CN111982380B - 基于特征频率的滚珠丝杠副预紧力检测方法及系统 - Google Patents

基于特征频率的滚珠丝杠副预紧力检测方法及系统 Download PDF

Info

Publication number
CN111982380B
CN111982380B CN202010684879.1A CN202010684879A CN111982380B CN 111982380 B CN111982380 B CN 111982380B CN 202010684879 A CN202010684879 A CN 202010684879A CN 111982380 B CN111982380 B CN 111982380B
Authority
CN
China
Prior art keywords
ball screw
screw pair
pretightening force
characteristic frequency
feeding system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202010684879.1A
Other languages
English (en)
Other versions
CN111982380A (zh
Inventor
周长光
张向东
周华西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing University of Science and Technology
Original Assignee
Nanjing University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing University of Science and Technology filed Critical Nanjing University of Science and Technology
Priority to CN202010684879.1A priority Critical patent/CN111982380B/zh
Publication of CN111982380A publication Critical patent/CN111982380A/zh
Application granted granted Critical
Publication of CN111982380B publication Critical patent/CN111982380B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L5/00Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes
    • G01L5/24Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes for determining value of torque or twisting moment for tightening a nut or other member which is similarly stressed

Abstract

本发明公开了一种基于特征频率的滚珠丝杠副预紧力检测方法及系统,方法包括:建立滚珠丝杠副进给系统动力学模型并列出动力学方程;确定预紧力的范围与间隔值,计算不同预紧力对应的特征频率,构建预紧力特征集;利用该特征集训练优化SVM;对待测滚珠丝杠副进行锤击测试,计算其在进给系统中的特征频率,利用优化后的SVM检测待测滚珠丝杠副的预紧力值。本发明通过锤击测试求得进给系统的特征频率,并利用SVM对预紧力特征集进行训练预测判断滚珠丝杠副的预紧力状态,提高了检测效率,同时减少了后续计算时间,更加快捷高效。本发明能够应用于实际工程中,操作简单,可有效解决复杂机械系统中滚珠丝杠副预紧力状态检测困难、效率低下、准确率低等问题。

Description

基于特征频率的滚珠丝杠副预紧力检测方法及系统
技术领域
本发明属于滚珠丝杠副预紧力状态检测领域,特别涉及一种基于特征频率的滚珠丝杠副预紧力检测方法及系统。
背景技术
滚珠丝杠副是高档数控机床中的关键执行部件,具有零间隙、高精度、高效率等特点,它的性能直接决定着数控机床的稳定性和加工精度,在汽车、船舶、航空航天、核工业等领域有着广泛的应用。然而在实际加工过程中,随着滚珠丝杠副运行时间的增加,螺母内滚珠与滚道、滚珠与丝杠之间的磨损也会不断加剧,使得滚珠丝杠副预紧力不断下降,当磨损较为严重时,会影响数控机床的加工精度,对产品的加工质量也会带来很大影响,因此需要对滚珠丝杠副预紧力的退化状态进行检测,一旦预紧力退化超过规定阈值时,可及时对滚珠丝杠副的预紧力进行调整,进而保证数控机床的加工精度,延长机床的使用寿命。
目前普遍通过离线检测摩擦力矩间接获得滚珠丝杠副预紧力,然而对于数控机床,滚珠丝杠副的拆卸比较繁琐,且每次对滚珠丝杠副进行拆装必然会对整个进给系统的运行状态造成影响,这就使得对数控机床中滚珠丝杠副的预紧力检测变得十分困难,一定程度上制约了滚珠丝杠副预紧力状态监测方向的发展。因此急需一种更加完善的方法对滚珠丝杠副的预紧力状态进行更加方便、准确的判断。
发明内容
本发明的目的在于针对上述现有技术存在的问题,提供一种滚珠丝杠副预紧力检测方法,解决当前滚珠丝杠副预紧力状态检测困难、效率低下、准确率低等问题。
实现本发明目的的技术解决方案为:一种基于特征频率的滚珠丝杠副预紧力检测方法,所述方法包括以下步骤:
步骤1,建立滚珠丝杠副进给系统动力学模型并列出动力学方程;
步骤2,确定预紧力的范围与间隔值,计算不同预紧力所对应的特征频率,构建预紧力特征集;
步骤3,利用预紧力特征集训练优化支持向量机SVM;
步骤4,对进给系统中的待测滚珠丝杠副进行锤击测试,计算滚珠丝杠副在该进给系统中的特征频率,并利用优化后的SVM完成对待测滚珠丝杠副预紧力值的检测。
进一步地,步骤1所述建立滚珠丝杠副进给系统动力学模型并列出动力学方程,具体过程包括:
利用滚珠丝杠副在不同预紧力下的动力学特性,建立滚珠丝杠副进给系统中的动力学模型,并列出动力学方程为:
Figure BDA0002587173190000021
式中,Mt为工作台质量,Mb为丝杠质量;
Figure BDA0002587173190000022
为滚珠丝杠的转动惯量,其中γ为滚珠丝杠材料的密度,D为丝杠的直径,L为滚珠丝杠的长度,Jb的单位为kg.m^2;Jm=Jg+Jb+Jc为电机的转动惯量,其中
Figure BDA0002587173190000023
为工作台的转动惯量,P为丝杠的导程,
Figure BDA0002587173190000024
为联轴器的转动惯量,Mc为联轴器的质量,Dc为联轴器的直径;
Figure BDA0002587173190000025
为螺母的轴向刚度,Fp为丝杠副的预紧力,Ca为滚珠丝杠副的额定动载荷,K为滚珠丝杠副的轴向接触刚性;
Figure BDA0002587173190000026
为丝杠的扭转刚度,dr为丝杠的外径,G为剪切弹性模量,L为丝杠的长度;Kc为丝杠轴和支承轴承的等效轴向刚度,
Figure BDA0002587173190000027
Ks为丝杠的轴向刚性,KB为支撑轴承的轴向刚性,
Figure BDA0002587173190000028
d2为滚珠丝杠滚道底径,LZ为左右轴承间距,L5为支撑轴承到工作台的最远间距;α为相切于丝杠轴转动方向的等效摩擦系数,
Figure BDA0002587173190000029
为单位转动弧度对应的丝杠轴向位移,Bt为导轨的粘性阻尼系数,Bb为支撑轴承的粘性阻尼系数,Qb为丝杠支撑轴承的转动粘性阻尼系数,Qm为电机的粘性阻尼系数,T为电机的扭矩,Xt、Xb分别为工作台和丝杠的轴向位移,θb、θm分别为丝杠和电机的扭转弧度,
Figure BDA0002587173190000031
分别为“*”的一阶、二阶导数,
Figure BDA0002587173190000032
分别为工作台和丝杠的速度,
Figure BDA0002587173190000033
分别为工作台和丝杠的加速度,
Figure BDA0002587173190000034
分别为丝杠和电机的角速度,
Figure BDA0002587173190000035
分别为丝杠和电机的角加速度。
进一步地,步骤2中确定的预紧力范围为:
FP=n1·Ca~n2·Ca
式中,Ca为滚珠丝杠副的额定动载荷值,n1和n2根据滚珠丝杠副的工况确定,
Figure BDA0002587173190000036
Fa为施加于滚珠丝杠副的轴向载荷,n2≤30%;
确定的预紧力间隔值为:n3·Ca,n3≤0.01。
进一步地,步骤2中计算不同预紧力所对应的特征频率,具体过程包括:
计算预紧力对应的动力学方程的特征值λ;
根据该特征值λ求取该预紧力对应的特征频率f,所用公式为:
λ=ω2,ω=2πf。
基于特征频率的滚珠丝杠副预紧力检测系统,所述系统包括:
第一构建模块,用于建立滚珠丝杠副进给系统动力学模型并列出动力学方程;
第二构建模块,用于确定预紧力的范围与间隔值,计算不同预紧力所对应的特征频率,构建预紧力特征集;
训练优化模块,用于利用预紧力特征集训练优化支持向量机SVM;
检测模块,用于对进给系统中的待测滚珠丝杠副进行锤击测试,计算滚珠丝杠副在该进给系统中的特征频率,并利用优化后的SVM检测待测滚珠丝杠副的预紧力值。
本发明与现有技术相比,其显著优点为:1)对于诸如数控机床等机械设备,不需要对滚珠丝杠副进行拆卸,大大降低了技术人员的工作时间,提高了检测效率;2)通过特征频率直接计算出滚珠丝杠副预紧力的大小,不需要进行中间换算,减少了后续的计算时间,更加快捷高效;3)能够应用于实际工程当中,操作简单,可有效解决当前复杂机械系统中滚珠丝杠副预紧力状态检测困难、效率低下、准确率低等问题。
下面结合附图对本发明作进一步详细描述。
附图说明
图1为一个实施例中基于特征频率的滚珠丝杠副预紧力检测方法流程图。
图2为一个实施例中滚珠丝杠副预紧力的检测效果图。
具体实施方式
为了使本申请的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本申请进行进一步详细说明。应当理解,此处描述的具体实施例仅仅用以解释本申请,并不用于限定本申请。
在一个实施例中,结合图1,提供了一种基于特征频率的滚珠丝杠副预紧力检测方法,所述方法包括以下步骤:
步骤1,建立滚珠丝杠副进给系统动力学模型并列出动力学方程;
步骤2,确定预紧力的范围与间隔值,计算不同预紧力所对应的特征频率,构建预紧力特征集;
步骤3,利用预紧力特征集训练优化支持向量机SVM,获取SVM的惩罚因子c和核函数g的最佳参数组合,获得优化后的SVM;
步骤4,对进给系统中的待测滚珠丝杠副进行锤击测试,计算滚珠丝杠副在该进给系统中的特征频率,并利用优化后的SVM完成对待测滚珠丝杠副预紧力值的检测。
进一步地,在其中一个实施例中,步骤1所述建立滚珠丝杠副进给系统动力学模型并列出动力学方程,具体过程包括:
利用滚珠丝杠副在不同预紧力下的动力学特性,建立滚珠丝杠副进给系统中的动力学模型,并列出动力学方程为:
Figure BDA0002587173190000041
式中,Mt为工作台质量,Mb为丝杠质量;
Figure BDA0002587173190000042
为滚珠丝杠的转动惯量,其中γ为滚珠丝杠材料的密度,D为丝杠的直径,L为滚珠丝杠的长度,Jb的单位为kg.m^2;Jm=Jg+Jb+Jc为电机的转动惯量,其中
Figure BDA0002587173190000043
为工作台的转动惯量,P为丝杠的导程,
Figure BDA0002587173190000044
为联轴器的转动惯量,Mc为联轴器的质量,Dc为联轴器的直径;
Figure BDA0002587173190000051
为螺母的轴向刚度,Fp为丝杠副的预紧力,Ca为滚珠丝杠副的额定动载荷,K为滚珠丝杠副的轴向接触刚性;
Figure BDA0002587173190000052
为丝杠的扭转刚度,dr为丝杠的外径,G为剪切弹性模量,L为丝杠的长度;Kc为丝杠轴和支承轴承的等效轴向刚度,
Figure BDA0002587173190000053
Ks为丝杠的轴向刚性,KB为支撑轴承的轴向刚性,
Figure BDA0002587173190000054
d2为滚珠丝杠滚道底径,LZ为左右轴承间距,L5为支撑轴承到工作台的最远间距;α为相切于丝杠轴转动方向的等效摩擦系数,
Figure BDA0002587173190000055
为单位转动弧度对应的丝杠轴向位移,Bt为导轨的粘性阻尼系数,Bb为支撑轴承的粘性阻尼系数,Qb为丝杠支撑轴承的转动粘性阻尼系数,Qm为电机的粘性阻尼系数,T为电机的扭矩,Xt、Xb分别为工作台和丝杠的轴向位移,θb、θm分别为丝杠和电机的扭转弧度,
Figure BDA0002587173190000056
分别为“*”的一阶、二阶导数,
Figure BDA0002587173190000057
分别为工作台和丝杠的速度,
Figure BDA0002587173190000058
分别为工作台和丝杠的加速度,
Figure BDA0002587173190000059
分别为丝杠和电机的角速度,
Figure BDA00025871731900000510
分别为丝杠和电机的角加速度。
进一步优选地,在其中一个实施例中,步骤2中确定的预紧力范围为:
FP=n1·Ca~n2·Ca
式中,Ca为滚珠丝杠副的额定动载荷值,n1和n2根据滚珠丝杠副的工况确定,
Figure BDA00025871731900000511
Fa为施加于滚珠丝杠副的轴向载荷,n2≤30%;
确定的预紧力间隔值为:n3·Ca,n3≤0.01。
进一步地,在其中一个实施例中,步骤2中计算不同预紧力所对应的特征频率,具体过程包括:
计算预紧力对应的动力学方程的特征值λ;
根据该特征值λ求取该预紧力对应的特征频率f,所用公式为:
λ=ω2,ω=2πf。
进一步优选地,在其中一个实施例中,步骤3中优化支持向量机的算法采用网格搜索法或遗传优化算或粒子群优化算法。
进一步地,在其中一个实施例中,步骤4所述对进给系统中的待测滚珠丝杠副进行锤击测试,计算滚珠丝杠副在该进给系统中的特征频率,并利用优化后的SVM完成对待测滚珠丝杠副预紧力值的检测,具体过程包括:
4-1,沿丝杠轴向方向将加速度传感器设置在待测丝杠法兰端面处;
4-2,利用力锤沿丝杠轴向方向敲击法兰端面锤击点处,给滚珠丝杠副进给系统输入一个激励信号,之后通过加速度传感器获取激励所对应的响应信号,并由计算机进行分析输出该进给系统的各阶特征频率大小;
4-3,将所述各阶特征频率大小输入至优化后的SVM,输出待测滚珠丝杠副的预紧力值。
在一个实施例中,提供了一种基于特征频率的滚珠丝杠副预紧力检测系统,所述系统包括:
第一构建模块,用于建立滚珠丝杠副进给系统动力学模型并列出动力学方程;
第二构建模块,用于确定预紧力的范围与间隔值,计算不同预紧力所对应的特征频率,构建预紧力特征集;
训练优化模块,用于利用预紧力特征集训练优化支持向量机SVM;
检测模块,用于对进给系统中的待测滚珠丝杠副进行锤击测试,计算滚珠丝杠副在该进给系统中的特征频率,并利用优化后的SVM检测待测滚珠丝杠副的预紧力值。
进一步地,在其中一个实施例中,所述检测模块包括:
装配单元,用于沿丝杠轴向方向将加速度传感器设置在待测丝杠法兰端面处;
锤击测试单元,用于利用力锤沿丝杠轴向方向敲击法兰端面锤击点处,给滚珠丝杠副进给系统输入一个激励信号,之后通过加速度传感器获取激励所对应的响应信号,并由计算机进行分析输出该进给系统的各阶特征频率大小;
预紧力检测单元,用于将所述各阶特征频率大小输入至优化后的SVM,输出待测滚珠丝杠副的预紧力值。
关于基于特征频率的滚珠丝杠副预紧力检测系统的具体限定可以参见上文中对于基于特征频率的滚珠丝杠副预紧力检测方法的限定,在此不再赘述。
作为一种具体示例,在其中一个实施例中,对本发明的方法进行验证说明,具体内容包括:
1、确定预紧力退化进给驱动系统中某型号滚珠丝杠副的特征参数,计算出该动力学模型中各参数值大小如下表1所示:
表1动力学模型各参数值大小
Figure BDA0002587173190000071
2、查阅滚珠丝杠副选型手册得额定动载荷Ca=29896N,则预紧力变化范围可选择为1500N~9000N,选定预紧力间隔值为100N,将其代入动力学方程中进行求解,并利用公式λ=ω2,ω=2πf求得预紧力变化范围内对应的各阶特征频率,构建预紧力特征集,如下表2所示:
表2预紧力变化范围内对应的各阶特征频率
Figure BDA0002587173190000072
3、将预紧力特征集按照4:1的比例随机划分为训练集和测试集,采用网格搜索法寻找SVM的惩罚因子c和核函数g的最佳参数组合为2和0.25,将其输入到SVM的参数设置中,测试集预测结果中确定系数为0.9995,如图2所示,测试集预测的预紧力数据如下表3所示。
表3测试集预测结果
Figure BDA0002587173190000081
4、利用力锤敲击该进给系统中滚珠丝杠副的法兰端面,通过加速度传感器获取激励所对应的响应信号,并由计算机进行分析,获得该进给系统的各阶特征频率大小为34.45HZ、125.23HZ、430.91HZ、1059.24HZ,将其输入到优化后的SVM内进行预测,获得该滚珠丝杠副的预紧力大小为3326.15N。
由上可知,本发明提出的基于特征频率的滚珠丝杠副预紧力状态检测方法,通过利用锤击测试求得进给系统的特征频率,并利用SVM对预紧力特征集进行训练预测来判断滚珠丝杠副的预紧力状态,不需要对滚珠丝杠副进行拆卸,大大降低了技术人员的工作时间,提高了检测效率,同时通过特征频率直接计算出滚珠丝杠副预紧力的大小,不需要进行中间换算,减少了后续的计算时间,更加快捷高效。本发明能够应用于实际工程当中,操作简单,可有效解决当前复杂机械系统中滚珠丝杠副预紧力状态检测困难、效率低下、准确率低等问题。
以上显示和描述了本发明的基本原理、主要特征及优点。本行业的技术人员应该了解,本发明不受上述实施例的限制,上述实施例和说明书中描述的只是说明本发明的原理,在不脱离本发明精神和范围的前提下,本发明还会有各种变化和改进,这些变化和改进都落入要求保护的本发明范围内。本发明要求保护范围由所附的权利要求书及其等效物界定。

Claims (6)

1.一种基于特征频率的滚珠丝杠副预紧力检测方法,其特征在于,所述方法包括以下步骤:
步骤1,建立滚珠丝杠副进给系统动力学模型并列出动力学方程;
步骤2,确定预紧力的范围与间隔值,计算不同预紧力所对应的特征频率,构建预紧力特征集;
步骤3,利用预紧力特征集训练优化支持向量机SVM;
步骤4,对进给系统中的待测滚珠丝杠副进行锤击测试,计算滚珠丝杠副在该进给系统中的特征频率,并利用优化后的SVM完成对待测滚珠丝杠副预紧力值的检测;具体过程包括:
4-1,沿丝杠轴向方向将加速度传感器设置在待测丝杠法兰端面处;
4-2,沿丝杠轴向方向敲击法兰端面锤击点处,给滚珠丝杠副进给系统输入一个激励信号,之后通过加速度传感器获取激励所对应的响应信号,并由计算机进行分析输出该进给系统的各阶特征频率大小;
4-3,将所述各阶特征频率大小输入至优化后的SVM,输出待测滚珠丝杠副的预紧力值。
2.根据权利要求1所述的基于特征频率的滚珠丝杠副预紧力检测方法,其特征在于,步骤1所述建立滚珠丝杠副进给系统动力学模型并列出动力学方程,具体过程包括:
利用滚珠丝杠副在不同预紧力下的动力学特性,建立滚珠丝杠副进给系统中的动力学模型,并列出动力学方程为:
Figure FDA0003410763330000011
式中,Mt为工作台质量,Mb为丝杠质量;
Figure FDA0003410763330000012
为滚珠丝杠的转动惯量,其中γ为滚珠丝杠材料的密度,D为丝杠的直径,L为滚珠丝杠的长度,Jb的单位为kg.m^2;Jm=Jg+Jb+Jc为电机的转动惯量,其中
Figure FDA0003410763330000013
为工作台的转动惯量,P为丝杠的导程,
Figure FDA0003410763330000014
为联轴器的转动惯量,Mc为联轴器的质量,Dc为联轴器的直径;
Figure FDA0003410763330000021
为螺母的轴向刚度,Fp为丝杠副的预紧力,Ca为滚珠丝杠副的额定动载荷,K为滚珠丝杠副的轴向接触刚性;
Figure FDA0003410763330000022
为丝杠的扭转刚度,dr为丝杠的外径,G为剪切弹性模量,L为丝杠的长度;Kc为丝杠轴和支承轴承的等效轴向刚度,
Figure FDA0003410763330000023
Ks为丝杠的轴向刚性,KB为支撑轴承的轴向刚性,
Figure FDA0003410763330000024
Figure FDA0003410763330000025
d2为滚珠丝杠滚道底径,LZ为左右轴承间距,L5为支撑轴承到工作台的最远间距;α为相切于丝杠轴转动方向的等效摩擦系数,
Figure FDA0003410763330000026
为单位转动弧度对应的丝杠轴向位移,Bt为导轨的粘性阻尼系数,Bb为支撑轴承的粘性阻尼系数,Qb为丝杠支撑轴承的转动粘性阻尼系数,Qm为电机的粘性阻尼系数,T为电机的扭矩,Xt、Xb分别为工作台和丝杠的轴向位移,θb、θm分别为丝杠和电机的扭转弧度,
Figure FDA0003410763330000027
分别为“*”的一阶、二阶导数,
Figure FDA0003410763330000028
分别为工作台和丝杠的速度,
Figure FDA0003410763330000029
分别为工作台和丝杠的加速度,
Figure FDA00034107633300000210
分别为丝杠和电机的角速度,
Figure FDA00034107633300000211
分别为丝杠和电机的角加速度。
3.根据权利要求1所述的基于特征频率的滚珠丝杠副预紧力检测方法,其特征在于,步骤2中确定的预紧力范围为:
FP=n1·Ca~n2·Ca
式中,Ca为滚珠丝杠副的额定动载荷值,n1和n2根据滚珠丝杠副的工况确定,
Figure FDA00034107633300000212
Fa为施加于滚珠丝杠副的轴向载荷,n2≤30%;
确定的预紧力间隔值为:n3·Ca,n3≤0.01。
4.根据权利要求1或2所述的基于特征频率的滚珠丝杠副预紧力检测方法,其特征在于,步骤2中计算不同预紧力所对应的特征频率,具体过程包括:
计算预紧力对应的动力学方程的特征值λ;
根据该特征值λ求取该预紧力对应的特征频率f,所用公式为:
λ=ω2,ω=2πf。
5.根据权利要求1所述的基于特征频率的滚珠丝杠副预紧力检测方法,其特征在于,步骤3中优化支持向量机的算法采用网格搜索法或遗传优化算或粒子群优化算法。
6.根据权利要求1至5任意一项所述的基于特征频率的滚珠丝杠副预紧力检测方法的检测系统,其特征在于,所述系统包括:
第一构建模块,用于建立滚珠丝杠副进给系统动力学模型并列出动力学方程;
第二构建模块,用于确定预紧力的范围与间隔值,计算不同预紧力所对应的特征频率,构建预紧力特征集;
训练优化模块,用于利用预紧力特征集训练优化支持向量机SVM;
检测模块,用于对进给系统中的待测滚珠丝杠副进行锤击测试,计算滚珠丝杠副在该进给系统中的特征频率,并利用优化后的SVM检测待测滚珠丝杠副的预紧力值。
CN202010684879.1A 2020-07-16 2020-07-16 基于特征频率的滚珠丝杠副预紧力检测方法及系统 Active CN111982380B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010684879.1A CN111982380B (zh) 2020-07-16 2020-07-16 基于特征频率的滚珠丝杠副预紧力检测方法及系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010684879.1A CN111982380B (zh) 2020-07-16 2020-07-16 基于特征频率的滚珠丝杠副预紧力检测方法及系统

Publications (2)

Publication Number Publication Date
CN111982380A CN111982380A (zh) 2020-11-24
CN111982380B true CN111982380B (zh) 2022-04-19

Family

ID=73437850

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010684879.1A Active CN111982380B (zh) 2020-07-16 2020-07-16 基于特征频率的滚珠丝杠副预紧力检测方法及系统

Country Status (1)

Country Link
CN (1) CN111982380B (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103506891A (zh) * 2013-09-11 2014-01-15 华中科技大学 一种用于数控机床进给系统的预紧力数字化检测装置
CN104368967A (zh) * 2014-12-11 2015-02-25 常州工学院 一种滚珠丝杠副预紧力损失可调整和测量装置及其实验台
CN105181326A (zh) * 2015-07-31 2015-12-23 常州工学院 一种滚珠丝杆副预紧力损失可实时监测的方法
CN109556778A (zh) * 2018-12-06 2019-04-02 北京工业大学 一种基于电流的滚珠丝杠副预紧力在线监测方法
CN110501108A (zh) * 2019-09-03 2019-11-26 大连理工大学 基于独立分量分析和支持向量机的螺栓预紧力辨识方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103506891A (zh) * 2013-09-11 2014-01-15 华中科技大学 一种用于数控机床进给系统的预紧力数字化检测装置
CN104368967A (zh) * 2014-12-11 2015-02-25 常州工学院 一种滚珠丝杠副预紧力损失可调整和测量装置及其实验台
CN105181326A (zh) * 2015-07-31 2015-12-23 常州工学院 一种滚珠丝杆副预紧力损失可实时监测的方法
CN109556778A (zh) * 2018-12-06 2019-04-02 北京工业大学 一种基于电流的滚珠丝杠副预紧力在线监测方法
CN110501108A (zh) * 2019-09-03 2019-11-26 大连理工大学 基于独立分量分析和支持向量机的螺栓预紧力辨识方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
螺母预紧力对滚珠丝杠副振动特性的影响;丁胜鹏等;《组合机床与自动化加工技术》;20170430;正文第2节 *

Also Published As

Publication number Publication date
CN111982380A (zh) 2020-11-24

Similar Documents

Publication Publication Date Title
Nguyen et al. Study of ball screw system preload monitoring during operation based on the motor current and screw-nut vibration
CN106441760B (zh) 低压涡轮轴盘连接螺栓防松脱特性试验方法
Gomez et al. Angular modeling of a rotating machine in non-stationary conditions: Application to monitoring bearing defects of wind turbines with instantaneous angular speed
CN107389268B (zh) 一种基于快速算法的多点现场动平衡方法
CN111475903A (zh) 基于多偏置误差同步补偿的大型高速回转装备多级零部件动力学特性逐级测调和分配方法
Xu et al. Dynamic behaviors and contact characteristics of ball bearings in a multi-supported rotor system under the effects of 3D clearance fit
CN111982380B (zh) 基于特征频率的滚珠丝杠副预紧力检测方法及系统
Kang et al. Dynamics research on the rubbing process and rubbing forms of rotor–blade–casing​ systems
CN106289773A (zh) 一种机床主轴轴承径向非线性刚度的确定方法
CN109357827B (zh) 一种往复设备轴系振动实验及分析方法
Da Costa et al. Orbit analysis for imbalance fault detection in rotating machinery
Zheng et al. Dynamic model-driven intelligent fault diagnosis method for rotary vector reducers
Kalkat et al. Rotor dynamics analysis of rotating machine systems using artificial neural networks
Zhao et al. A Dynamic-Balancing Testing System Designed for Flexible Rotor
Schenke et al. Analysis of servo-mechanic drive concepts for forming presses
Ogbonnaya et al. Optimizing gas turbine rotor shaft fault detection, identification and analysis for effective condition monitoring
Ma et al. Gyroscopic effect evaluation and resonance speed prediction of complex high-speed rotor system based on energy
CN113588232B (zh) 一种水电机组群轴系振动故障全息识别方法
Salunkhe et al. A numerical model for fault diagnosis in deep groove ball bearing using dimension theory
Wang et al. A Practical Method to Detect a Transverse Cracked Rotor Using Transient Response.
Zhang et al. A detecting system for wheel balancer based on the effect coefficient method
Singh et al. Optimization of the cutting parameters by vibration analysis of cutting tool
Munde et al. Condition Monitoring of Rolling Contact Bearing by Vibration Signature Analysis
Wang et al. Chaotic Analysis and Machine Learning Diagnosis of Herringbone-grooved Journal Gas Bearing System
Han et al. Modelling and Vibration Signal Analysis for Condition Monitoring of Industrial Robots

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant