CN111953223B - 一种三相四线制三电平变流器中点电压平衡方法 - Google Patents

一种三相四线制三电平变流器中点电压平衡方法 Download PDF

Info

Publication number
CN111953223B
CN111953223B CN202010806759.4A CN202010806759A CN111953223B CN 111953223 B CN111953223 B CN 111953223B CN 202010806759 A CN202010806759 A CN 202010806759A CN 111953223 B CN111953223 B CN 111953223B
Authority
CN
China
Prior art keywords
voltage
current
phase
modulation
neutral point
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202010806759.4A
Other languages
English (en)
Other versions
CN111953223A (zh
Inventor
徐娟
石雷
史永方
许志刚
周龙
马兆星
钟李翔
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hefei University of Technology
Original Assignee
Hefei University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hefei University of Technology filed Critical Hefei University of Technology
Priority to CN202010806759.4A priority Critical patent/CN111953223B/zh
Publication of CN111953223A publication Critical patent/CN111953223A/zh
Application granted granted Critical
Publication of CN111953223B publication Critical patent/CN111953223B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/483Converters with outputs that each can have more than two voltages levels
    • H02M7/487Neutral point clamped inverters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/5387Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration
    • H02M7/53871Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration with automatic control of output voltage or current
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/539Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters with automatic control of output wave form or frequency
    • H02M7/5395Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters with automatic control of output wave form or frequency by pulse-width modulation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/50Arrangements for eliminating or reducing asymmetry in polyphase networks

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Inverter Devices (AREA)
  • Dc-Dc Converters (AREA)

Abstract

本发明涉及一种三相四线制三电平变流器中点电压平衡方法。该三相四线制三电平变流器中点电压平衡方法,是基于载波调制即CBPWM调制实现的,在拓扑自平衡分析的基础上,首先采集变流器直流侧上下电容电压,根据上下电容电压差值计算出中点电压不平衡度,依据输出不同方向直流电流与中点电压不平衡度存在的比例关系,按照设计的PI控制器计算得出平衡中点电压所需的指令电流,在电流控制的并网变流器的电流指令中叠加上得到的指令电流,并通过三相四线制下改进的DBC电流控制方法获得所需调制电压,基于CBPWM调制将调制电压与载波进行比较,用生成的PWM序列控制对应功率器件的开关,实现中点电压平衡控制;该方法控制简单,基于改进DBC的平衡响应速度快。

Description

一种三相四线制三电平变流器中点电压平衡方法
技术领域
本发明属于三电平并网变流器中点电压平衡技术领域,具体涉及一种三相四线制三电平变流器中点电压平衡方法。
背景技术
随着电力电子技术的发展,三电平变流器受到了广泛地关注,尤其在大容量、高电压场合。相比于传统的两电平变流器,三电平变流器具有较低的总谐波畸变率、较低的器件电压应力和较高的能量转换效率。
为了使三电平逆变器安全可靠运行,必须确保直流侧上下电容电压相等,即中点电压平衡。常见的平衡中点电压的方法主要有以下3种:
1)用额外的变流器向电容中点注入或抽取电流;
2)上下电容电压取自两路独立的直流电源;
3)通过调整脉宽调制脉冲序列来平衡中点电位。其中,增加硬件会增加系统成本;改变算法不会增加成本,因而最有吸引力。
目前常用的中点电位平衡的算法主要有两种:基于零序分量注入的载波脉宽调制(CBPWM)方法和基于冗余矢量调整的空间矢量调制(SVPWM)方法。载波调制方法中零序电压的计算、空间矢量调制方法中矢量合成规则的复杂性等均导致控制算法的计算复杂度大大提升。此外,上述两种调制方法均建立在三相三线制的基础上,并不适用于三相四线制。实际上,三相四线制系统在很多实际应用场合中相较于三相三线制有防雷、绝缘、提高电磁兼容等优势,因此需要一种实现三相四线制三电平并网变流器中点电压平衡的控制方法。
发明内容
本发明的目的就在于为了解决上述问题而提出基于CBPWM调制算法和改进DBC电流控制方法的用于实现三相四线制三电平并网变流器中点电压平衡的方法,从而使系统能安全稳定运行。
本发明通过以下技术方案来实现上述目的:
一种三相四线制三电平变流器中点电压平衡方法,包括以下步骤:步骤S1,采集三相四线制三电平并网变流器直流侧的上下电容电压值、电网电压值与输出电流值,并计算中点电压不平衡度;
步骤S2,计算中点电压不平衡度与输出直流电流方向的关系,根据对应关系,通过PI控制器获得指令电流;
步骤S3,基于三相四线制的改进DBC电流控制方法,将采样数据、指令电流通过迭代计算获得三相调制电压;其中,采样数据包括输出电流与电网电压;
步骤S4,将调制电压与载波进行比较,获得特定序列的PWM序列,利用PWM序列驱动功率器件,实现中点电压平衡控制。
作为本发明的进一步优化方案,所述步骤S1中,电网电压和输出电流分别表示为:
Figure GDA0003803377880000021
Figure GDA0003803377880000022
其中,z=A、B、C,ω是工频角频率,ωt∈[0,2π]是电压电流的相角,Em是电网电压的峰值,iz是并网变流器z相输出电流,输出变流器为该电流正方向,Imz,n是z相输出电流n次谐波含量的峰值,
Figure GDA0003803377880000023
是对应电流的初相,这里表明的是电网电压处于三相对称的情况,而对并网变流器的输出电流形式没有限制。
作为本发明的进一步优化方案,所述步骤S1中,所述的中点电压不平衡度表示为:
Figure GDA0003803377880000031
uC1+uC2=udc
其中,uC1、uC2为直流侧上、下电容电压,udc是直流侧母线电压。
作为本发明的进一步优化方案,所述步骤S2中,基于CBPWM调制策略,根据伏秒平衡原理,一个载波周期内各电平占空比与调制电压的关系为:
Figure GDA0003803377880000032
其中,dzx(x=0,1,2)表示z相x电平的占空比,uz表示z相调制电压;
上述z相调制电压表示为:
Figure GDA0003803377880000033
其中,Ls表示滤波电感感值;
根据一个载波周期内各电平占空比与调制电压的关系得出中点电流与三相输出电流的关系为:
Figure GDA0003803377880000034
其中iNP表示中点电流,流入直流侧中性点为正方向;
中点电流与上述定义的中点电压不平衡度在任意一个工频周期内存在关系表示如下:
Figure GDA0003803377880000041
其中,C为单侧电容容值,上下电容容值均为C,ΔuNP为uNP在一个工频周期内的变化量,在三相输出相等直流且取值为I0时,进一步表示为:
Figure GDA0003803377880000042
为实现控制算法,将ΔuNP在区间内通过取平均值的方式连续化可得:
Figure GDA0003803377880000043
该式即为中点电压不平衡度与输出电流I0的关系,根据对应关系,利用PI控制器可获得指令电流I0 *,指令电流I0 *为平衡中点电压的电流。
作为本发明的进一步优化方案,所述步骤S3中,基于三相四线制的改进DBC电流控制方法,将采样数据、指令电流通过迭代计算获得三相调制电压uA、uB、uC;其中,采样数据包括输出电流与电网电压。
作为本发明的进一步优化方案,所述步骤S4中,根据步骤S3得到的三相调制电压,每相调制电压与调制波进行比较,得到各电平的占空比从而获得完整的PWM序列,基于CBPWM调制策略的占空比与调制电压计算公式为;
Figure GDA0003803377880000044
利用获得的PWM序列驱动功率器件,实现中点电压平衡控制。
本发明的有益效果在于:本发明为了实现三相四线制三电平变流器的中点电压平衡,提出了一种基于CBPWM调制策略和改进DBC的中点电压平衡方法;且整体控制方法简单,基于改进DBC的平衡响应速度快。
附图说明
图1是本发明提出的中点电压平衡方法的流程图;
图2是本发明中点钳位型三相四线制三电平变流器的主电路图;
图3是本发明控制方法的控制框图;
图4是CBPWM调制策略下调制波与载波比较以生成PWM序列;
图5是并网变流器输出三相基波电流时采用本发明控制方法的控制示意图;
图6是并网变流器输出三相二次谐波电流时采用本发明控制方控制示意图;
图7是并网变流器输出三相三次谐波电流时采用本发明控制方控制示意图。
具体实施方式
下面结合附图对本申请作进一步详细描述,有必要在此指出的是,以下具体实施方式只用于对本申请进行进一步的说明,不能理解为对本申请保护范围的限制,该领域的技术人员可以根据上述申请内容对本申请作出一些非本质的改进和调整。
实施例1
本实施例提供了一种基于CBPWM调制策略和改进DBC实现三相四线制三电平变流器中点电压平衡的方法,实施条件是在变流器处于并网运行且输出三相工频基波电流,实施例采用的中点钳位型三电平变流器参数如表1所示,图1为本控制方法的流程图。
表1中点钳位型三电平变流器参数
Figure GDA0003803377880000051
Figure GDA0003803377880000061
步骤S1、如图2所示为本实施例的主电路图,采集图示中的三相电网电压、三相输出电流以及上下电容电压,电网电压和输出电流分别表示为:
Figure GDA0003803377880000062
Figure GDA0003803377880000063
根据采集的电容电压求得中点电压不平衡度为:
Figure GDA0003803377880000064
其中,ω是工频角频率,ωt∈[0,2π]是电压电流的相角,eA、eB、eC是三相电网电压,Em是电网电压的峰值,iA、iB、iC是并网变流器三相输出电流,形式是三相对称基波,Im是输出电流的峰值,
Figure GDA0003803377880000065
是电流的初相,uC1、uC2为直流侧上、下电容电压,udc是直流侧母线电压,uC1+uC2=udc
步骤S2、根据控制目标中点电压不平衡度与三相输出电流方向的关系,构建如图3所示的控制框图,其中PI控制器的参数Kp=1/64,Ki=1/16,从而获得指令电流I0 *,这便是平衡中点电压的电流。
步骤S3、基于三相四线制的改进DBC电流控制方法,借由输出电流、电网电压等采样数据以及步骤S3所获得的指令电流通过迭代计算出三相调制电压uA、uB、uC
其中,迭代计算的具体方法为:
在DBC中,用矫正电流代替采样电流:
Figure GDA0003803377880000066
Figure GDA0003803377880000067
为校正电流;iz(n-1)为采样电流;kfc为校正因子;
Figure GDA0003803377880000068
为预测电流的加权平均,其中预测电流的表达式为:
Figure GDA0003803377880000071
下一周期的电压增量为:
Figure GDA0003803377880000072
调制电压为电压增量和电网电压之和。
步骤S4、如图4所示,根据步骤S4得到的三相调制电压,每相调制电压与调制波进行比较,得到各电平的占空比从而获得完整的PWM序列,基于CBPWM调制策略的占空比与调制电压计算公式如下:
Figure GDA0003803377880000073
利用获得的PWM序列驱动功率器件,实现中点电压平衡控制。本发明提出的中点电压平衡方法在本实施例实施条件下的控制效果示意图如图5所示,示意图波形从上至下依次为:uC1、uC2、iA、iB、iC、uA、uB、uC,控制的参与发生在uC1与uC2相差超过40V时,使用本发明的中点电压平衡方法后可在半个工频周期内恢复中点电压至平衡状态,保证变流器的稳定安全运行。
实施例2
本实施例的实施条件是在变流器处于并网运行且输出三相对称二次谐波电流,各技术参数同实施例1。
其中步骤S1采集的三相输出电流表示为:
Figure GDA0003803377880000074
其中,iA、iB、iC是并网变流器三相输出电流,形式是三相对称二次谐波,Im是输出电流的峰值,
Figure GDA0003803377880000081
是电流的初相,其余步骤同实施例1一致。
控制效果示意图如图6所示,示意图波形从上至下依次为:uC1、uC2、iA、iB、iC、uA、uB、uC,控制的参与发生在uC1与uC2相差超过40V时,使用本发明的中点电压平衡方法后可在半个工频周期内恢复中点电压至平衡状态,保证变流器的稳定安全运行。
实施例3
本实施例的实施条件是在变流器处于并网运行且输出三相对称三次谐波电流,各技术参数同实施例1;
其中步骤S1采集的三相输出电流表示为:
Figure GDA0003803377880000082
其中,iA、iB、iC是并网变流器三相输出电流,形式是三相对称三次谐波,Im是输出电流的峰值,
Figure GDA0003803377880000083
是电流的初相,其余步骤同实施例1一致;
控制效果示意图如图7所示,示意图波形从上至下依次为:uC1、uC2、iA、iB、iC、uA、uB、uC,控制的参与发生在uC1与uC2相差超过40V时,使用本发明的中点电压平衡方法后可在半个工频周期内恢复中点电压至平衡状态,保证变流器的稳定安全运行。
以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对本发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。

Claims (3)

1.一种三相四线制三电平变流器中点电压平衡方法,其特征在于,包括以下步骤:
步骤S1,采集三相四线制三电平并网变流器直流侧的上下电容电压值、电网电压值与输出电流值,并计算中点电压不平衡度,电网电压和输出电流分别表示为:
Figure FDA0003803377870000011
Figure FDA0003803377870000012
其中,z=A、B、C,ω是工频角频率,ωt∈[0,2π]是电压电流的相角,Em是电网电压的峰值,iz是并网变流器z相输出电流,输出变流器为该电流正方向,Imz,n是z相输出电流n次谐波含量的峰值,
Figure FDA0003803377870000013
是对应电流的初相;
所述的中点电压不平衡度表示为:
Figure FDA0003803377870000014
uC1+uC2=udc
其中,uC1、uC2为直流侧上、下电容电压,udc是直流侧母线电压;
步骤S2,计算中点电压不平衡度与输出直流电流方向的关系,根据对应关系,通过PI控制器获得指令电流,具体为:基于CBPWM调制策略,根据伏秒平衡原理,一个载波周期内各电平占空比与调制电压的关系为:
Figure FDA0003803377870000021
其中,dzx表示z相x电平的占空比,其中,x=0,1,2;uz表示z相调制电压;
上述z相调制电压表示为:
Figure FDA0003803377870000022
其中,Ls表示滤波电感感值;
根据一个载波周期内各电平占空比与调制电压的关系得出中点电流与三相输出电流的关系为:
Figure FDA0003803377870000023
其中iNP表示中点电流,流入直流侧中性点为正方向;
中点电流与上述定义的中点电压不平衡度在任意一个工频周期内存在关系表示如下:
Figure FDA0003803377870000024
其中,C为单侧电容容值,上下电容容值均为C,ΔuNP为uNP在一个工频周期内的变化量,在三相输出相等直流且取值为I0时,进一步表示为:
Figure FDA0003803377870000031
为实现控制算法,将ΔuNP在区间内通过取平均值的方式连续化可得:
Figure FDA0003803377870000032
该式即为中点电压不平衡度与输出电流I0的关系,根据对应关系,利用PI控制器可获得指令电流I0 *,指令电流I0 *为平衡中点电压的电流;
步骤S3,基于三相四线制的改进DBC电流控制方法,将采样数据、指令电流通过迭代计算获得三相调制电压;其中,采样数据包括输出电流与电网电压;
步骤S4,将调制电压与载波进行比较,获得特定序列的PWM序列,利用PWM序列驱动功率器件,实现中点电压平衡控制。
2.根据权利要求1所述的一种三相四线制三电平变流器中点电压平衡方法,其特征在于:所述步骤S3中,基于三相四线制的改进DBC电流控制方法,将采样数据、指令电流通过迭代计算获得三相调制电压uA、uB、uC;其中,采样数据包括输出电流与电网电压。
3.根据权利要求2所述的一种三相四线制三电平变流器中点电压平衡方法,其特征在于:所述步骤S4中,根据步骤S3得到的三相调制电压,每相调制电压与调制波进行比较,得到各电平的占空比从而获得完整的PWM序列,基于CBPWM调制策略的占空比与调制电压计算公式为:
Figure FDA0003803377870000041
利用获得的PWM序列驱动功率器件,实现中点电压平衡控制。
CN202010806759.4A 2020-08-12 2020-08-12 一种三相四线制三电平变流器中点电压平衡方法 Active CN111953223B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010806759.4A CN111953223B (zh) 2020-08-12 2020-08-12 一种三相四线制三电平变流器中点电压平衡方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010806759.4A CN111953223B (zh) 2020-08-12 2020-08-12 一种三相四线制三电平变流器中点电压平衡方法

Publications (2)

Publication Number Publication Date
CN111953223A CN111953223A (zh) 2020-11-17
CN111953223B true CN111953223B (zh) 2022-10-18

Family

ID=73332294

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010806759.4A Active CN111953223B (zh) 2020-08-12 2020-08-12 一种三相四线制三电平变流器中点电压平衡方法

Country Status (1)

Country Link
CN (1) CN111953223B (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113193807B (zh) * 2021-03-18 2022-07-29 中国人民解放军海军工程大学 十五相三电平h桥推进变频器控制方法
CN114034902A (zh) * 2021-09-28 2022-02-11 海信(山东)空调有限公司 相电压检测方法、装置、变频空调器及其控制方法及装置
CN114915196A (zh) * 2022-04-21 2022-08-16 北京行实科技有限公司 Npc-i型三电平母线中点平衡系统、方法、电子设备及介质
CN115037178B (zh) * 2022-08-15 2022-11-08 深圳市首航新能源股份有限公司 一种母线电压平衡能力的调节方法及其装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107070278A (zh) * 2017-06-26 2017-08-18 合肥工业大学 一种三电平变流器中点电位平衡的非连续脉宽调制方法
CN108649828A (zh) * 2018-06-15 2018-10-12 合肥工业大学 一种适用于三相四线制三电平变流器的优化调制方法
CN109347347A (zh) * 2018-10-11 2019-02-15 南京航空航天大学 不平衡负载下三相四线制三电平逆变器通用型3d-svpwm控制方法及控制系统
CN109713925A (zh) * 2019-01-11 2019-05-03 闽南理工学院 一种三相四线制三电平逆变器的直流侧均压控制方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100172166A1 (en) * 2009-01-07 2010-07-08 Tejinder Singh Plug-in neutral regulator for 3-phase 4-wire inverter/converter system
CN109905048B (zh) * 2017-12-08 2021-01-26 台达电子企业管理(上海)有限公司 三电平电路中点电压平衡控制方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107070278A (zh) * 2017-06-26 2017-08-18 合肥工业大学 一种三电平变流器中点电位平衡的非连续脉宽调制方法
CN108649828A (zh) * 2018-06-15 2018-10-12 合肥工业大学 一种适用于三相四线制三电平变流器的优化调制方法
CN109347347A (zh) * 2018-10-11 2019-02-15 南京航空航天大学 不平衡负载下三相四线制三电平逆变器通用型3d-svpwm控制方法及控制系统
CN109713925A (zh) * 2019-01-11 2019-05-03 闽南理工学院 一种三相四线制三电平逆变器的直流侧均压控制方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Control of neutral-point voltage in three-phase four-wire three-level NPC inverter based on the disassembly of zero level;Chenchen Wang et al.;《2016 IEEE Energy Conversion Congress and Exposition (ECCE)》;20170216;第1-8页 *
三相四线制三电平变换器简化调制策略;王晓杰等;《电力电子技术》;20170420;第51卷(第04期);第5-7、22页 *

Also Published As

Publication number Publication date
CN111953223A (zh) 2020-11-17

Similar Documents

Publication Publication Date Title
CN111953223B (zh) 一种三相四线制三电平变流器中点电压平衡方法
Jacobina et al. Reduced switch count DC-link AC–AC five-leg converter
Shahnazian et al. Interfacing modular multilevel converters for grid integration of renewable energy sources
WO2014106810A1 (en) Methods for controlling electrical inverters and electrical inverters and systems using the same
CN105450031B (zh) 一种dc-dc变换器的调制策略及其子模块均压方法
CN107947599A (zh) 电力电子变流器
Palanisamy et al. Maximum Boost Control for 7-level z-source cascaded h-bridge inverter
Kumar et al. Multilevel Inverter with Predictive Control for Renewable Energy Smart Grid Applications
Ebrahimpanah et al. Model predictive current control with duty cycle optimization for two-level three-phase grid-tied inverter with output LCL filter based on forward Euler approximation
CN110994964A (zh) 一种降低模块化多电平换流器交流电压低阶谐波调制方法
Wanjekeche Modeling, control and experimental investigation of a cascaded hybrid modular inverter for grid interface application
CN112838769A (zh) 一种无变压器隔离的星接中高压变频调速系统及控制方法
CN110022079B (zh) 一种t型三电平变流器直流侧电容容值的设计方法
Townsend et al. Capacitance minimization in modular multilevel converters: Using model predictive control to inject optimal circulating currents and zero-sequence voltage
CN114362549B (zh) 基于非隔离型背靠背拓扑的级联多电平变流器及其控制策略
CN112332689B (zh) 基于几何变换的中点箝位型三电平变换器的调制方法
Devi et al. Development of Multicarrier SPWM Techniques for Cascaded MLI
CN112803808B (zh) 降低模块化多电平换流器直流侧高频脉动电流控制方法
Bifaretti et al. A modulation technique for high power AC/DC multilevel converters for power system integration
Kou et al. Modulation method for single-phase six-switch five-level ANPC inverter
Kortenbruck et al. Harmonic voltage compensation with power electronic grid regulator based on symmetrical components
Lin et al. Implementation of a three-phase high-power-factor rectifier with NPC topology
CN112332426A (zh) 基于mmc技术的统一电能质量调节器系统及控制方法
Aihsan et al. Harmonic Analysis of Three-Phase Asymmetrical Multilevel Inverter with Reduced Number of Switches
Rajasekhar et al. Mitigation of flicker sources & power quality improvement by using cascaded multi-level converter based DSTATCOM

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant