CN111969073A - Semi-flexible solar module and manufacturing method thereof - Google Patents

Semi-flexible solar module and manufacturing method thereof Download PDF

Info

Publication number
CN111969073A
CN111969073A CN202010811822.3A CN202010811822A CN111969073A CN 111969073 A CN111969073 A CN 111969073A CN 202010811822 A CN202010811822 A CN 202010811822A CN 111969073 A CN111969073 A CN 111969073A
Authority
CN
China
Prior art keywords
layer
semi
solar cell
solar module
solar
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202010811822.3A
Other languages
Chinese (zh)
Inventor
孙菁
贺卿
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Suzhou Bowens New Material Technology Co.,Ltd.
Original Assignee
Suzhou Safray Energy Technology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Suzhou Safray Energy Technology Co ltd filed Critical Suzhou Safray Energy Technology Co ltd
Priority to CN202010811822.3A priority Critical patent/CN111969073A/en
Publication of CN111969073A publication Critical patent/CN111969073A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10FINORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
    • H10F19/00Integrated devices, or assemblies of multiple devices, comprising at least one photovoltaic cell covered by group H10F10/00, e.g. photovoltaic modules
    • H10F19/80Encapsulations or containers for integrated devices, or assemblies of multiple devices, having photovoltaic cells
    • H10F19/804Materials of encapsulations
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • H01G9/2059Light-sensitive devices comprising an organic dye as the active light absorbing material, e.g. adsorbed on an electrode or dissolved in solution
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • H01G9/2068Panels or arrays of photoelectrochemical cells, e.g. photovoltaic modules based on photoelectrochemical cells
    • H01G9/2077Sealing arrangements, e.g. to prevent the leakage of the electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • H01G9/2068Panels or arrays of photoelectrochemical cells, e.g. photovoltaic modules based on photoelectrochemical cells
    • H01G9/2081Serial interconnection of cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • H01G9/2095Light-sensitive devices comprising a flexible sustrate
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S40/00Components or accessories in combination with PV modules, not provided for in groups H02S10/00 - H02S30/00
    • H02S40/30Electrical components
    • H02S40/36Electrical components characterised by special electrical interconnection means between two or more PV modules, e.g. electrical module-to-module connection
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10FINORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
    • H10F19/00Integrated devices, or assemblies of multiple devices, comprising at least one photovoltaic cell covered by group H10F10/00, e.g. photovoltaic modules
    • H10F19/70Integrated devices, or assemblies of multiple devices, comprising at least one photovoltaic cell covered by group H10F10/00, e.g. photovoltaic modules comprising bypass diodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/80Constructional details
    • H10K30/88Passivation; Containers; Encapsulations
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/542Dye sensitized solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Photovoltaic Devices (AREA)

Abstract

The invention discloses a semi-flexible solar module and a manufacturing method thereof, and in a first aspect, the invention provides a photovoltaic module scheme, a front layer of ultraviolet reflecting material; one or more impact cushioning layers; a crystalline silicon substrate, a multi-component compound thin film material, a polymer modified electrode type, and a solar cell layer of a sensitized nanocrystalline or organic compound solar cell; a support layer of semi-flexible material supporting the solar cell layer; a back layer; none of the layers is composed of glass. The solar module has certain flexibility and wider application than the traditional rigid solar module; and is lighter than conventional solar modules, has low transportation costs, and is easily bent, facilitating assembly to conform to the curvature of the installation site.

Description

半柔性太阳能组件及其制造方法Semi-flexible solar module and method of making the same

技术领域technical field

本发明涉及太阳能组件,尤其涉及使用晶体太阳能电池的半柔性太阳能组件及其制造方法。The present invention relates to solar modules, and more particularly, to semi-flexible solar modules using crystalline solar cells and methods of manufacturing the same.

背景技术Background technique

太阳能电池或光伏电池是将光能直接转化为电能的电气装置。一般来说,多个太阳能电池集成在太阳能组件中,被称为太阳能电池板。通常,太阳能组件包括金属框架、晶体太阳能电池和玻璃盖板。由于晶体太阳能电池易碎,金属框架和玻璃盖板用于保护晶体太阳能电池,并通常使太阳能模块保持预设的形状。Solar cells or photovoltaic cells are electrical devices that convert light energy directly into electricity. Generally, multiple solar cells are integrated in a solar module, called a solar panel. Typically, solar modules include metal frames, crystalline solar cells, and glass cover sheets. Since crystalline solar cells are fragile, metal frames and glass cover sheets are used to protect the crystalline solar cells and generally keep the solar module in a preset shape.

最近,使用薄膜太阳能电池的柔性太阳能组件已经开发出来,薄膜太阳能电池不像晶体太阳能电池那么脆弱,可以卷起来。薄膜太阳能组件往往更小,更便携。但是薄膜太阳能电池的在将光转化为电能方面的效率低于晶体及其他太阳能电池。More recently, flexible solar modules have been developed using thin-film solar cells, which are not as fragile as crystalline solar cells and can be rolled up. Thin-film solar modules tend to be smaller and more portable. But thin-film solar cells are less efficient at converting light into electricity than crystalline and other solar cells.

因此,我们需要一种可以使用晶体和其他太阳能电池的适用范围广泛的半柔性太阳能组件。Therefore, we need a wide range of semi-flexible solar modules that can use crystalline and other solar cells.

发明内容SUMMARY OF THE INVENTION

本发明的目的在于克服现有技术存在的以上问题,提供了一种可以使用晶体硅基底,多元化合物薄膜材料,聚合物修饰电极型,敏化纳米晶或有机化合物太阳能电池的半柔性太阳能组件。本发明还涉及用于半柔性太阳能组件的电连接装置和用于半柔性太阳能模块的表面图案。由于有一定的柔性,本太阳能组件比一个刚性太阳能组件有更广泛的用途。这种半柔性太阳能组件也比传统的太阳能组件轻。该半柔性组件易于弯曲,以符合安装位置的曲率;其重量轻,使运输成本更低,便于组装;因其是不粘材料和其质地使其表面张力最小化,组件表面是允许自主清洁的;本组件可以用粘合剂或螺丝固定。The purpose of the present invention is to overcome the above problems existing in the prior art, and provide a semi-flexible solar module that can use crystalline silicon substrate, multi-component compound thin film material, polymer modified electrode type, sensitized nanocrystalline or organic compound solar cell. The invention also relates to electrical connection means for semi-flexible solar modules and surface patterns for semi-flexible solar modules. Due to its flexibility, the solar module has a wider range of uses than a rigid solar module. This semi-flexible solar module is also lighter than conventional solar modules. The semi-flexible component is easy to bend to conform to the curvature of the installation site; its light weight makes it less expensive to transport and easy to assemble; the surface of the component allows self-cleaning thanks to its non-stick material and its texture that minimizes surface tension ; This assembly can be fixed with adhesive or screws.

为实现上述技术目的,达到上述技术效果,本发明通过以下技术方案实现:In order to realize the above-mentioned technical purpose and achieve the above-mentioned technical effect, the present invention is realized through the following technical solutions:

半柔性太阳能组件,包括:Semi-flexible solar modules including:

一个紫外线反射材料的前层;a front layer of UV reflective material;

一个或多个冲击缓冲层;one or more impact buffer layers;

一个晶体硅基底,多元化合物薄膜材料,聚合物修饰电极型,敏化纳米晶或有机化合物太阳能电池的太阳能电池层;A crystalline silicon substrate, a multi-component compound thin film material, a polymer modified electrode type, a solar cell layer of a sensitized nanocrystalline or organic compound solar cell;

一个支持太阳能电池层的半柔性材料的支持层;a support layer of semi-flexible material that supports the solar cell layer;

一个后层;a rear layer;

没有任何层由玻璃组成。None of the layers consist of glass.

作为优选,所述支持层设置为透明支持层,所述透明支持层位于前层和太阳能电池层之间。Preferably, the support layer is configured as a transparent support layer, and the transparent support layer is located between the front layer and the solar cell layer.

作为优选,所述冲击缓冲层设置为粘合剂层;其一个或多个冲击缓冲层也作为粘合剂层。Preferably, the impact buffer layer is provided as an adhesive layer; one or more impact buffer layers thereof also serve as an adhesive layer.

作为优选,所述太阳能电池层和支持层之间设置有第二冲击缓冲层。Preferably, a second impact buffer layer is disposed between the solar cell layer and the support layer.

作为优选,所述前层、太阳能电池层、支持层和后层之间还设置有一个或多个胶粘剂层。Preferably, one or more adhesive layers are further arranged between the front layer, the solar cell layer, the support layer and the back layer.

作为优选,所述太阳能电池层上设置有母线,所述母线上设置有旁路二极管。Preferably, a bus bar is provided on the solar cell layer, and a bypass diode is provided on the bus bar.

作为优选,所述旁路二极管设置有多个,多个所述旁路二极管分别布置在所述太阳能电池层上的不同母线上。Preferably, a plurality of the bypass diodes are provided, and the plurality of bypass diodes are respectively arranged on different bus bars on the solar cell layer.

作为优选,所述太阳能组件的厚度不超过7mm。Preferably, the thickness of the solar module does not exceed 7mm.

半柔性太阳能组件,包括:Semi-flexible solar modules including:

由氟塑膜形成的前层;Front layer formed by fluoroplastic film;

由高聚物封装材料形成的多个冲击缓冲层;Multiple impact buffer layers formed from polymer encapsulation materials;

由晶体硅基底,多元化合物薄膜材料,聚合物修饰电极型,敏化纳米晶或有机化合物太阳能电池形成的太阳能电池层;The solar cell layer formed by crystalline silicon substrate, multi-component compound thin film material, polymer modified electrode type, sensitized nanocrystalline or organic compound solar cell;

热塑性聚酯材料形成的支撑层;A support layer formed of thermoplastic polyester material;

和由光伏背板构成的后层。and a back layer consisting of a photovoltaic backsheet.

本发明的有益效果是:The beneficial effects of the present invention are:

1.本发明提供了一种可以使用晶体硅基底,多元化合物薄膜材料,聚合物修饰电极型,敏化纳米晶或有机化合物太阳能电池的半柔性太阳能组件;1. The present invention provides a semi-flexible solar module that can use crystalline silicon substrate, multi-component compound thin film material, polymer modified electrode type, sensitized nanocrystalline or organic compound solar cell;

2.本发明还涉及用于半柔性太阳能组件的电连接装置和用于半柔性太阳能模块的表面图案;2. The present invention also relates to an electrical connection device for a semi-flexible solar module and a surface pattern for a semi-flexible solar module;

3.本发明太阳能组件由于具有一定的柔性比传统刚性太阳能组件有更广泛的用途;且比传统的太阳能组件重量轻,运输成本低,并且易于弯曲,便于组装,以符合安装位置的曲率;3. The solar module of the present invention has a wider range of uses than the traditional rigid solar module due to its certain flexibility; it is lighter in weight and lower in transportation cost than the traditional solar module, and is easy to bend and assemble to conform to the curvature of the installation location;

4.本发明采用不粘材料和其质地使其表面张力最小化,使其组件表面允许自主清洁;此外,本组件还可以使用粘合剂或螺丝固定。4. The present invention uses non-stick material and its texture to minimize the surface tension, so that the surface of its components allows self-cleaning; in addition, the components can also be fixed with adhesives or screws.

上述说明仅是本发明技术方案的概述,为了能够更清楚了解本发明的技术手段,并可依照说明书的内容予以实施,以下以本发明的较佳实施例并配合附图详细说明。本发明的具体实施方式由以下实施例及其附图详细给出。The above description is only an overview of the technical solution of the present invention. In order to understand the technical means of the present invention more clearly and implement it according to the content of the description, the following describes the preferred embodiments of the present invention in detail with the accompanying drawings. Specific embodiments of the present invention are given in detail by the following examples and the accompanying drawings.

附图说明Description of drawings

此处所说明的附图用来提供对本发明的进一步理解,构成本申请的一部分,本发明的示意性实施例及其说明用于解释本发明,并不构成对本发明的不当限定。在附图中:The accompanying drawings described herein are used to provide a further understanding of the present invention and constitute a part of the present application. The exemplary embodiments of the present invention and their descriptions are used to explain the present invention and do not constitute an improper limitation of the present invention. In the attached image:

图1展示了半柔性太阳能组件的实例;Figure 1 shows an example of a semi-flexible solar module;

图2展示了半柔性太阳能组件的另一个实例;Figure 2 shows another example of a semi-flexible solar module;

图3又展示了半柔性太阳能组件的另一个实例;Figure 3 shows yet another example of a semi-flexible solar module;

图4仍然是半柔性太阳能组件的另一个实例;Figure 4 is still another example of a semi-flexible solar module;

图5展示了图1中带接线盒的半柔性太阳能组件中的母线和旁路二极管的示例;Figure 5 shows an example of the busbars and bypass diodes in the semi-flexible solar module with junction box of Figure 1;

图6展示了用于图1的半柔性太阳能组件的串联连接器的实例;Figure 6 shows an example of a series connector for the semi-flexible solar module of Figure 1;

图7展示了用于图1的半柔性太阳能组件的并联连接器的实例;Figure 7 illustrates an example of a parallel connector for the semi-flexible solar module of Figure 1;

图8展示了与图5的连接器一起使用的接线盒的实例;Figure 8 shows an example of a junction box for use with the connector of Figure 5;

图9展示了在层压过后的太阳能组件中的旁路二极管的特写;Figure 9 shows a close-up of the bypass diode in the laminated solar module;

图10是从顶视图中展示了应用于图1的半柔性太阳能组件的前层的表面图案;Figure 10 is a top view showing the surface pattern applied to the front layer of the semi-flexible solar module of Figure 1;

图11是从侧视图中展示了应用于图1的半柔性太阳能组件的前层的表面图案;Figure 11 is a side view showing the surface pattern applied to the front layer of the semi-flexible solar module of Figure 1;

图12是将图案应用于太阳能组件的表面的方法流程图。12 is a flow diagram of a method of applying a pattern to the surface of a solar module.

具体实施方式Detailed ways

下面结合附图对本发明作进一步的描述:Below in conjunction with accompanying drawing, the present invention is further described:

图1说明了半柔性太阳能组件100的实例。在本实例中,太阳能组件100包括前层105、冲击缓冲层110、太阳能电池层115、支撑层120和后层125。FIG. 1 illustrates an example of a semi-flexible solar module 100 . In this example, solar assembly 100 includes front layer 105 , impact buffer layer 110 , solar cell layer 115 , support layer 120 , and back layer 125 .

图2展示了半柔性太阳能组件200的另一个实例。图2的实例与图1相似,只是在太阳能电池层115和支撑层120之间设置了额外的冲击缓冲层110。FIG. 2 shows another example of a semi-flexible solar module 200 . The example of FIG. 2 is similar to that of FIG. 1 except that an additional shock buffer layer 110 is provided between the solar cell layer 115 and the support layer 120 .

图3展示了半柔性太阳能组件300的进一步实例。在本实施例中,支撑层120和图2中的太阳能电池层115已经在位置上切换,支撑层120现在位于太阳能电池层115之上,并且位于两个冲击缓冲层110之间。将支撑层120置于太阳能电池层115之上是为了增强缓冲层,以防止外部严重的冲击,但它将略微减少光的传输。FIG. 3 shows a further example of a semi-flexible solar module 300 . In the present embodiment, the support layer 120 and the solar cell layer 115 in FIG. 2 have been switched in position, with the support layer 120 now overlying the solar cell layer 115 and between the two shock buffer layers 110 . Placing the support layer 120 on top of the solar cell layer 115 is to strengthen the buffer layer against severe external shocks, but it will slightly reduce the transmission of light.

前层105是透明的,目的是为太阳能组件提供一些保护。特别是,前层105可提供紫外线(UV)保护,以减少或防止下层由于阳光照射而降解。所述前层105可由从乙烯四氟乙烯(ETFE)、乙烯氯三氟乙烯、聚氟乙烯薄膜、乙烯丙烯共聚物中选择的至少一种材料制成。前一层的厚度可以小于0.2毫米。根据所选材料的不同,前面一层的目的是提供:The front layer 105 is transparent in order to provide some protection to the solar module. In particular, the front layer 105 may provide ultraviolet (UV) protection to reduce or prevent degradation of the underlying layers due to sunlight exposure. The front layer 105 may be made of at least one material selected from ethylene tetrafluoroethylene (ETFE), ethylene chlorotrifluoroethylene, polyvinyl fluoride film, and ethylene propylene copolymer. The thickness of the previous layer may be less than 0.2 mm. Depending on the material chosen, the purpose of the previous layer is to provide:

a对下层具有良好的粘附性(可以通过表面处理) ;a has good adhesion to the lower layer (can be treated by surface treatment);

b良好的介电强度,有助于使前层105成为有效的绝缘体;b Good dielectric strength, helping to make the front layer 105 an effective insulator;

c良好的机械强度(撕裂强度)和尺寸稳定性;c good mechanical strength (tear strength) and dimensional stability;

d防潮保护;d moisture protection;

e低表面能,因此前层105将保持清洁,可以很容易地清洗。e Low surface energy, so the front layer 105 will remain clean and can be easily cleaned.

冲击缓冲层110旨在吸收撞击能量,如冰雹、雪、风产生的固体碎片等,以防止太阳能电池层115内的太阳能电池受损。冲击缓冲层110一般可设置在太阳能电池层115附近。在某些情况下,可在太阳能电池层115的两侧设置冲击缓冲层110,以提供更大的保护。在某些情况下,冲击缓冲层110还可用作前层105和太阳能电池层115之间和 / 或太阳能电池层105和支撑层120和 / 或堆叠中的其他层之间的粘合剂。所述冲击缓冲层110可以是从乙烯-醋酸乙烯酯(EVA)、有机硅密封剂、环氧树脂、聚烯烃、丁基橡胶基粘合剂或乙烯基酚醛树脂中选择的至少一种材料。The impact buffer layer 110 is intended to absorb impact energy, such as hail, snow, solid debris from wind, etc., to prevent damage to the solar cells within the solar cell layer 115 . The shock buffer layer 110 may generally be disposed adjacent to the solar cell layer 115 . In some cases, shock buffer layers 110 may be provided on both sides of the solar cell layer 115 to provide greater protection. In some cases, the impact buffer layer 110 may also serve as an adhesive between the front layer 105 and the solar cell layer 115 and/or between the solar cell layer 105 and the support layer 120 and/or other layers in the stack. The impact buffer layer 110 may be at least one material selected from ethylene vinyl acetate (EVA), silicone sealants, epoxy resins, polyolefins, butyl rubber-based adhesives, or vinyl phenolic resins.

太阳能电池层115由晶体硅基底,多元化合物薄膜材料,聚合物修饰电极型,敏化纳米晶或有机化合物太阳能电池组成。这些电池可能是常规尺寸,如156毫米x156毫米,也可能是安装在太阳能电池层115的其他尺寸或种类的电池。在太阳能电池板中,电池可以用焊带或类似的东西串联在一起,每块太阳能电池可以手动或自动焊接在一起,也可以使用导电胶粘合太阳能电池到焊带上。The solar cell layer 115 is composed of crystalline silicon substrate, multi-component compound thin film material, polymer modified electrode type, sensitized nanocrystalline or organic compound solar cell. These cells may be of conventional size, such as 156 mm x 156 mm, or may be other sizes or types of cells mounted on the solar cell layer 115 . In a solar panel, the cells can be connected in series with solder tape or something similar, each solar cell can be soldered together manually or automatically, or conductive glue can be used to glue the solar cells to the solder tape.

支撑层120被构造成具有足够的承载特性,以使支撑层120能够支撑太阳能电池层115,从而使太阳能电池层115不会破裂。因此,支撑层120可以是刚性或半柔性的,并且由至少一种选自以下材料组的材料制成:聚对苯二甲酸乙二酯(PET)、聚氨酯、聚醚酰亚胺、聚乙烯-氟乙烯、乙烯-乙酸乙烯酯、聚酯、玻璃纤维片材、涂有绝缘层的塑料或不锈钢片材、碳纤维增强热塑性塑料和玻璃纤维增强热塑性塑料。在一些实例中,如果所述支撑层置于所述太阳能电池之上,则所述支撑层,需为透明且厚度不超过0.8毫米。在某些情况下,厚度需为大约0.5毫米。如果所述支撑层置于所述太阳能电池层之下,所述材料的厚度可在0.5毫米至2毫米之间。The support layer 120 is configured to have sufficient load-bearing properties to enable the support layer 120 to support the solar cell layer 115 so that the solar cell layer 115 does not crack. Accordingly, the support layer 120 may be rigid or semi-flexible and made of at least one material selected from the group of materials: polyethylene terephthalate (PET), polyurethane, polyetherimide, polyethylene - Vinyl fluoride, ethylene-vinyl acetate, polyester, fiberglass sheets, insulating coated plastic or stainless steel sheets, carbon fiber reinforced thermoplastics and glass fiber reinforced thermoplastics. In some examples, if the support layer is placed over the solar cell, the support layer needs to be transparent and not more than 0.8 mm thick. In some cases, the thickness needs to be about 0.5 mm. If the support layer is placed under the solar cell layer, the thickness of the material may be between 0.5 mm and 2 mm.

在某些情况下,支撑层120可以是透明的,并且可以放置在太阳能电池层115的上面。意在将支撑层120放置在太阳能电池层115之上,将为太阳能电池层115提供进一步的保护,使其免受撞击等。如图2和3所示,在某些情况下,支撑层120可以设置在太阳能电池层115的上方,而冲击缓冲层110可以设置在支撑层120的上方和下方,以及太阳能电池层115的下方,以便提供较软的层以便进行冲击保护,同时还包括来自支撑层120的冲击保护。In some cases, support layer 120 may be transparent and may be placed on top of solar cell layer 115 . It is intended that placing the support layer 120 over the solar cell layer 115 will provide further protection for the solar cell layer 115 from impacts and the like. As shown in FIGS. 2 and 3 , in some cases, support layer 120 may be disposed above solar cell layer 115 , and shock buffer layer 110 may be disposed above and below support layer 120 and below solar cell layer 115 , in order to provide a softer layer for impact protection while also including impact protection from the support layer 120 .

背层125是为了提供不同的物理或化学特性,以保护不受各种环境因素的影响。这些特性包括例如: 机械强度、抗紫外线、介电强度、热稳定性、水解稳定性和防潮性。背层125可以是刚性或半柔性的,可以从聚酯聚酯板、kynar薄膜、塑性弹性体、涂铝板、涂不锈钢板、玻璃纤维、碳纤维增强热塑性塑料、玻璃纤维增强热塑性塑料中选择。背层120厚度可能小于6毫米之间。需要知道的是,当薄膜被卷起时,晶体太阳能电池是脆弱的。这种半柔性太阳能电池板可以在1米长的范围内弯曲至少30度,曲线半径大于800毫米。The back layer 125 is to provide different physical or chemical properties to protect from various environmental factors. These properties include, for example: mechanical strength, UV resistance, dielectric strength, thermal stability, hydrolytic stability and moisture resistance. The backing layer 125 may be rigid or semi-flexible and may be selected from polyester polyester sheet, kynar film, plastomer, aluminum coated sheet, stainless steel coated sheet, fiberglass, carbon fiber reinforced thermoplastic, glass fiber reinforced thermoplastic. The thickness of the back layer 120 may be less than 6 mm. What needs to be known is that crystalline solar cells are fragile when the film is rolled up. This semi-flexible solar panel can bend at least 30 degrees over a 1-meter range, with a curve radius greater than 800 mm.

在某些情况下,背层120可以包括多个子层,例如,作为中间子层或上子层的聚氨酯热塑性材料子层,并且除该子层外还需至少第二种材料层用于背层120。第二层材料可以为,聚氟乙烯(聚乙烯醇缩甲醛),或聚偏二氟乙烯、热塑性氟聚合物材料(具有高耐水性和内在力量,低渗透水分,蒸汽、石油和可用于广泛的温度范围为例,-70℃到110℃)。In some cases, the backing layer 120 may include multiple sub-layers, for example, a sub-layer of polyurethane thermoplastic material as a middle sub-layer or an upper sub-layer, and in addition to this sub-layer, at least a second material layer is required for the backing layer 120. The second layer material can be, polyvinyl fluoride (polyvinyl formal), or polyvinylidene fluoride, thermoplastic fluoropolymer material (with high water resistance and intrinsic strength, low penetration of moisture, steam, petroleum and can be used for a wide range of temperature range, for example, -70°C to 110°C).

在上述各个实例中,可在各层之间提供一个或多个粘合层130,以便在该层材料本身不能用于在各层之间建立粘合时保持粘合。在某些情况下,粘合层130也可作为冲击缓冲层110。In each of the above examples, one or more adhesive layers 130 may be provided between the layers to maintain adhesion when the layer of material itself cannot be used to establish adhesion between the layers. In some cases, the adhesive layer 130 may also act as the impact buffer layer 110 .

图4展示了太阳能组件400的另一个实例。图4展示了太阳能组件400中上述各层的具体材料。FIG. 4 shows another example of a solar module 400 . FIG. 4 shows the specific materials of the above-mentioned layers in the solar module 400 .

在这个特定实施方案中,前层405是一种氟基塑料。这种塑料具有防紫外线和其他特性,例如高透光率(大于或等于92%)、高介电强度,这有助于使该层成为有效的绝缘体、良好的机械强度和透湿性。这些前面的层可能需要的属性。所述前层405可以是用乙烯-乙烯-醋酸乙烯酯的第一粘合剂层407粘接到支撑层420上。在某些情况下,第一粘合层407可包括两个或多个乙烯-乙酸乙烯酯材料子层。在本实施方案中,第一粘合层407还可用作冲击缓冲层410。In this particular embodiment, the front layer 405 is a fluorine-based plastic. This plastic has UV protection and other properties such as high light transmittance (greater than or equal to 92%), high dielectric strength, which helps make the layer an effective insulator, good mechanical strength and moisture permeability. Properties that may be required by these preceding layers. The front layer 405 may be bonded to the support layer 420 with a first adhesive layer 407 of ethylene-ethylene-vinyl acetate. In some cases, the first adhesive layer 407 may include two or more sub-layers of ethylene-vinyl acetate material. In this embodiment, the first adhesive layer 407 may also function as the impact buffer layer 410 .

支持层420是聚对苯二甲酸乙二酯材料。在这种情况下,支撑层420也可以作为冲击缓冲层410。第二粘合层413将支撑层420粘附到太阳能电池层415上。第三粘合剂层423将太阳能电池层415粘附到背面层425上。第二和第三粘合层413,423可用作太阳能电池层415的进一步冲击缓冲层410。The support layer 420 is a polyethylene terephthalate material. In this case, the support layer 420 may also serve as the shock buffer layer 410 . The second adhesive layer 413 adheres the support layer 420 to the solar cell layer 415 . The third adhesive layer 423 adheres the solar cell layer 415 to the backside layer 425 . The second and third adhesive layers 413 , 423 may act as a further impact buffer layer 410 for the solar cell layer 415 .

背面层425是由厚度大约为0.645毫米的四氟乙烷塑膜材料形成的 。该层具有高抗张强度、尺寸稳定性和低水蒸气渗透性。在这个例子中,氟基塑料层的厚度0.1mm,粘合剂层的厚度0.5mm,热塑性支持层的厚度0.4mm,太阳能电池层的厚度0.20mm,背面层的厚度0.4mm。The backside layer 425 is formed of a tetrafluoroethane plastic film material having a thickness of approximately 0.645 mm. This layer has high tensile strength, dimensional stability and low water vapor permeability. In this example, the thickness of the fluorine-based plastic layer is 0.1 mm, the thickness of the adhesive layer is 0.5 mm, the thickness of the thermoplastic support layer is 0.4 mm, the thickness of the solar cell layer is 0.20 mm, and the thickness of the back layer is 0.4 mm.

通常,本发明描述的半柔性太阳能组件的实例是在不使用玻璃的情况下制造的,以便使太阳能模块具有一定程度的灵活性。此外,该太阳能组件一般不需要铝框架,铝框架的重量大约为传统组件的40% 至50% 。例如,传统太阳能组件的重量负荷大约为11千克 /平方米,而本文提供的半柔性太阳能组件的重量负荷大约为4至5千克 / 平方米。在某些特定情况下,重量大约为4.6公斤 / 平方米。该太阳能组件旨在包括由重量轻的、刚性或半柔性衬底结构的高效率、低成本结晶硅电池集成的太阳能组件。在某些情况下,半柔性结构允许大约30度的组件弯曲。组件的总厚度应该小于8毫米之间。在某些特殊情况下,太阳能组件的厚度可能为3毫米。Typically, the examples of semi-flexible solar modules described herein are fabricated without the use of glass in order to allow a degree of flexibility for the solar module. In addition, the solar module generally does not require an aluminum frame, which is approximately 40% to 50% of the weight of a conventional module. For example, the weight load of a conventional solar module is about 11 kg/square meter, while the weight load of the semi-flexible solar modules provided herein is about 4 to 5 kg/square meter. In some specific cases, the weight is approximately 4.6 kg/m². The solar module is intended to include solar modules integrated from high-efficiency, low-cost crystalline silicon cells of a lightweight, rigid or semi-flexible substrate structure. In some cases, the semi-flexible structure allows about 30 degrees of component bending. The total thickness of the components should be between 8mm and less. In some special cases, the thickness of the solar module may be 3 mm.

图5进一步详细说明了太阳能电池层115。如图5所示,太阳能电池层115将包括多个太阳能电池和母线,它们跨越太阳能电池两侧延伸,以便互连太阳能电池,并允许太阳能电池生产电流并使其通过太阳能电池。母线可以通过传统的方法组装进太阳能电池层115,例如通过传统手动或自动的焊接技术。在其他情况下,母线可以通过导电粘合剂粘接到太阳能电池层115上。在本实例的某些情况下,母线在层压过程中将被例如冲击缓冲层110和前层105所覆盖。其中,接线盒450,电池串455,电池片460。FIG. 5 illustrates the solar cell layer 115 in further detail. As shown in Figure 5, the solar cell layer 115 will include a plurality of solar cells and bus bars extending across both sides of the solar cells to interconnect the solar cells and allow the solar cells to produce and pass electrical current through the solar cells. The bus bars can be assembled into the solar cell layer 115 by conventional methods, such as by conventional manual or automated welding techniques. In other cases, the busbars may be bonded to the solar cell layer 115 by a conductive adhesive. In some cases of this example, the bus bars will be covered by, for example, the impact buffer layer 110 and the front layer 105 during the lamination process. Among them, the junction box 450 , the battery string 455 , and the battery slice 460 .

图7 展示了低态按钮连接器550在并行连接的状态。与图6 类似,图7 包括位于太阳能组件上的公螺柱555和母插座560,其配置是通过压力机连接件以平行方式连接到相应的连接器565和570上。为了确保没有孔洞,连接件必须填满。在某些情况下,填充物可能是硅树脂或类似的材料。母线可以用绝缘带覆盖,以防止接触其他导电材料而导致电路短路。FIG. 7 shows the low state button connector 550 in the parallel connection state. Similar to FIG. 6 , FIG. 7 includes male studs 555 and female sockets 560 on the solar module configured to connect to corresponding connectors 565 and 570 in a parallel manner via press connections. To ensure that there are no holes, the connectors must be filled. In some cases, the filler may be silicone or a similar material. Busbars can be covered with insulating tape to prevent short circuits from contact with other conductive materials.

图8展示了在太阳能电池层105上提供给母线605的接线盒600。母线605可以通过焊接等方式连接到接线盒终端610。如果组件功率不超过(包括)100w,则接线盒包含一个旁路二极管;如果组件功率超过100w,则接线盒不包含旁路二极管,但旁路二极管集成到组件中。FIG. 8 shows a junction box 600 provided on the solar cell layer 105 to the bus bar 605 . The bus bar 605 may be connected to the junction box terminal 610 by soldering or the like. If the module power does not exceed (including) 100w, the junction box contains a bypass diode; if the module power exceeds 100w, the junction box does not contain a bypass diode, but the bypass diode is integrated into the module.

图9展示了在母线上提供一个或多个二极管。当一个或多个太阳能电池出现阴影或某种损坏时,这些旁路二极管用于保护太阳能电池免受热点风险。通常每一串太阳能电池都有一个旁路二极管。在传统的太阳能组件中,在接线盒中设置有旁路二极管。然而,在一些实例中,所述旁路二极管直接设置在所述母线上并包裹在所述太阳能组件的各层的叠片中。Figure 9 shows the provision of one or more diodes on the bus bar. These bypass diodes are used to protect the solar cells from the risk of hot spots when one or more solar cells are shaded or damaged in some way. Usually each string of solar cells has a bypass diode. In conventional solar modules, bypass diodes are provided in the junction box. However, in some instances, the bypass diodes are placed directly on the busbars and wrapped in the stack of layers of the solar module.

太阳能电池板的传统旁路二极管可以作为一种保护机制,使得电池板内即使一个或多个电池串不工作,例如,阴影,损坏或类似的,也能继续产生电力。通常,所有的电池串串联在一起,每个电池产生的电流与它接收到的阳光量成正比。如果任何一个电池开始以低容量运作,例如,电池被遮挡,污染,损坏或其他类似原因,整个电池串电流可能被限制在最弱的电池能够提供的电流范围内。在这种情况下,太阳能电池板不能满负荷运行。Traditional bypass diodes for solar panels can act as a protection mechanism, allowing electricity to continue to be produced within the panel even if one or more strings of cells are inoperative, eg, shaded, damaged, or the like. Typically, all strings of cells are connected in series, and each cell produces current proportional to the amount of sunlight it receives. If any one cell starts to operate at a low capacity, for example, the cell is shaded, contaminated, damaged, or other similar reasons, the overall string current may be limited to what the weakest cell can supply. In this case, the solar panels cannot operate at full capacity.

当处在最佳加载时,一个典型的电池可能有大约0.5 v 的正向电压。如果电池有阴影,电池可能不会产生与邻近其他电池一样多的电流,那么电池可能会被迫进入反向工作模式,在那里它受到负电压。表现不佳的电池可以成为加热元件,在太阳能组件上制造可能损坏太阳能组件的热点。为了防止这些问题,将 pv 组件的串联单元排列成串,并在每个串上并联一个旁路二极管。A typical battery may have a forward voltage of about 0.5 v when at optimum loading. If the cell is shaded, the cell may not draw as much current as other cells in its vicinity, then the cell may be forced into reverse operating mode where it is subject to negative voltage. Underperforming cells can become heating elements, creating hot spots on solar modules that can damage them. To prevent these problems, arrange the series cells of pv components into strings and connect a bypass diode in parallel with each string.

连接器的目的是使用低态和紧凑的形式,以便集成到太阳能组件上。在某些情况下,连接器厚度大约为0.7毫米,使柔性组件的层压工艺比传统工艺更容易和平滑。母线上的二极管焊接在两个串之间。通过集成二极管,每个太阳能组件使用更多的二极管是可行的,这样可以允许剩余的子串在部分阴影的条件下继续工作。The purpose of the connector is to use a low-profile and compact form for integration into solar modules. In some cases, the connector thickness is about 0.7 mm, making the lamination process of flexible components easier and smoother than traditional processes. The diodes on the busbar are soldered between the two strings. By integrating diodes, it is feasible to use more diodes per solar module, which allows the remaining substrings to continue to operate in partially shaded conditions.

在一些实例中,太阳能组件可以配置成如图10、图11所示的在前层405上包含如图4所示的太阳能组件表面上的表面图案900。表面图案900可以机械地产生,例如,对前层405进行压力处理。所述表面图案900旨在防止组件生产过程中的表面褶皱,减少阳光反射损失,提高组件输出效率。在一些传统的太阳能组件中,能观察到了严重的表面皱纹。这里的太阳能组件的实例包括应用于组件加工期间的前层405表面的特殊图案模板,该特殊图案模板旨在通过预设的轮廓模具提供一致的表面角接触。所述预设轮廓可以是以下图案之一,包括凹纹图案、三角形图案、矩形图案、方形图案和线性交叉阴影图案。通过在太阳能组件的前层405上一个印制交叉影线图案,能使组件表面皱纹减少或消除的同时太阳能组件能够保持超过90% 的光穿透效率。表面模版可从高温模版塑料、交叉包覆聚四氟乙烯纤维模版、变形玻璃纤维模版、涂层金属模版中选择。In some examples, a solar module can be configured to include a surface pattern 900 on the surface of the solar module as shown in FIG. 4 on the front layer 405 as shown in FIGS. 10 and 11 . The surface pattern 900 may be produced mechanically, for example, by subjecting the front layer 405 to a pressure treatment. The surface pattern 900 is designed to prevent surface wrinkles in the production process of the module, reduce the loss of sunlight reflection, and improve the output efficiency of the module. In some conventional solar modules, severe surface wrinkles can be observed. Examples of solar modules herein include a special pattern template applied to the surface of the front layer 405 during module processing, which is designed to provide consistent surface angular contact through a pre-set contoured mold. The preset outline may be one of the following patterns, including a debossed pattern, a triangular pattern, a rectangular pattern, a square pattern, and a linear cross-hatched pattern. By printing a cross-hatched pattern on the front layer 405 of the solar module, the surface wrinkles of the module can be reduced or eliminated while the solar module can maintain a light penetration efficiency of more than 90%. Surface stencils can be selected from high temperature stencil plastics, cross-wrapped PTFE fiber stencils, deformed fiberglass stencils, and coated metal stencils.

图12展示了一种将样板应用于太阳能组件的方法。在1005,材料被放置以制造太阳能组件。在1010,在太阳能组件的顶层放置样板。在1015,太阳能电池板被送入层压机。层压过程可包括实现真空并保持一段时间,压力控制不大于90千帕,温度为175 °c左右。在1020时,太阳能组件从层压机上取下冷却。完成的组件放在卸料输送机上,层压后冷却。在某些情况下,为了保持组件表面图案形状和防止在冷却过程中组件翘曲,可以在图案顶部放置一段时间的厚平板或类似物体。Figure 12 shows a method of applying the template to a solar module. At 1005, materials are placed to make solar modules. At 1010, a template is placed on the top layer of the solar module. At 1015, the solar panels are fed into the laminator. The lamination process may include achieving a vacuum and maintaining it for a period of time, the pressure is controlled not to be greater than 90 kPa, and the temperature is around 175 °C. At 1020, the solar modules are removed from the laminator to cool. The finished components are placed on a discharge conveyor, laminated and cooled. In some cases, in order to maintain the shape of the component surface pattern and prevent the component from warping during cooling, a thick flat plate or similar object may be placed on top of the pattern for a period of time.

局部表面处理的目的是增加表面能量,从而使接线盒或其他接头接触到表面时具有优异的粘接强度。局部表面可以采用电晕(在 o2 / n2,n2,n2 / co2情况下等)、火焰处理、大气等离子体活化、大气或低压等离子体沉积等技术进行处理。The purpose of a localized surface treatment is to increase the surface energy, resulting in excellent bond strength when a junction box or other connector contacts the surface. Localized surfaces can be treated with techniques such as corona (in the case of o2/n2, n2, n2/co2, etc.), flame treatment, atmospheric plasma activation, atmospheric or low pressure plasma deposition.

在前面的描述中,为了解释的目的,为了提供对实例的透彻理解,列出了相应细节。在其他情况下,为了不影响理解,已知的电气结构和电路以框图的形式显示。例如,没有提供关于本文所述实例是否作为软件例程、硬件电路、固件或其组合实现的具体细节。In the foregoing description, for the purposes of explanation, corresponding details have been set forth in order to provide a thorough understanding of the examples. In other instances, well-known electrical structures and circuits are shown in block diagram form in order not to obscure the understanding. For example, no specific details are provided as to whether the examples described herein are implemented as software routines, hardware circuits, firmware, or a combination thereof.

以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应所述以权利要求的保护范围为准。The above are only specific embodiments of the present invention, but the protection scope of the present invention is not limited to this. Any person skilled in the art can easily think of changes or substitutions within the technical scope disclosed by the present invention. should be included within the protection scope of the present invention. Therefore, the protection scope of the present invention should be based on the protection scope of the claims.

Claims (9)

1.半柔性太阳能组件,其特征在于,包括:1. a semi-flexible solar module, characterized in that, comprising: 一个紫外线反射材料的前层;a front layer of UV reflective material; 一个或多个冲击缓冲层;one or more impact buffer layers; 一个晶体硅基底,多元化合物薄膜材料,聚合物修饰电极型,敏化纳米晶或有机化合物太阳能电池的太阳能电池层;A crystalline silicon substrate, a multi-component compound thin film material, a polymer modified electrode type, a solar cell layer of a sensitized nanocrystalline or organic compound solar cell; 一个支持太阳能电池层的半柔性材料的支持层;a support layer of semi-flexible material that supports the solar cell layer; 一个后层;a rear layer; 没有任何层由玻璃组成。None of the layers consist of glass. 2.根据权利要求1所述的半柔性太阳能组件,其特征在于:所述支持层设置为透明支持层,所述透明支持层位于前层和太阳能电池层之间。2 . The semi-flexible solar module according to claim 1 , wherein the support layer is configured as a transparent support layer, and the transparent support layer is located between the front layer and the solar cell layer. 3 . 3.根据权利要求1所述的半柔性太阳能组件,其特征在于:所述冲击缓冲层设置为粘合剂层;其一个或多个冲击缓冲层也作为粘合剂层。3 . The semi-flexible solar module according to claim 1 , wherein the impact buffer layer is configured as an adhesive layer; and one or more impact buffer layers thereof also serve as an adhesive layer. 4 . 4.根据权利要求1所述的半柔性太阳能组件,其特征在于:所述太阳能电池层和支持层之间设置有第二冲击缓冲层。4 . The semi-flexible solar module according to claim 1 , wherein a second impact buffer layer is arranged between the solar cell layer and the support layer. 5 . 5.根据权利要求1所述的半柔性太阳能组件,其特征在于:所述前层、太阳能电池层、支持层和后层之间还设置有一个或多个胶粘剂层。5 . The semi-flexible solar module according to claim 1 , wherein one or more adhesive layers are further arranged between the front layer, the solar cell layer, the support layer and the back layer. 6 . 6.根据权利要求1所述的半柔性太阳能组件,其特征在于:所述太阳能电池层上设置有母线,所述母线上设置有旁路二极管。6 . The semi-flexible solar module according to claim 1 , wherein a bus bar is arranged on the solar cell layer, and a bypass diode is arranged on the bus bar. 7 . 7.根据权利要求6所述的半柔性太阳能组件,其特征在于:所述旁路二极管设置有多个,多个所述旁路二极管分别布置在所述太阳能电池层上的不同母线上。7 . The semi-flexible solar module according to claim 6 , wherein a plurality of bypass diodes are provided, and the plurality of bypass diodes are respectively arranged on different bus bars on the solar cell layer. 8 . 8.根据权利要求1所述的半柔性太阳能组件,其特征在于:所述太阳能组件的厚度不超过7mm。8 . The semi-flexible solar module according to claim 1 , wherein the thickness of the solar module is no more than 7 mm. 9 . 9.半柔性太阳能组件,其特征在于,包括:9. A semi-flexible solar module, characterized in that, comprising: 由氟塑膜形成的前层;Front layer formed by fluoroplastic film; 由高聚物封装材料形成的多个冲击缓冲层;Multiple shock buffer layers formed from polymer encapsulation materials; 由晶体硅基底,多元化合物薄膜材料,聚合物修饰电极型,敏化纳米晶或有机化合物太阳能电池形成的太阳能电池层;The solar cell layer formed by crystalline silicon substrate, multi-component compound thin film material, polymer modified electrode type, sensitized nanocrystalline or organic compound solar cell; 热塑性聚酯材料形成的支撑层;A support layer formed of thermoplastic polyester material; 和由光伏背板构成的后层。and a back layer consisting of a photovoltaic backsheet.
CN202010811822.3A 2020-08-13 2020-08-13 Semi-flexible solar module and manufacturing method thereof Pending CN111969073A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010811822.3A CN111969073A (en) 2020-08-13 2020-08-13 Semi-flexible solar module and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010811822.3A CN111969073A (en) 2020-08-13 2020-08-13 Semi-flexible solar module and manufacturing method thereof

Publications (1)

Publication Number Publication Date
CN111969073A true CN111969073A (en) 2020-11-20

Family

ID=73366233

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010811822.3A Pending CN111969073A (en) 2020-08-13 2020-08-13 Semi-flexible solar module and manufacturing method thereof

Country Status (1)

Country Link
CN (1) CN111969073A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115056558A (en) * 2022-06-06 2022-09-16 溧阳卓越新材料科技有限公司 High drawing deep aluminum plastic film

Citations (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1797793A (en) * 2004-12-27 2006-07-05 中国科学院化学研究所 Method for preparing Nano platinum carried catalysis electrode in Nano crystal sensitized solar battery
CN101107712A (en) * 2005-01-26 2008-01-16 冈瑟斯佩尔斯堡有限责任两合公司 Protective circuit with current bypass for solar cell module
CN101140956A (en) * 2007-09-30 2008-03-12 南京大学 Dye-sensitized nanocrystalline thin-film solar cell high-porosity flexible carbon counter electrode and preparation method
CN101421846A (en) * 2006-04-13 2009-04-29 壳牌可再生能源有限公司 solar cell module
CN101840795A (en) * 2010-05-11 2010-09-22 中国乐凯胶片集团公司 Flexible dye-sensitized solar cell
CN101901874A (en) * 2009-05-31 2010-12-01 中国科学院化学研究所 A kind of polymer solar cell anode surface modification method
CN102254696A (en) * 2011-04-29 2011-11-23 苏州大学 Photoanode decoration material of dye sensitized solar cell
JP2013125633A (en) * 2011-12-14 2013-06-24 Dainippon Printing Co Ltd Solar battery module
CN103413683A (en) * 2013-04-30 2013-11-27 中国科学院近代物理研究所 Preparation of electron beam irradiation modified flexible dye-sensitized nanocrystalline solar cell
CN103887071A (en) * 2014-03-13 2014-06-25 四川材料与工艺研究所 Flexible nano paper-base compound photo-anode for dye-sensitized solar cell and preparation method thereof
CN103928553A (en) * 2014-03-25 2014-07-16 湖南红太阳新能源科技有限公司 A flexible crystalline silicon solar cell module
CN103928544A (en) * 2014-03-25 2014-07-16 湖南红太阳新能源科技有限公司 A flexible crystalline silicon solar cell module
CN103943724A (en) * 2014-04-17 2014-07-23 南京大学 Flexible and efficient crystalline silicon solar cell and manufacturing method thereof
CN204706571U (en) * 2015-06-03 2015-10-14 深圳市上古光电有限公司 Mono-crystalline silicon solar half flexible unit
CN204857749U (en) * 2015-08-05 2015-12-09 辽宁恒华航海电力设备工程有限公司 Solar cell panel
CN105322039A (en) * 2015-09-29 2016-02-10 中国电子科技集团公司第四十八研究所 Ultra-light flexible crystalline silicon solar cell module and preparation method thereof
CN106024969A (en) * 2015-11-27 2016-10-12 上海空间电源研究所 Flexible substrate silicon-based thin-film solar cell periphery laser insulation preparation method
US20180122972A1 (en) * 2016-10-19 2018-05-03 Canadian Solar Solutions Inc. Semi-flexible solar module using crystaline solar cells and method for fabrication thereof
CN108987512A (en) * 2018-06-04 2018-12-11 苏州中来光伏新材股份有限公司 A kind of light flexible solar cell module
CN208674138U (en) * 2018-05-24 2019-03-29 圣晖莱南京能源科技有限公司 A kind of flexible CIGS solar battery component
CN208781864U (en) * 2018-07-06 2019-04-23 汉能移动能源控股集团有限公司 A kind of solar pavement structure and system

Patent Citations (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1797793A (en) * 2004-12-27 2006-07-05 中国科学院化学研究所 Method for preparing Nano platinum carried catalysis electrode in Nano crystal sensitized solar battery
CN101107712A (en) * 2005-01-26 2008-01-16 冈瑟斯佩尔斯堡有限责任两合公司 Protective circuit with current bypass for solar cell module
CN101421846A (en) * 2006-04-13 2009-04-29 壳牌可再生能源有限公司 solar cell module
CN101140956A (en) * 2007-09-30 2008-03-12 南京大学 Dye-sensitized nanocrystalline thin-film solar cell high-porosity flexible carbon counter electrode and preparation method
CN101901874A (en) * 2009-05-31 2010-12-01 中国科学院化学研究所 A kind of polymer solar cell anode surface modification method
CN101840795A (en) * 2010-05-11 2010-09-22 中国乐凯胶片集团公司 Flexible dye-sensitized solar cell
CN102254696A (en) * 2011-04-29 2011-11-23 苏州大学 Photoanode decoration material of dye sensitized solar cell
JP2013125633A (en) * 2011-12-14 2013-06-24 Dainippon Printing Co Ltd Solar battery module
CN103413683A (en) * 2013-04-30 2013-11-27 中国科学院近代物理研究所 Preparation of electron beam irradiation modified flexible dye-sensitized nanocrystalline solar cell
CN103887071A (en) * 2014-03-13 2014-06-25 四川材料与工艺研究所 Flexible nano paper-base compound photo-anode for dye-sensitized solar cell and preparation method thereof
CN103928553A (en) * 2014-03-25 2014-07-16 湖南红太阳新能源科技有限公司 A flexible crystalline silicon solar cell module
CN103928544A (en) * 2014-03-25 2014-07-16 湖南红太阳新能源科技有限公司 A flexible crystalline silicon solar cell module
CN103943724A (en) * 2014-04-17 2014-07-23 南京大学 Flexible and efficient crystalline silicon solar cell and manufacturing method thereof
CN204706571U (en) * 2015-06-03 2015-10-14 深圳市上古光电有限公司 Mono-crystalline silicon solar half flexible unit
CN204857749U (en) * 2015-08-05 2015-12-09 辽宁恒华航海电力设备工程有限公司 Solar cell panel
CN105322039A (en) * 2015-09-29 2016-02-10 中国电子科技集团公司第四十八研究所 Ultra-light flexible crystalline silicon solar cell module and preparation method thereof
CN106024969A (en) * 2015-11-27 2016-10-12 上海空间电源研究所 Flexible substrate silicon-based thin-film solar cell periphery laser insulation preparation method
US20180122972A1 (en) * 2016-10-19 2018-05-03 Canadian Solar Solutions Inc. Semi-flexible solar module using crystaline solar cells and method for fabrication thereof
CN208674138U (en) * 2018-05-24 2019-03-29 圣晖莱南京能源科技有限公司 A kind of flexible CIGS solar battery component
CN108987512A (en) * 2018-06-04 2018-12-11 苏州中来光伏新材股份有限公司 A kind of light flexible solar cell module
CN208781864U (en) * 2018-07-06 2019-04-23 汉能移动能源控股集团有限公司 A kind of solar pavement structure and system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115056558A (en) * 2022-06-06 2022-09-16 溧阳卓越新材料科技有限公司 High drawing deep aluminum plastic film

Similar Documents

Publication Publication Date Title
KR101215694B1 (en) Solar Cell Module And Manufacturing Method Thereof
JP6286736B2 (en) Back contact type solar cell module
US9972734B2 (en) Photovoltaic modules comprising light directing mediums and methods of making the same
US20110139225A1 (en) Shaped photovoltaic module
US20180122972A1 (en) Semi-flexible solar module using crystaline solar cells and method for fabrication thereof
US20250040260A1 (en) Bipv-applicable high-power shingled photovoltaic module and manufacturing method therefor
EP1921684A1 (en) Solar cell module and process for manufacture thereof
EP2106619A2 (en) Structures for low cost, reliable solar modules
US20090078301A1 (en) Solar cell module
PT1726046E (en) ELECTRIC POWER GENERATOR MODULES WITH A BI-DIMENSIONAL PROFILE AND A METHOD OF MANUFACTURING THE SAME
US20220345075A1 (en) Angled polymer solar modules
KR20220085436A (en) High-power shingled construction material integrated solar module for building facade and manufacturing method thereof
JP2015057811A (en) Solar cell module
US20120118356A1 (en) Multi-layer solar module backsheet
JP2012518908A (en) System and method for improved photovoltaic module structure and enclosure
US20150096616A1 (en) Photovoltaic module with snow melting function
CN111969073A (en) Semi-flexible solar module and manufacturing method thereof
CN110313074A (en) Solar cell module
CN118352416A (en) Flexible photovoltaic module and photovoltaic awning
JP2015185680A (en) Solar cell module
CN115602692A (en) Solar laminated cell, cell module and photovoltaic system
US20180122966A1 (en) Solar cell module
CN102265409A (en) Solar cell module
JP7135698B2 (en) Manufacturing method of heat generating sheet for solar cell module with snow melting function
WO2023228950A1 (en) Solar cell module

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
TA01 Transfer of patent application right

Effective date of registration: 20210120

Address after: 215000 room 328, 3rd floor, No.1 Factory building, Suzhou Dongfang Shunda Logistics Co., Ltd., No.99, Qinan Road, Jiantang village, Yangchenghu Town, Xiangcheng District, Suzhou City, Jiangsu Province

Applicant after: Suzhou Bowens New Material Technology Co.,Ltd.

Address before: 215000 room 310, 3rd floor, No. 99, Qinan Road, Jiantang village, Yangchenghu Town, Xiangcheng District, Suzhou City, Jiangsu Province

Applicant before: Suzhou safray Energy Technology Co.,Ltd.

TA01 Transfer of patent application right
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20201120

WD01 Invention patent application deemed withdrawn after publication