃, holding time 1.5h, axial pressure 45MPa, vacuum degree 10-6Pa, heating rate 60℃/min;
步骤八、将冷却至260℃的试样取出,迅速放于温度在-150~-160℃之间的低温环境1h,最终得到Al2O3(或ZrO2)氧化物陶瓷粒子增强Cu基复合材料。Step 8: Take out the sample cooled to 260°C and quickly place it in a low temperature environment with a temperature between -150°C and -160°C for 1 hour, and finally obtain an Al2O3 (or ZrO2) oxide ceramic particle reinforced Cu-based composite material.
实施例3Example 3
本发明所述的一种氧化物陶瓷粒子增强Cu基复合材料的制备方法,采用的技术方案是,具体方法为:The preparation method of an oxide ceramic particle reinforced Cu-based composite material according to the present invention adopts the technical scheme, and the specific method is as follows:
步骤一、选用纯度大于99.99%的硝酸铜粉末、偏钨酸铵粉末和硝酸铝(或硝酸锆)粉末为原料,按Cu:W:Al2O3(或ZrO2)重量比控制在85:15:1.5计算出所需硝酸铜粉末、偏钨酸铵粉末和硝酸铝(或硝酸锆)粉末,采用高精天平称重后,备用;Step 1. Select copper nitrate powder, ammonium metatungstate powder and aluminum nitrate (or zirconium nitrate) powder with a purity greater than 99.99% as raw materials, and calculate according to the weight ratio of Cu:W:Al2O3 (or ZrO2) at 85:15:1.5 Take out the required copper nitrate powder, ammonium metatungstate powder and aluminum nitrate (or zirconium nitrate) powder, and use a high-precision balance to weigh them for later use;
步骤二、分别将步骤一所称取的硝酸铝(或硝酸锆)、硝酸铜和偏钨酸铵粉末,缓慢加入到预先加有去离子水的3个烧杯中,浓度控制在1.25mol/L,然后将烧杯放入超声波震荡器进行超声震荡,同时启动电动搅拌器(搅拌棒的材料为聚四氟乙烯)进行慢速搅拌,搅拌速率40r/min,制备出溶液A、B、C,备用;Step 2. The aluminum nitrate (or zirconium nitrate), copper nitrate and ammonium metatungstate powders taken in step 1 are slowly added to 3 beakers with deionized water in advance, and the concentration is controlled at 1.25mol/L , then put the beaker into the ultrasonic oscillator for ultrasonic vibration, and start the electric stirrer (the material of the stirring bar is polytetrafluoroethylene) for slow stirring, and the stirring rate is 40r/min to prepare solutions A, B, C, for standby ;
步骤三、将步骤二中所配制的偏钨酸铵溶液A和硝酸铝溶液B依次缓慢倒入硝酸铜溶液C中,同时进行超声震荡和电动搅拌15min,得到混合溶液;Step 3, slowly pour the ammonium metatungstate solution A and the aluminum nitrate solution B prepared in the step 2 into the copper nitrate solution C successively, and carry out ultrasonic vibration and electric stirring simultaneously for 15min to obtain a mixed solution;
步骤四、将旋风式喷雾干燥机开机通电,并设定参数如下:温度275℃,风机62%,通针速率5s/次,蠕动率45%,出口温度控制在108℃。将蠕动泵管插入步骤三所配制的混合溶液中,开始进行喷雾干燥操作。喷雾完成后,卸下集料器取料,得到复合粉末前驱体;Step 4. Power on the cyclone spray dryer, and set the parameters as follows: temperature 275°C, fan 62%, needle penetration rate 5s/time, creep rate 45%, and outlet temperature controlled at 108°C. Insert the peristaltic pump tube into the mixed solution prepared in step 3, and start the spray drying operation. After the spraying is completed, the aggregator is unloaded and the material is taken to obtain the composite powder precursor;
步骤五、将步骤四得到的前驱体粉末在高温马弗炉中进行焙烧,温度510℃,时间2.3h,得到Al2O3-WO3-CuO或ZrO2-WO3-CuO混合粉末;Step 5, calcining the precursor powder obtained in Step 4 in a high-temperature muffle furnace at a temperature of 510° C. and a time of 2.3 hours to obtain Al2O3-WO3-CuO or ZrO2-WO3-CuO mixed powder;
步骤六、将步骤五所得到的Al2O3-WO3-CuO或ZrO2-WO3-CuO混合粉末在高纯氢气气氛中进行还原:氢气流量2.5L/h,温度400℃,时间2h;然后变换控制参数进行第二次还原:氢气流量2.5L/h,温度760℃,时间2h,得到Al2O3(或ZrO2)掺杂铜钨复合粉末;Step 6. The Al2O3-WO3-CuO or ZrO2-WO3-CuO mixed powder obtained in the step 5 is reduced in a high-purity hydrogen atmosphere: the hydrogen flow rate is 2.5L/h, the temperature is 400°C, and the time is 2h; then the control parameters are changed for the first step. Secondary reduction: hydrogen flow rate 2.5L/h, temperature 760°C, time 2h, to obtain Al2O3 (or ZrO2) doped copper-tungsten composite powder;
步骤七、将步骤六所得到的Al2O3(或ZrO2)掺杂铜钨复合粉末不经冷压成型,直接将混合粉体填充到耐热钢制作的模具中,进行真空热压烧结,烧结完成后随炉降温冷却至260℃,参数控制如下:烧结温度825℃、保温时间1.25h、轴向压力40MPa、真空度10-4Pa、升温速率55℃/min;Step 7. The Al2O3 (or ZrO2) doped copper-tungsten composite powder obtained in step 6 is directly filled into a mold made of heat-resistant steel without cold-pressing, and vacuum hot-pressing sintering is performed. After the sintering is completed Cool down to 260℃ with the furnace, and the parameters are controlled as follows: sintering temperature 825℃, holding time 1.25h, axial pressure 40MPa, vacuum degree 10-4Pa, heating rate 55℃/min;
步骤八、将冷却至260℃的试样取出,迅速放于温度在-150~-160℃之间的低温环境0.7h,最终得到Al2O3(或ZrO2)氧化物陶瓷粒子增强Cu基复合材料。Step 8: Take out the sample cooled to 260°C, and quickly place it in a low temperature environment with a temperature between -150°C and -160°C for 0.7h, and finally obtain an Al2O3 (or ZrO2) oxide ceramic particle reinforced Cu-based composite material.
本文中未详细说明的部件为现有技术。Components not detailed herein are prior art.
上述虽然对本发明的具体实施例作了详细说明,但是本发明并不限于上述实施例,在本领域普通技术人员所具备的知识范围内,还可以在不脱离本发明宗旨的前提下做出各种变化,而不具备创造性劳动的修改或变形仍在本发明的保护范围以内。Although the specific embodiments of the present invention have been described in detail above, the present invention is not limited to the above-mentioned embodiments, and within the scope of knowledge possessed by those of ordinary skill in the art, various Such changes, modifications or deformations without creative work are still within the protection scope of the present invention.
Claims (8)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010873930.3A CN111996408B (en) | 2020-08-27 | 2020-08-27 | Preparation method of oxide ceramic particle reinforced Cu-based composite material |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010873930.3A CN111996408B (en) | 2020-08-27 | 2020-08-27 | Preparation method of oxide ceramic particle reinforced Cu-based composite material |
Publications (2)
Publication Number | Publication Date |
---|---|
CN111996408A true CN111996408A (en) | 2020-11-27 |
CN111996408B CN111996408B (en) | 2021-11-09 |
Family
ID=73471947
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202010873930.3A Active CN111996408B (en) | 2020-08-27 | 2020-08-27 | Preparation method of oxide ceramic particle reinforced Cu-based composite material |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN111996408B (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113337747A (en) * | 2021-05-31 | 2021-09-03 | 合肥工业大学 | Preparation method of high-strength and high-conductivity copper alloy |
CN114411011A (en) * | 2022-01-24 | 2022-04-29 | 河南科技大学 | A kind of preparation method of alumina and tungsten particles synergistically reinforced copper alloy |
CN114833348A (en) * | 2022-05-07 | 2022-08-02 | 合肥工业大学 | Large-scale preparation method of controllable high-quality W-Cu composite powder |
CN115338414A (en) * | 2022-08-22 | 2022-11-15 | 西安交通大学 | A preparation method of light-weight Al-ZrW2O8 material with adjustable thermal expansion coefficient |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0165410A2 (en) * | 1984-06-20 | 1985-12-27 | Toyota Jidosha Kabushiki Kaisha | Fiber reinforced material with matrix metal containing copper and reinforcing fibers containing alumina |
CN1931482A (en) * | 2006-10-13 | 2007-03-21 | 武汉理工大学 | Prepn process of composite W-Cu powder for preparing high density alloy |
CN101956094A (en) * | 2010-10-15 | 2011-01-26 | 哈尔滨工业大学深圳研究生院 | High-strength and high-conductivity dispersion-strengthened alloy and preparation method thereof |
CN102031401A (en) * | 2011-01-04 | 2011-04-27 | 合肥工业大学 | Preparation method of nano-alumina reinforcing copper-based composite |
CN105624443A (en) * | 2014-10-30 | 2016-06-01 | 陕西华陆化工环保有限公司 | Preparation method for ultra-thin Al2O3 dispersion strengthened copper materials |
CN108149044A (en) * | 2017-12-27 | 2018-06-12 | 洛阳神佳窑业有限公司 | A kind of preparation method of Zirconium oxide dispersion strengthening copper alloy |
-
2020
- 2020-08-27 CN CN202010873930.3A patent/CN111996408B/en active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0165410A2 (en) * | 1984-06-20 | 1985-12-27 | Toyota Jidosha Kabushiki Kaisha | Fiber reinforced material with matrix metal containing copper and reinforcing fibers containing alumina |
CN1931482A (en) * | 2006-10-13 | 2007-03-21 | 武汉理工大学 | Prepn process of composite W-Cu powder for preparing high density alloy |
CN101956094A (en) * | 2010-10-15 | 2011-01-26 | 哈尔滨工业大学深圳研究生院 | High-strength and high-conductivity dispersion-strengthened alloy and preparation method thereof |
CN102031401A (en) * | 2011-01-04 | 2011-04-27 | 合肥工业大学 | Preparation method of nano-alumina reinforcing copper-based composite |
CN105624443A (en) * | 2014-10-30 | 2016-06-01 | 陕西华陆化工环保有限公司 | Preparation method for ultra-thin Al2O3 dispersion strengthened copper materials |
CN108149044A (en) * | 2017-12-27 | 2018-06-12 | 洛阳神佳窑业有限公司 | A kind of preparation method of Zirconium oxide dispersion strengthening copper alloy |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113337747A (en) * | 2021-05-31 | 2021-09-03 | 合肥工业大学 | Preparation method of high-strength and high-conductivity copper alloy |
CN114411011A (en) * | 2022-01-24 | 2022-04-29 | 河南科技大学 | A kind of preparation method of alumina and tungsten particles synergistically reinforced copper alloy |
CN114833348A (en) * | 2022-05-07 | 2022-08-02 | 合肥工业大学 | Large-scale preparation method of controllable high-quality W-Cu composite powder |
CN115338414A (en) * | 2022-08-22 | 2022-11-15 | 西安交通大学 | A preparation method of light-weight Al-ZrW2O8 material with adjustable thermal expansion coefficient |
CN115338414B (en) * | 2022-08-22 | 2023-12-19 | 西安交通大学 | Light Al-ZrW with adjustable thermal expansion coefficient 2 O 8 Method for producing materials |
Also Published As
Publication number | Publication date |
---|---|
CN111996408B (en) | 2021-11-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN111996408B (en) | Preparation method of oxide ceramic particle reinforced Cu-based composite material | |
CN105734324A (en) | Preparing method for powder metallurgy high-entropy alloy based composite material | |
CN105950944B (en) | A kind of high-melting-point high-entropy alloy NbMoTaWVTi and preparation method thereof | |
CN102534334A (en) | High-strength and high-toughness molybdenum alloy and preparation method thereof | |
CN101698919B (en) | Particle-reinforced molybdenum-base composite material and preparation method thereof | |
CN115044794B (en) | A Cu-(Y2O3-HfO2) alloy with excellent properties and its preparation method | |
CN113337747B (en) | Preparation method of high-strength and high-conductivity copper alloy | |
CN113480315B (en) | High-entropy low-boride ceramic and preparation method thereof | |
CN109778042A (en) | A kind of high-strength tungsten-based alloy and preparation method thereof | |
CN106048354B (en) | Nb‑Ti‑ZrB2TiC composites and preparation method thereof | |
CN110079722A (en) | A kind of infusibility high-entropy alloy TiZrNbMoTa and its method for preparing powder metallurgy containing B | |
CN103088242A (en) | Preparation method of aluminum-zinc-magnesium-copper-zirconium series high-strength aluminum alloy | |
CN101519746B (en) | A kind of molybdenum-based composite material and preparation method thereof | |
CN107217171A (en) | A kind of rare earth doped oxide Cu-base composites of liquid liquid and preparation method thereof | |
CN106431416A (en) | Zirconium carbide-zirconium diboride complex-phase ceramic powder synthesized through thermal explosion and preparation method thereof | |
CN114799155B (en) | Preparation method of ceramic particle reinforced refractory high entropy alloy | |
US20240410035A1 (en) | High-temperature high-entropy alloy with light weight and high strength in as-cast state and preparation method thereof | |
CN112899510B (en) | A kind of in-situ reaction synthesis method of TiC/Ni composite material | |
CN114752811A (en) | High-aluminum high-molybdenum high-zirconium ultrahigh-strength and high-toughness titanium alloy with good additive manufacturing performance and preparation method thereof | |
CN113337786A (en) | Nano zirconium oxide/amorphous alloy composite material and preparation method thereof | |
CN101967660B (en) | Co-electric deoxidation method for preparing Nb3Method for producing Al superconducting material | |
CN109332717A (en) | A kind of preparation method of spherical molybdenum titanium zirconium alloy powder | |
Kumar et al. | Phase equilibria in Ti 3 Al-Nb alloys at 1000° C | |
CN105886821B (en) | A kind of gradient of porosity consecutive variations POROUS TUNGSTEN base and preparation method | |
CN107983963A (en) | A kind of low temperature preparation method of pure W-Cu nanocomposite powder |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |