CN111965118A - 一种利用金纳米颗粒阵列组装检测镉离子的方法 - Google Patents

一种利用金纳米颗粒阵列组装检测镉离子的方法 Download PDF

Info

Publication number
CN111965118A
CN111965118A CN202010815089.2A CN202010815089A CN111965118A CN 111965118 A CN111965118 A CN 111965118A CN 202010815089 A CN202010815089 A CN 202010815089A CN 111965118 A CN111965118 A CN 111965118A
Authority
CN
China
Prior art keywords
cadmium ions
ions
cysteine
interface
solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202010815089.2A
Other languages
English (en)
Inventor
王昕�
汤耀
贾良宾
马晔
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ocean University of China
Original Assignee
Ocean University of China
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ocean University of China filed Critical Ocean University of China
Priority to CN202010815089.2A priority Critical patent/CN111965118A/zh
Publication of CN111965118A publication Critical patent/CN111965118A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
    • G01N1/38Diluting, dispersing or mixing samples
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/47Scattering, i.e. diffuse reflection
    • G01N21/49Scattering, i.e. diffuse reflection within a body or fluid

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

本发明公开了一种利用金纳米颗粒阵列组装检测镉离子的方法。将油相和表面修饰有半胱氨酸的金纳米颗粒水相溶液注入容器后,加入待测镉离子,通过震荡乳化,将两相分散为乳浊液;静置,表面修饰有半胱氨酸的金NP在镉离子的连接作用下,在油‑水界面组装为二维纳米阵列,从而通过界面反射谱定量检测镉离子。本发明的优点在于:(1)在互不相溶的两相界面上,将在三维溶液中捕获到镉离子的NP富集组装为二维纳米阵列,提高了检测灵敏度;(2)通过将两相震荡乳化为乳浊液,所形成的无数小液滴提高了界面面积,缩短了NP和镉离子的扩散距离,加速了检测的动力学过程,从而缩短了检测时间;(3)通过两相界面处NP阵列的反射谱,得到镉离子浓度,简便快捷。

Description

一种利用金纳米颗粒阵列组装检测镉离子的方法
技术领域
本发明涉及一种利用金纳米颗粒(NP)阵列组装及所产生的界面反射谱变化来检测镉离子的方法,属于化学传感器及环境分析化学领域。
背景技术
伴随着经济的发展,每年有数以万吨计的重金属会随着工业废水废物排入江河湖海。由于其不可降解性和在生物体内易于富集的特性,这些重金属离子,尤其是镉离子,极大地威胁着水体生态环境和渔业养殖,并通过食物链,间接影响居民的身体健康。对海洋污染物,尤其是重金属污染物的检测将成为未来科学利用海洋资源,可持续发展海洋经济的重要基石之一。由于海洋污染物具有污染源种类多、散播范围广、持续时间长的特点,有针对性地发展快速、稳定、灵敏的传感器并探寻新颖的传感方法和原理是目前海洋污染物传感的当务之急。尽管现代物理检测方法,比如电感耦合等离子体质谱(ICP-MS)、原子吸收光谱(AAS)可以有效地检测多种重金属,但它们精细的设备结构和复杂的制样过程很大程度上限制了其在野外原位监测中的应用。
贵金属纳米颗粒(NP),由于其光、电特性和极大的比表面积,广泛应用于色比、荧光、拉曼等光学传感领域,带来了极高的探测灵敏度和灵活性。其中一个应用较广且灵活实用的传感原理,是利用待测物与NP的相互作用,直接或间接地控制NP组装的间距、形态来改变NP间的光学耦合作用,读出光学检测信号。目前,多种DNA、冠醚、多肽、氨基酸、芳香族化合物等被发现与某些重金属离子具有较强的亲和性,被负载于NP表面,应用于相应的重金属传感器之中。在镉离子检验中,较为典型且应用广泛的一种检测方法为:在单一液相利用镉离子导致的NP分散/团聚变化而产生的体相吸收光谱变化来探测待测物 [Y. Wu, S.Zhan, L. Wang, P. Zhou, Selection of a DNA aptamer for cadmium detectionbased on cationic polymer mediated aggregation of gold nanoparticles,Analyst, 2014, 139(6): 1550-1561.]。尽管这些基于体相NP团聚的方法易通过肉眼读出,但由于触发NP团聚待测物浓度极低地分散在三维体相中,且NP迁移率和扩散系数也较低,导致团聚反应的动力学速率较慢,光学信号会随时间变化,平衡态需要等待较长时间,因而检测结果均一性和可重复性不佳,检测极限也有待改进 [F. Chai, C. Wang, T.Wang, L. Li, Z. Su, Colorimetric Detection of Pb2+ Using GlutathioneFunctionalized Gold Nanoparticles, ACS Applied Materials & Interfaces, 2010,2(5): 1466-1470.]。因此,如何发展出基于NP的快速、稳定、灵敏的镉离子光学传感器仍是一个亟待解决的问题。
发明内容
针对上述问题,本发明的目的是提供一种快速、稳定、灵敏的利用金NP阵列组装检测镉离子的方法。
本发明的基本原理:
油相和含有负载半胱氨酸(cysteine)NP的水相注入容器后,由于两相互不相溶,且密度不同,上半部分为水相,下半部分为油相,且在两相中间会形成一个明晰的界面。虽然相界面势阱会陷落NP,但由于NP表面带负电,在没有镉离子存在的情况下,NP之间的静电排斥力会阻碍NP靠近相界面,从而导致NP在相界面排列稀疏,入射光可直接穿透相界面而无明显的反射信号。在加入待测镉离子后,通过震荡乳化,将两相分散为乳浊液。由于相界面被增大几个数量级,此时会有更多的NP进入相界面,出现界面富集效应。由于处于相界面的NP在油相一侧表面会失去部分负电,从而导致界面上的NP间静电斥力减小。此时,镉离子较单一水相时有更大的机会将周围负载半胱氨酸的NP链接在一起。当停止震荡,乳浊液中的小液滴界面会重新汇合为一个大平面界面。由于界面势阱深度与NP当量尺寸成正比,所有被镉离子链接在一起的NP阵列被富集于此。而未被镉离子连接的单NP因静电排斥力而离开界面,重新分散回水相。由于NP阵列可形成很强的表面等离子共振耦合,宏观上表现为反射峰增强,波长红移,对入射光有明显的反射效应。并且镉离子浓度越高,反射信号就越强,从而建立定量关系。
本发明的具体技术方案如下:
一种利用金NP阵列组装检测镉离子的方法,其特征在于通过震荡乳化,将表面修饰有半胱氨酸的金NP在镉离子的连接作用下,组装在油-水界面,通过静置后测得的界面反射谱,定量检测镉离子。其具体步骤为:
1)通过柠檬酸钠还原氯金酸制备球形金NP;
2)在步骤1)中制得的金NP溶液中加入半胱氨酸(cysteine),以修饰金NP表面;
3)离心去除步骤2)中多余的半胱氨酸,加水重分散并调节溶液pH值,得到表面修饰有半胱氨酸的金NP水相溶液;
4)将表面修饰有半胱氨酸的金NP水相溶液与油相注入容器,加入待测镉离子,并震荡乳化;
5)静置,表面修饰有半胱氨酸的金NP被镉离子链接在水-油两相界面组装为二维阵列,测量界面反射谱峰强和波长,根据标准曲线,计算镉离子浓度。
其中,步骤1)中所述的球形金NP直径为10-100 nm。
步骤2)中所述半胱氨酸的最终浓度为 0.1-10 µM。
步骤3)中所述溶液pH值为7-9;纳米颗粒离心速度为1000-5000RCF,离心时间为10-100 分钟。
步骤4)中所述的油相是二氯乙烷、甲苯、邻二氯苯、三氯甲烷中一种或几种。
步骤4)中的NP水相溶液及油相混合前还可以分别加入一定浓度的电解质促进剂;所述水相溶液中的电解质促进剂包括Li离子、Na离子、K离子、Mg离子、Cl离子、硫酸根离子或乙醇中的一种或多种,浓度为1 µM – 10 mM;所述油相中的电解质促进剂包括四(五氟苯基)硼酸酯[tetrakis(pentafluorophenyl)borate]、双(三苯基膦)铵[bis(triphenylphosphoranylidene)ammonium]或四正丁基四苯基硼酸铵(tetrabutylammonium tetraphenylborate)中的一种或多种,浓度为1 µM-10 mM。
步骤5)中所述的震荡乳化时间为1-10分钟。
步骤6)中的静置时间为1-10分钟。
步骤6)中标准曲线的建立方法为配制一系列不同浓度镉离子的标准溶液,根据界面反射光谱最大反射峰的反射率与镉离子浓度呈线性关系建立标准曲线。
本发明中镉离子的检测线性范围为0 -1000 ppb。
相比于传统的基于NP在单一体相团聚反应的检测方法,本发明的优点在于:(1)在互不相溶的两相界面上,将在三维溶液中捕获到镉离子的NP富集组装为二维纳米阵列,提高了检测灵敏度;(2)通过将两相震荡乳化为乳浊液,所形成的无数小液滴提高了界面面积,缩短了NP和镉离子的扩散距离,加速了检测的动力学过程,从而缩短了检测时间;(3)通过两相界面处NP阵列的反射谱,得到镉离子浓度,简便快捷。
附图说明
图1是本发明的组装及检测原理图。
图2是本发明实施例1中制得的表面包覆半胱氨酸的金NP的透射电镜图。
图3是本发明实施例1中表面分别修饰半胱氨酸(cysteine)或柠檬酸(citrate)的NP溶液加入0或2000 ppb镉离子后的紫外-可见吸收光谱图。
图4是本发明实施例1得到的有镉离子和无镉离子样品NP组装后的宏观照片。
图5是本发明实施例1中不同浓度镉离子引发NP界面组装的界面反射谱。
图6是本发明实施例1中不同浓度镉离子浓度与界面反射谱峰强曲线。
图7是本发明实施例1中观测到的界面反射谱峰强随时间的变化图。
图8是本发明实施例1中界面组装NP阵列对不同金属阳离子的反射谱响应对比图。
图9是本发明实施例2中,自来水样品添加400 ppb Cd(II)后按照实例1方法测得的界面反射谱。
图10是本发明实施例3中,雨水样品添加600 ppb Cd(II)后按照实例1方法测得的界面反射谱。
具体实施方式
下面结合附图并通过具体实施案例对本发明进一步说明。
实施例1:
本发明的具体组装、检测原理和过程如图1所示。具体的,将500 mL 0.01%wt的氯金酸溶液加热至沸腾,后加入10 mL 1%wt的柠檬酸钠,保持沸腾30分钟。自然冷却后制得16 nm直径的球形金NP(图2)。
之后通过加入盐酸或氢氧化钠调整pH至8.0,加入半胱氨酸至最终浓度为1 µM。静置一天后,加入盐酸或氢氧化钠将pH调整至8.0,后在4000 RCF下离心30分钟。去除上清液,加入超纯水重分散并调节pH至8.0,完成半胱氨酸的表面修饰。
分别取上述表面修饰有半胱氨酸(cysteine)的NP水相溶液和未修饰半胱氨酸的表面负载有柠檬酸(citrate)的NP溶液,加入等量镉离子,测量紫外可见吸收光谱,对比可以发现,只有成功修饰了半胱氨酸的NP可以特异性地与镉离子结合并发生团聚反应(图3),从而证明半胱氨酸在表面修饰成功。
取5 mL上述NP水相溶液,加入NaCl至1 mM,并与3 mL二氯乙烷相混合,此时由于没有镉离子存在,界面NP分布极少,无明显反射信号(示意图如图1左所示,实际图如图4左所示)。
将待测含有镉离子的溶液注入上述样品瓶,并放入震荡机中,震荡1分钟。此时形成乳浊液,NP表面的半胱氨酸与镉离子特异性结合(参见图1中),并被界面张力吸附于小液滴界面。
静置1分钟,乳浊液重新分离为两相,被镉离子连接在一起的金NP被富集到二维相界面,组成具有表面等离子体共振的纳米阵列,宏观反射增强(示意图如图1右所示,实际图如图4右所示)。
通过检测反射信号,发现随着不同浓度镉离子的加入,界面反射光谱在700 nm附近出现明显反射峰(图5),且反射峰强度与镉离子浓度呈线性相关(图6),线性拟合得到反射率与镉离子浓度的关系为:R=0.0197C+0.305。
通过持续观测发现,在150分钟内样品的界面反射谱峰强十分稳定(图7),表明本方法仅仅通过1分钟震荡和1分钟静置,即可达到动力学平衡态,且保持体系稳定。
通过加入600 ppb 不同种类的干扰离子(铅、铁、镍、汞、钙、铜、钴、铬)并与镉离子对比发现,本发明的检测方法具有较好的专一性(图8)。
实施例2:
取实施例1中制得的表面负载有半胱氨酸的16 nm NP在4000 RCF下离心30分钟后,去除上清液。
取收集到的自来水样品5 mL,经0.22 µm孔径尼龙膜抽滤,去除固体杂质,加入NaCl电解质促进剂至1 mM,加入400 ppb镉离子,并调节pH值至8.0。
将此自来水样品溶液注入装有离心后的NP容器,并加入3 mL二氯乙烷。将容器放入震荡机中,震荡1分钟。此时形成乳浊液,NP表面的半胱氨酸与镉离子特异性结合,并被界面张力吸附于小液滴界面。
静置1分钟,乳浊液重新分离为两相,被镉离子连接在一起的金NP被富集到二维相界面,组成具有表面等离子体共振的纳米阵列,宏观反射增强。
通过检测反射信号,发现界面反射光谱在700 nm附近出现明显反射峰(参见图9),测得反射峰反射率为8.07 %。由实例1中确定的校准曲线,即R=0.0197C+0.305算得,镉离子浓度为394 ppb。由于经过等离子体耦合质谱仪测定,此空白自来水中镉离子浓度低于0.1ppb,所以经本方法测得的数值与实际镉离子的400 ppb浓度较为吻合。
实施例3:
取实施例1中制得的表面负载有半胱氨酸的16 nm NP在4000 RCF下离心30分钟后,去除上清液。
取收集到的雨水样品5 mL,经0.22 µm孔径尼龙膜抽滤,去除固体杂质,加入NaCl电解质促进剂至1 mM,加入600 ppb镉离子,并调节pH值至8.0。
将此雨水样品溶液注入装有离心后的NP容器,并加入3 mL二氯乙烷。将容器放入震荡机中,震荡1分钟。此时形成乳浊液,NP表面的半胱氨酸与镉离子特异性结合,并被界面张力吸附于小液滴界面。
静置1分钟,乳浊液重新分离为两相,被镉离子连接在一起的金NP被富集到二维相界面,组成具有表面等离子体共振的纳米阵列,宏观反射增强。
通过检测反射信号,发现界面反射光谱在700 nm附近出现明显反射峰(参见图10),测得反射峰反射率为12.4 %。由实例1中确定的校准曲线,即R=0.0197C+0.305算得,镉离子浓度为614 ppb。由于经过等离子体耦合质谱仪测定,此空白雨水中镉离子浓度低于0.1 ppb,所以经本方法测得的数值与实际镉离子的600 ppb浓度较为吻合。
实施例4:
将500 mL 0.01%wt的氯金酸溶液加热至沸腾,后加入10 mL 1%wt的柠檬酸钠,保持沸腾30分钟。自然冷却后,取其中30 mL溶液加入到270 mL超纯水中,加入3 mL 0.2 M NH2OH溶液,并在不停搅拌下加入2.5 mL 1%wt的氯金酸溶液。反应10分钟后制得40 nm直径的球形NP。
之后通过加入盐酸或氢氧化钠调整pH至9.0,加入半胱氨酸至最终浓度为0.1 µM。静置一天后,加入盐酸或氢氧化钠将pH调整至9.0,后在2000 RCF下离心30分钟。去除上清液,加入超纯水并调节pH至9.0,完成半胱氨酸的表面修饰。
取5 mL上述NP水相溶液,与3 mL含有1 µM四正丁基四苯基硼酸铵(tetrabutylammonium tetraphenylborate)的二氯乙烷相混合,此时由于没有镉离子存在,界面NP分布极少,无明显反射信号。
将待测含有镉离子的溶液注入上述样品瓶,并放入震荡机中,震荡5分钟。此时形成乳浊液,NP表面的半胱氨酸与镉离子特异性结合,并被界面张力吸附于小液滴界面。
静置5分钟,乳浊液重新分离为两相,被镉离子连接在一起的NP被富集到二维相界面,组成具有表面等离子体共振的纳米阵列,宏观反射增强。
通过检测反射信号,发现随着镉离子的加入,界面反射光谱在800 nm附近出现明显反射峰,且反射峰强度与镉离子浓度呈线性相关。其中反射光谱峰位由所用NP直径决定,NP直径越大,峰位红移。一旦在制备时NP直径固定,便可以只检测特定波长的反射率。
本领域的普通技术人员都会理解,在本发明的保护范围内,对于上述实施例进行修改,添加和替换都是有可能的,其没有超出本发明的保护范围。

Claims (10)

1.一种利用金纳米颗粒阵列组装检测镉离子的方法,其特征在于包括如下步骤:
1)通过柠檬酸钠还原氯金酸制备球形金纳米颗粒;
2)在步骤1)中制得的金纳米颗粒溶液中加入半胱氨酸,以修饰金纳米颗粒表面;
3)离心去除步骤2)中多余的半胱氨酸,加水重分散并调节溶液pH值,得到表面修饰有半胱氨酸的金纳米颗粒水相溶液;
4)将面修饰有半胱氨酸的金纳米颗粒水相溶液与油相注入容器,加入待测镉离子,并震荡乳化;
5)静置,表面修饰有半胱氨酸的金纳米颗粒被镉离子链接在水—油两相界面,组装为二维阵列,测量界面反射谱峰强和波长,根据标准曲线,计算镉离子浓度。
2.如利要求1所述检测镉离子的方法,其特征在于步骤1)中所述的球形金纳米颗粒直径为10-100 nm。
3.如利要求1所述检测镉离子的方法,其特征在于步骤2)中所述半胱氨酸的最终浓度为 0.1-10 µM。
4.如利要求1所述检测镉离子的方法,其特征在于步骤3)中所述溶液pH值为7-9;纳米颗粒离心速度为1000-5000RCF,离心时间为10-100 分钟。
5.如利要求1所述检测镉离子的方法,其特征在于步骤4)中所述的油相是二氯乙烷、甲苯、邻二氯苯、三氯甲烷中一种或几种。
6.如利要求1所述检测镉离子的方法,其特征在于所述步骤4)中的金纳米颗粒水相溶液及油相混合前分别加入一定浓度的电解质促进剂。
7.如利要求6所述检测镉离子的方法,其特征在于所述水相溶液中的电解质促进剂包括Li离子、Na离子、K离子、Mg离子、Cl离子、硫酸根离子或乙醇中的一种或多种,浓度为1 µM-10 mM。
8.如利要求6所述检测镉离子的方法,其特征在于所述油相中的电解质促进剂包括四(五氟苯基)硼酸酯、双(三苯基膦)铵或四正丁基四苯基硼酸铵中的一种或多种,浓度为1 µM -10 mM。
9.如利要求1所述检测镉离子的方法,其特征在于步骤5)中所述的震荡乳化时间为1-10分钟。
10.如利要求1所述检测镉离子的方法,其特征在于步骤6)中的静置时间为1-10分钟。
CN202010815089.2A 2020-08-13 2020-08-13 一种利用金纳米颗粒阵列组装检测镉离子的方法 Pending CN111965118A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010815089.2A CN111965118A (zh) 2020-08-13 2020-08-13 一种利用金纳米颗粒阵列组装检测镉离子的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010815089.2A CN111965118A (zh) 2020-08-13 2020-08-13 一种利用金纳米颗粒阵列组装检测镉离子的方法

Publications (1)

Publication Number Publication Date
CN111965118A true CN111965118A (zh) 2020-11-20

Family

ID=73365643

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010815089.2A Pending CN111965118A (zh) 2020-08-13 2020-08-13 一种利用金纳米颗粒阵列组装检测镉离子的方法

Country Status (1)

Country Link
CN (1) CN111965118A (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150168305A1 (en) * 2012-07-08 2015-06-18 Imperial Innovations Limited Method of detecting an analyte in a sample using raman spectroscopy, infra red spectroscopy and/or fluorescence spectroscopy
CN105115958A (zh) * 2015-09-17 2015-12-02 苏州大学 基于大尺寸金属纳米粒子的表面增强拉曼基底及其制备方法
WO2016136851A1 (ja) * 2015-02-25 2016-09-01 国立大学法人 岡山大学 表面増強ラマン分光用基板の作製方法及びこの方法で作製された基板
CN106932392A (zh) * 2017-04-06 2017-07-07 南昌大学 一种基于半胱氨酸修饰的金银合金纳米粒子探针可视化检测水中镉的方法
CN109342397A (zh) * 2018-11-27 2019-02-15 浙江工业大学 一种液-液界面快速制备纳米金膜表面增强拉曼基底的方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150168305A1 (en) * 2012-07-08 2015-06-18 Imperial Innovations Limited Method of detecting an analyte in a sample using raman spectroscopy, infra red spectroscopy and/or fluorescence spectroscopy
WO2016136851A1 (ja) * 2015-02-25 2016-09-01 国立大学法人 岡山大学 表面増強ラマン分光用基板の作製方法及びこの方法で作製された基板
CN105115958A (zh) * 2015-09-17 2015-12-02 苏州大学 基于大尺寸金属纳米粒子的表面增强拉曼基底及其制备方法
CN106932392A (zh) * 2017-04-06 2017-07-07 南昌大学 一种基于半胱氨酸修饰的金银合金纳米粒子探针可视化检测水中镉的方法
CN109342397A (zh) * 2018-11-27 2019-02-15 浙江工业大学 一种液-液界面快速制备纳米金膜表面增强拉曼基底的方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
孙文通等: "纳米传感器检测重金属离子的研究进展", 《食品安全质量检测学报》 *
许宙 等: ""基于金纳米粒子比色检测重金属铅离子"", 《包装工程》 *

Similar Documents

Publication Publication Date Title
Laborda et al. Detection, characterization and quantification of inorganic engineered nanomaterials: A review of techniques and methodological approaches for the analysis of complex samples
Lead et al. Characterizing colloidal material in natural waters
Manning et al. Speciation of arsenic (III) and arsenic (V) in sediment extracts by high-performance liquid chromatography− hydride generation atomic absorption spectrophotometry
Shahat et al. A ligand-anchored optical composite material for efficient vanadium (II) adsorption and detection in wastewater
Shrivas et al. Colorimetric and smartphone-integrated paper device for on-site determination of arsenic (III) using sucrose modified gold nanoparticles as a nanoprobe
Ghasemi et al. Simultaneous speciation and preconcentration of ultra traces of inorganic tellurium and selenium in environmental samples by hollow fiber liquid phase microextraction prior to electrothermal atomic absorption spectroscopy determination
Gustafsson et al. Aquatic colloids: Concepts, definitions, and current challenges
Yang et al. Arsenic speciation on silver nanofilms by surface-enhanced Raman spectroscopy
Chandrasekaran et al. Dispersive liquid–liquid micro extraction of uranium (VI) from groundwater and seawater samples and determination by inductively coupled plasma–optical emission spectrometry and flow injection–inductively coupled plasma mass spectrometry
Suvarapu et al. Recent studies on the speciation and determination of mercury in different environmental matrices using various analytical techniques
Harguindeguy et al. Colloidal mobilization from soil and transport of uranium in (sub)-surface waters
US10345304B2 (en) Multifunctional nanoprobe-enabled capture and early detection of microbial pathogens
Paul et al. A brief review on the application of gold nanoparticles as sensors in multi dimensional aspects
Walekar et al. A novel colorimetric probe for highly selective recognition of Hg 2+ ions in aqueous media based on inducing the aggregation of CPB-capped AgNPs: accelerating direct detection for environmental analysis
Choi et al. Gold nanoparticle-based fluorescent “turn-on” sensing system for the selective detection of mercury ions in aqueous solution
Annadhasan et al. A Facile Sunlight‐Induced Synthesis of Phenylalanine‐Conjugated Cholic Acid‐Stabilized Silver and Gold Nanoparticles for Colorimetric Detection of Toxic Hg2+, Cr6+ and Pb2+ Ions
Li et al. Surface nanodroplet-based extraction combined with offline analytic techniques for chemical detection and quantification
Liu et al. Dual-modal fluorescence and light-scattering sensor based on water-soluble carbon dots for silver ions detection
KR101681110B1 (ko) 표면 개질 나노 입자, 이의 제조 방법 및 이를 이용한 구리 이온(ii)의 비색 검출 센서 및 비색 검출 방법
Dionísio et al. Old and new flavors of flame (furnace) atomic absorption spectrometry
Liu et al. SERS-based Au@ Ag core-shell nanoprobe aggregates for rapid and facile detection of lead ions
Kilinç et al. Dual techniques for trace copper determination: DES/Dithizone based liquid phase microextraction-flame atomic absorption spectrophotometry and digital image based colorimetric probe
CN111965118A (zh) 一种利用金纳米颗粒阵列组装检测镉离子的方法
Wang et al. Highly sensitive and selective fluorescence detection of Hg (II) ions based on R-phycoerythrin from Porphyra yezoensis
Wang et al. Fluorescent Sensors Based on Organic Polymer‐Capped Gold Nanoparticles for the Detection of Cr (VI) in Water

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
AD01 Patent right deemed abandoned

Effective date of abandoning: 20240209

AD01 Patent right deemed abandoned