CN111950075A - 一种高超声速飞行器结构的多学科多约束序贯优化方法 - Google Patents

一种高超声速飞行器结构的多学科多约束序贯优化方法 Download PDF

Info

Publication number
CN111950075A
CN111950075A CN202010629973.7A CN202010629973A CN111950075A CN 111950075 A CN111950075 A CN 111950075A CN 202010629973 A CN202010629973 A CN 202010629973A CN 111950075 A CN111950075 A CN 111950075A
Authority
CN
China
Prior art keywords
optimization
constraint
design
structural
strength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202010629973.7A
Other languages
English (en)
Inventor
王晓军
许宇声
王磊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beihang University
Original Assignee
Beihang University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beihang University filed Critical Beihang University
Priority to CN202010629973.7A priority Critical patent/CN111950075A/zh
Publication of CN111950075A publication Critical patent/CN111950075A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/10Geometric CAD
    • G06F30/15Vehicle, aircraft or watercraft design
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2119/00Details relating to the type or aim of the analysis or the optimisation
    • G06F2119/08Thermal analysis or thermal optimisation
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2119/00Details relating to the type or aim of the analysis or the optimisation
    • G06F2119/14Force analysis or force optimisation, e.g. static or dynamic forces
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Geometry (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • General Engineering & Computer Science (AREA)
  • Evolutionary Computation (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Pure & Applied Mathematics (AREA)
  • Mathematical Optimization (AREA)
  • Mathematical Analysis (AREA)
  • Computational Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Feedback Control In General (AREA)

Abstract

本发明公开了一种高超声速飞行器结构的多学科多约束序贯优化方法,该优化方法将多学科多约束耦合问题中的多约束条件进行解耦循环,首先进行结构强度约束下的优化,根据结构强度优化的结果,将其作为气动弹性约束优化的初始设计点,进行气动弹性子优化。其次根据每个周期内的气动弹性优化结果进行结构强度优化中强度约束条件的平移修正。最后在新的强度约束条件下,重新进行结构强度约束下的优化和设计点到可行域距离的求解。重复进行上述过程直至收敛,可以得到同时满足结构强度约束和气动弹性约束的最终设计点。本方法在保证优化结果可靠性的前提下,减少了飞行器结构优化过程中气动弹性的迭代分析次数,降低了计算成本,提高了优化效率。

Description

一种高超声速飞行器结构的多学科多约束序贯优化方法
技术领域
本发明涉及结构强度优化设计的技术领域,具体涉及一种基于热环境下高超声速飞行器结构的多学科多约束序贯优化方法。
背景技术
高超声速飞行器在设计过程中必须要考虑力热耦合造成的结构影响。多场耦合的复杂服役环境一方面造成了多学科计算时求解上的困难,同时也影响着结构优化设计过程,如优化过程耗时且难以找到最优解等。传统的多学科多约束优化求解过程中往往出现优化过程中由于多个约束存在造成难以收敛或过早收敛的情况,同时优化过程耗时较长。因此为了获得足够优异的结构性能,高超声速飞行器在进行结构设计优化时必须要考虑多场耦合情况下的多学科优化的精细化设计手段。
由于多学科优化问题的目的在于满足多个学科的目标或者约束,因此往往存在多个学科间互相耦合情况,且随着优化的进行,会出现一个变量同时影响多个学科,进行计算分析就会出现计效率降低的情况,Wu Y等人提出了一种基于近似等价确定性约束的优化求解策略,将这一概念从单约束问题扩展到基于安全因子的多约束可靠性分析问题。其中,序贯优化与可靠性分析方法(Sequential optimization and reliability analysis,SORA)通过平移当前设计方案下逆最大可能点到确定性边界上,从而保证下一次循环中该设计方案满足可靠性,是其中一种较为有效的方案。相较于常规的双层嵌套策略,单层策略的高效性已经得到了众多案例的验证,也是未来的研究热点之一。Li等提出了序贯多学科可靠性分析方法(Sequential multidisciplinary reliability analysis approach,SMRA)。该方法结合了并行子空间策略和PMA方法,在实行过程中序贯执行多学科分析,系统灵敏度分析和可靠性分析。Zhang和Huang提出了考虑混合不确定性(随机不确定性和模糊不确定性)的多学科优化设计方法,并搭建了对应的序贯优化和可靠性分析框架。上述序贯优化方法从不确定约束出发,在双层嵌套策略中有较好的发挥,但在实际工程问题中,约束条件往往是更加繁杂的,其各自的计算成本也是巨大的,而其他传统的优化策略在面对多学科多约束问题时更是存在迭代次数多、计算资源耗费庞大、求解过程缓慢等问题。本发明针对高超声速战斗机所面临的复杂服役环境,充分考虑气动加热对结构应力、模态、气弹的影响,通过直接耦合或间接耦合的方式,分析得到结构热模态、热气弹、热强度结果,综合考虑系统设计目标和学科设计目标的协调性以及学科间的耦合,建立多约束综合优化策略,并构建多约束优化求解策略实现高超声速战斗机考虑热影响下的高精度优化求解,在保证精度的前提下,大大提高了计算效率。
发明内容
本发明要解决的技术问题是:本发明提供了一种基于热环境下高超声速飞行器结构的多学科多约束序贯优化方法。该优化方法的核心在于将多学科多约束耦合求解问题中的的多个约束条件进行解耦循环,在保证优化结果可靠性的前提下,减少了飞行器结构优化过程中气动弹性的迭代分析次数,降低了计算成本,提高了优化效率。
本发明采用的技术方案为:一种基于热环境下高超声速飞行器结构的多学科多约束序贯优化方法,该方法针对基于热环境的高超声速战斗机这一特殊情况,在进行结构设计优化时,以结构减重为设计目标,以结构热模态约束、热强度约束及热颤振约束为优化模型约束,其优化模型如下:
Figure BDA0002568213840000021
式中X为设计变量,M(Xk)为结构质量,作为设计目标;σmax(X)≤[σ]表示结构内最大应力小于强度设计值,
Figure BDA0002568213840000022
表示结构颤振发散速度大于设计值,f1(Xk)≥f0表示结构一阶模态大于最小容许值;XL≤X≤XU为设计变量在设计上下限内。主要包括如下步骤:
第一步:构建随设计变量X变化而自动更新的飞行器结构参数化模型;将强度约束条件的初始平移距离D0设置为0;考虑飞行器结构的弹性变形,计算作用在飞行器结构上的气动载荷Q;根据k-1次循环后得到的强度约束条件总平移距离Dk-1,得到等效强度约束条件:σmax(Xk)+Dk-1≤[σ],其中Dk-1为第k-1次循环后得到的强度约束条件平移距离,Xk为第k次循环中飞行器结构强度优化的最优设计点,σmax(Xk)代表强度优化最优设计点Xk处的飞行器结构中最大应力,[σ]为结构应力的许用值;
第二步:对飞行器结构进行强度子优化,优化模型如下:
Figure BDA0002568213840000031
其中M(Xk)代表最优设计点Xk处的飞行器结构总重量,XL和XU分别为优化变量的下界和上界。进行当前最优设计点处的灵敏度分析,求解当设计点在Xk处时最大应力及最大位移对设计变量的偏导数:
Figure BDA0002568213840000032
i=1,2,…,n
Figure BDA0002568213840000033
根据灵敏度分析结果,确定强度约束函数曲线的单位法向量
Figure BDA0002568213840000034
计算公式如下:
Figure BDA0002568213840000035
第三步:进行飞行器结构热颤振子优化及热模态子优化,求解第k次循环中强度优化最优设计点Xk沿强度约束函数曲线法向的热模态最小平移距离
Figure BDA0002568213840000036
和热颤振最小平移距离
Figure BDA0002568213840000037
取dk
Figure BDA0002568213840000038
Figure BDA0002568213840000039
的最大正值作为沿强度约束函数曲线法向的最小平移距离,平移后的设计点为
Figure BDA00025682138400000310
热模态子优化:
Figure BDA00025682138400000311
热颤振子优化:
Figure BDA00025682138400000312
设计点
Figure BDA00025682138400000313
满足静发散速度要求和一阶模态要求:
Figure BDA00025682138400000314
Figure BDA00025682138400000315
其中
Figure BDA0002568213840000041
为飞行器结构在设计点
Figure BDA0002568213840000042
处的静发散速度,Vcr_0为静气动弹性要求的最小静发散速度;f0表示初始设计的一阶模态要求。
根据dk,折算第k次循环得到的强度约束条件的平移距离ΔDk,然后计算k次循环后强度约束条件的总平移距离Dk,计算公式如下:
Dk=Dk-1+ΔDk
强度约束平移距离的计算方法如下:分别针对第k次循环得到的两个最优设计点Xk
Figure BDA0002568213840000043
开展飞行器结构的应力分析,计算这两个最优设计点在气动载荷Q作用下的结构应力的最大值σmax(Xk)和
Figure BDA0002568213840000044
并利用如下公式计算第k循环得到的强度约束条件平移距离:
Figure BDA0002568213840000045
判断
Figure BDA0002568213840000046
是否成立,其中ε为设置的收敛阈值。若成立,则认为优化结果收敛,优化完成,输出优化结果;若不成立,则说明优化结果还未收敛,循环次数k增加1,继续进行下一个循环。
其中,所述的步骤一中根据实际工程情况确定设计变量、设计变量的取值区间、容差和结构的约束条件,再求得结构响应函数。
其中,所述的步骤二中只考虑结构强度约束,不考虑气动弹性约束,进行结构强度优化与当前设计点的灵敏度分析,从而得到强度约束函数曲线的单位法向量。
其中,所述的步骤三中提取步骤二中的当前设计点结果将其作为气动弹性优化的初始设计点,利用飞行器结构热颤振及热模态优化结果进行结构强度优化中约束条件的修正,最后在新的强度约束条件下,重新进行考虑结构强度约束条件的飞行器结构强度优化和设计点到可行域距离的求解。循环迭代直至收敛,可以得到同时满足结构强度约束和结构的临界颤振速度的约束的最终设计点。
本发明的原理在于:
该优化方法的核心在于将多学科多约束耦合求解问题中的多个约束条件进行解耦循环,首先进行结构强度优化,此时只考虑结构强度约束,不考虑气动弹性约束,根据结构强度优化的结果,将其作为气动弹性优化的初始设计点,进行气动弹性的子优化。其次根据每个周期内的气动弹性优化结果进行结构强度优化中约束条件的修正,将强度约束条件进行平移,根据颤振分析的结果进行或靠近可行域,或靠近不可行域的移动。最后在新的强度约束条件下,重新进行考虑结构强度约束条件的飞行器结构强度优化和设计点到可行域距离的求解。重复进行上述过程直至收敛,可以得到同时满足结构强度约束和结构的临界颤振速度的约束的最终设计点。
本发明与现有技术相比的优点在于:
(1)本发明在处理优化设计过程中较为耗时的学科时,通过将其作为子约束的子优化迭代,减少其计算迭代的次数来达到更快的优化求解,提高优化求解的效率;
(2)本发明解耦了多学科多约束问题的耦合关系,解决了传统方法对设计变量进行多次迭代计算,出现优化结果震荡的问题。
(3)本发明有一个定义良好的收敛条件,而不像随机算法一样不知道在何时收敛。
附图说明
图1是本发明基于热环境下高超声速飞行器结构多学科多约束序贯优化的流程图;
图2是优化过程中约束条件修正示意图;
图3是等效强度约束条件示意图;
图4是等效强度约束迭代图;
图5是实施例一种目标函数优化迭代对比图;
图6是实施例二中加筋壁板示意图;
图7是实施例二中来流方向示意图;
图8是实施例二中强度子优化设计变量迭代图;
图9是实施例二中模态及颤振影响强度约束平移距离迭代图;
图10是实施例二中传统优化方法结构质量收敛图。
具体实施方式
下面结合附图以及具体实施例进一步说明本发明。
如图1所示,本发明为一种基于热环境下高超声速飞行器结构的多学科多约束序贯优化方法,针对基于热环境的高超声速战斗机这一特殊情况,在进行结构设计优化时,以结构减重为设计目标,以结构热模态约束、热强度约束及热颤振约束为优化模型约束,其优化模型如下:
Figure BDA0002568213840000061
式中X为设计变量,M(Xk)为结构质量,作为设计目标;σmax(X)≤[σ]表示结构内最大应力小于强度设计值[σ],
Figure BDA0002568213840000062
表示结构颤振发散速度大于设计值Vcr_0,f1(Xk)≥f0表示结构一阶模态大于最小容许值f0;XL≤X≤XU为设计变量在设计上下限内。包括以下步骤:
第一步:构建随设计变量X变化而自动更新的飞行器结构参数化模型;将强度约束条件的初始平移距离D0设置为0;考虑飞行器结构的弹性变形,计算作用在飞行器结构上的气动载荷Q;根据k-1次循环后得到的强度约束条件总平移距离Dk-1,得到等效强度约束条件,如图2约束条件修正示意图:
σmax(Xk)+Dk-1≤[σ]
其中Dk-1为第k-1次循环后得到的强度约束条件平移距离,Xk为第k次循环中飞行器结构强度优化的最优设计点,σmax(Xk)代表强度优化最优设计点Xk处的飞行器结构中最大应力,[σ]为结构应力的许用值;
第二步:对飞行器结构进行强度优化,优化模型如下:
Figure BDA0002568213840000063
其中M(Xk)代表最优设计点Xk处的飞行器结构总重量,XL和XU分别为优化变量的下界和上界。进行当前最优设计点处的灵敏度分析,求解当设计点在Xk处时最大应力及最大位移对设计变量的偏导数:
Figure BDA0002568213840000064
i=1,2,…,n
Figure BDA0002568213840000065
根据灵敏度分析结果,确定强度约束函数曲线的单位法向量
Figure BDA0002568213840000066
计算公式如下:
Figure BDA0002568213840000071
第三步:进行飞行器结构热颤振子优化及热模态子优化,
求解第k次循环中强度优化最优设计点Xk沿强度约束函数曲线法向的最小平移距离
Figure BDA0002568213840000072
Figure BDA0002568213840000073
取dk
Figure BDA0002568213840000074
Figure BDA0002568213840000075
的最大正值作为沿强度约束函数曲线法向的最小平移距离,平移后的设计点为
Figure BDA0002568213840000076
等效强度约束条件与等效强度约束迭代如图3、图4所示。
热模态子优化:
Figure BDA0002568213840000077
热颤振子优化:
Figure BDA0002568213840000078
设计点
Figure BDA0002568213840000079
满足静发散速度要求和一阶模态要求:
Figure BDA00025682138400000710
Figure BDA00025682138400000711
其中
Figure BDA00025682138400000712
为飞行器结构在设计点
Figure BDA00025682138400000713
处的静发散速度,Vcr_0为静气动弹性要求的最小静发散速度;f0表示一阶模态要求。
根据dk,折算第k次循环得到的强度约束条件的平移距离ΔDk,然后计算k次循环后强度约束条件的总平移距离Dk,计算公式如下:
Dk=Dk-1+ΔDk
强度约束平移距离的计算方法如下:分别针对第k次循环得到的两个最优设计点Xk
Figure BDA00025682138400000714
开展飞行器结构的应力分析,计算这两种设计方案在气动载荷Q作用下的结构应力的最大值σmax(Xk)和
Figure BDA00025682138400000715
并利用如下公式计算第k循环得到的强度约束条件平移距离:
Figure BDA00025682138400000716
判断
Figure BDA00025682138400000717
是否成立,其中ε为设置的收敛阈值。若成立,则认为优化结果收敛,优化完成,输出优化结果;若不成立,则说明优化结果还未收敛,循环次数k增加1,继续进行下一个循环。
实施例一:
为了更充分地了解该发明的特点及其解决热环境下高超声速飞行器结构多学科多约束优化问题的能力,现用本发明进行基于数值算例的方法验证与对比,对比传统的多约束求解算法,验证该优化算法在优化求解过程中的求解效率以及求解的精度。
首先进行数值上的算例验证,通过对比优化结果以及各个数学列式的计算求解次数,验证前述的方法内容,从而验证上述方法的计算精度及计算求解的效率。因此设置数值算例表达式如下所示:
Figure BDA0002568213840000081
上式中的四个变量x1、x2、x3、x4为设计变量,优化设计目标为四个变量的和最小,设计的约束为三个因变量的数值约束。因此根据该优化列式的设计目标以及设计约束,可以得到如下优化设计模型列式:
Figure BDA0002568213840000082
传统多约束优化的优化模型和上式一致,所有约束同时考虑,进行优化设计的迭代。基于序贯的多约束优化中,假设y1为主约束,y2、y3为子约束,此时进行多约束优化的优化列式如下:
Figure BDA0002568213840000083
Figure BDA0002568213840000084
Figure BDA0002568213840000085
上式中的Dk-1为上一轮迭代中,y2、y3子优化求解得到的y1约束的平移距离,使得y1的优化求解结果能同时满足y2、y3列式,
Figure BDA0002568213840000091
为y1列式子优化结果的当地法向。优化算法选择梯度算法,优化过程中,收敛阈值设为10-6,优化计算结果如下表所示:
表1优化结果对比
Figure BDA0002568213840000092
根据上表可以看出,基于序贯思想下的多约束优化方法可以找到与传统多约束优化方法基本一致的优化结果,验证了该方法的有效性与正确性。目标函数优化迭代对比如图5所示。
同时由于序贯优化算法在对约束进行分解时,三种计算列式的求解次数是不一致的。当把y1作为主约束条件,优化求解过程中迭代次数较多,而y2、y3作为子约束的子优化流程,进行的是无约束的优化,因此可以在较短的步数内达到收敛,结束收敛。而计算得到的d2、d3作为y1的约束增加量增加到y1的子优化过程中,保证整个优化过程能满足三个约束的要求,最终满足约束阈值,达到收敛。
因此对于一个复杂的工程优化求解问题,可以简化求解时间为下列式:
Figure BDA0002568213840000093
传统多约束的计算总时间可以简化为下列式:
Figure BDA0002568213840000094
因此基于序贯的多约束优化求解策略相较于传统多约束优化优化求解方法,可以节省的计算求解时间如下式:
Figure BDA0002568213840000095
上式中的c表示传统优化算法下的优化系统迭代次数,ck表示序贯优化方法下各个学科分别的迭代次数,tk,k=1,2,3,…,n表示各个表达式计算一次所需的时间。因此基于序贯优化的多学科多约束求解算法,在处理优化设计过程中较为耗时的学科时,通过将其作为子约束的子优化迭代,减少其计算迭代的次数来达到更快的优化求解,提高优化求解的效率,同时能满足多个约束的要求,相较于传统多约束优化方法能满足优化求解的精度,同时求解效率更高。
实施例二:
在上述数值算例的基础上,对加筋壁板进行结构的优化设计,设计目标包含结构的强度约束,结构的模态约束以及结构的临界颤振速度的约束。以一个如图6所示的加筋壁板为优化对象,面板为正方形,边长为1米,厚5毫米;四根筋条呈“井”字形,高度为4厘米。面板和筋条的材料均为钢。气流方向与加筋板平行如图7所示,加筋板约束方式为四边简支。筋条的截面尺寸对结构重量、强度、刚度和临界静发散速度均存在明显影响,故本实施例中选取筋条的厚度作为设计变量。垂直气流方向的两根筋条的厚度为第一个设计变量,记为h1;顺气流方向的两根筋条的厚度为第二个设计变量,记为h2。加筋板具体信息如下表所示。
表2加筋壁板属性
Figure BDA0002568213840000101
上述算例中,结构颤振计算采用p-k法,优化采用二次拉格朗日法求解非线性规划问题(NLPQL),优化变量初始值设为0.03m。优化模型如下:
Figure BDA0002568213840000102
Figure BDA0002568213840000103
Figure BDA0002568213840000111
为将常规优化流程与序贯优化流程的结果进行对比,采用相同的优化模型进行的常规优化流程如下:
Figure BDA0002568213840000112
将序贯优化与常规优化对比,迭代过程如图8、图9、图10所示,对比结果如下表所示:
表3传统求解策略与序贯求解策略计算结果
Figure BDA0002568213840000113
根据上表可以得出结论:从优化结果方面,序贯优化结果与常规优化结果较为接近,因此精度上是较为一致的;从计算效率来看,序贯优化优化所需的时间明显小于常规优化所需的时间,总体而言序贯优化相比于传统优化方法节省了15%的时间,验证了序贯优化方法的效率。具体而言,可以看出序贯优化算法在进行子优化时,由于强度约束子优化、模态子优化以及颤振子优化约束较少,可以在短时间内达到目前约束下的最优解,因此迭代次数较少,相比传统优化方法,由于多个约束之间的影响,优化解在不断地震荡,迭代次数较多,因此相较于序贯优化思想下的多学科多约束优化设计策略优化求解效率低。因此序贯优化策略可以一定程度上提高优化效率且满足计算精度要求,证明了本发明的有效性。
以上仅是本发明的具体步骤,对本发明的保护范围不构成任何限制;其可扩展应用于其它基于满应力约束准则的桁架结构拓扑优化问题的领域,凡采用等同变换或者等效替换而形成的技术方案,均落在本发明权利保护范围之内。
本发明未详细阐述部分属于本领域技术人员的公知技术。

Claims (4)

1.一种高超声速飞行器结构的多学科多约束序贯优化方法,应用于基于热环境的高超声速战斗机,其特征在于:
在进行结构设计优化时,以结构减重为设计目标,以结构热模态约束、热强度约束及热颤振约束为优化模型约束,其优化模型如下:
Figure FDA0002568213830000011
式中X为设计变量,M(Xk)为结构质量,作为设计目标;σmax(X)≤[σ]表示结构内最大应力小于强度设计值,[σ]为结构应力的许用值,
Figure FDA0002568213830000012
表示结构颤振发散速度大于设计值,f1(Xk)≥f0表示结构一阶模态大于最小容许值;XL≤X≤XU为设计变量在设计上下限内,具体包括如下步骤:
第一步:构建随设计变量X变化而自动更新的飞行器结构参数化模型;将强度约束条件的初始平移距离D0设置为0;考虑飞行器结构的弹性变形,计算作用在飞行器结构上的气动载荷Q;根据k-1次循环后得到的强度约束条件总平移距离Dk-1,得到等效强度约束条件:
σmax(Xk)+Dk-1≤[σ],
其中Dk-1为第k-1次循环后得到的强度约束条件平移距离,Xk为第k次循环中飞行器结构强度优化的最优设计点,σmax(Xk)代表强度优化最优设计点Xk处的飞行器结构中最大应力,[σ]为结构应力的许用值;
第二步:对飞行器结构进行强度子优化,优化模型如下:
Figure FDA0002568213830000013
其中M(Xk)代表最优设计点Xk处的飞行器结构总重量,XL和XU分别为优化变量的下界和上界;进行当前最优设计点处的灵敏度分析,求解当设计点在Xk处时最大应力及最大位移对设计变量的偏导数:
Figure FDA0002568213830000021
i=1,2,…,n
Figure FDA0002568213830000022
n为自然数,根据灵敏度分析结果,确定强度约束函数曲线的单位法向量
Figure FDA0002568213830000023
计算公式如下:
Figure FDA0002568213830000024
第三步:进行飞行器结构热颤振及热模态子优化,求解第k次循环中强度优化最优设计点Xk沿强度约束函数曲线法向的热模态最小平移距离
Figure FDA0002568213830000025
和热颤振最小平移距离
Figure FDA0002568213830000026
取dk
Figure FDA0002568213830000027
Figure FDA0002568213830000028
的最大正值作为沿强度约束函数曲线法向的最小平移距离,平移后的设计点为
Figure FDA0002568213830000029
热模态子优化:
Figure FDA00025682138300000210
热颤振子优化:
Figure FDA00025682138300000211
设计点
Figure FDA00025682138300000212
满足静发散速度要求和一阶模态要求:
Figure FDA00025682138300000213
Figure FDA00025682138300000214
其中
Figure FDA00025682138300000215
为飞行器结构在设计点
Figure FDA00025682138300000216
处的静发散速度,Vcr_0为静气动弹性要求的最小静发散速度;f0表示初始设计的一阶模态要求;
根据dk,折算第k次循环得到的强度约束条件的平移距离ΔDk,然后计算k次循环后强度约束条件的总平移距离Dk,计算公式如下:
Dk=Dk-1+ΔDk
强度约束平移距离的计算方法如下:分别针对第k次循环得到的两个最优设计点Xk
Figure FDA0002568213830000031
开展飞行器结构的应力分析,计算这两个最优点在气动载荷Q作用下的结构应力的最大值σmax(Xk)和
Figure FDA0002568213830000032
并利用如下公式计算第k循环得到的强度约束条件平移距离:
Figure FDA0002568213830000033
判断
Figure FDA0002568213830000034
是否成立,其中ε为设置的收敛阈值;若成立,则认为优化结果收敛,优化完成,输出优化结果;若不成立,则说明优化结果还未收敛,循环次数k增加1,继续进行下一个循环。
2.根据权利要求1所述的一种高超声速飞行器结构的多学科多约束序贯优化方法,其特征在于:
所述的步骤一中,根据实际工程情况确定设计变量、设计变量的取值区间、容差和结构的约束条件,再求得结构响应函数。
3.根据权利要求1所述的一种高超声速飞行器结构的多学科多约束序贯优化方法,其特征在于:
所述的步骤二中,只考虑结构强度约束,不考虑气动弹性约束,进行结构强度优化与当前设计点的灵敏度分析,从而得到强度约束函数曲线的单位法向量
Figure FDA0002568213830000035
4.根据权利要求1所述的一种高超声速飞行器结构的多学科多约束序贯优化方法,其特征在于:
所述的步骤三中,提取步骤二中的当前设计点结果将其作为气动弹性优化的初始设计点,利用飞行器结构热颤振及热模态优化结果进行结构强度优化中约束条件的修正,最后在新的强度约束条件下,重新进行考虑结构强度约束条件的飞行器结构强度优化和设计点到可行域距离的求解;循环迭代直至收敛,得到同时满足结构强度约束和结构的临界颤振速度的约束的最终设计点。
CN202010629973.7A 2020-07-03 2020-07-03 一种高超声速飞行器结构的多学科多约束序贯优化方法 Pending CN111950075A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010629973.7A CN111950075A (zh) 2020-07-03 2020-07-03 一种高超声速飞行器结构的多学科多约束序贯优化方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010629973.7A CN111950075A (zh) 2020-07-03 2020-07-03 一种高超声速飞行器结构的多学科多约束序贯优化方法

Publications (1)

Publication Number Publication Date
CN111950075A true CN111950075A (zh) 2020-11-17

Family

ID=73336964

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010629973.7A Pending CN111950075A (zh) 2020-07-03 2020-07-03 一种高超声速飞行器结构的多学科多约束序贯优化方法

Country Status (1)

Country Link
CN (1) CN111950075A (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112749443A (zh) * 2020-12-30 2021-05-04 北京航空航天大学 一种自动半自动迭代的数字样机优化并行协同设计方法
CN114329791A (zh) * 2021-12-31 2022-04-12 北京航空航天大学 基于模块集成与数据管理的飞行器机翼结构综合优化方法
CN114662369A (zh) * 2022-05-19 2022-06-24 中国飞机强度研究所 一种空天飞机复杂曲面结构大梯度极高温热强度评估方法
CN117892558A (zh) * 2024-03-14 2024-04-16 西安现代控制技术研究所 一种超远程制导火箭多学科动态优化模型构建方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101916314A (zh) * 2010-08-16 2010-12-15 北京理工大学 高速飞行器升力面气动热结构多学科优化设计平台
CN107563107A (zh) * 2017-10-23 2018-01-09 北京航空航天大学 一种基于序贯优化思想的飞行器结构静气动弹性设计方法
CN107622144A (zh) * 2017-08-16 2018-01-23 北京航空航天大学 基于序贯方法的区间不确定性条件下多学科可靠性优化设计方法
CN110826182A (zh) * 2019-10-08 2020-02-21 北京航空航天大学 一种基于顶点法和序贯优化策略的飞行器结构气动弹性鲁棒设计方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101916314A (zh) * 2010-08-16 2010-12-15 北京理工大学 高速飞行器升力面气动热结构多学科优化设计平台
CN107622144A (zh) * 2017-08-16 2018-01-23 北京航空航天大学 基于序贯方法的区间不确定性条件下多学科可靠性优化设计方法
CN107563107A (zh) * 2017-10-23 2018-01-09 北京航空航天大学 一种基于序贯优化思想的飞行器结构静气动弹性设计方法
CN110826182A (zh) * 2019-10-08 2020-02-21 北京航空航天大学 一种基于顶点法和序贯优化策略的飞行器结构气动弹性鲁棒设计方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ZESHENG ZHANG 等: "An sequential optimization and aeroelastic constraint transformation method for strength-aeroelastic comprehensive design", 《JOURNAL OF FLUIDS AND STRUCTURES》 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112749443A (zh) * 2020-12-30 2021-05-04 北京航空航天大学 一种自动半自动迭代的数字样机优化并行协同设计方法
CN112749443B (zh) * 2020-12-30 2022-05-17 北京航空航天大学 一种自动半自动迭代的数字样机优化并行协同设计方法
CN114329791A (zh) * 2021-12-31 2022-04-12 北京航空航天大学 基于模块集成与数据管理的飞行器机翼结构综合优化方法
CN114329791B (zh) * 2021-12-31 2024-06-07 北京航空航天大学 基于模块集成与数据管理的飞行器机翼结构综合优化方法
CN114662369A (zh) * 2022-05-19 2022-06-24 中国飞机强度研究所 一种空天飞机复杂曲面结构大梯度极高温热强度评估方法
CN117892558A (zh) * 2024-03-14 2024-04-16 西安现代控制技术研究所 一种超远程制导火箭多学科动态优化模型构建方法

Similar Documents

Publication Publication Date Title
CN111950075A (zh) 一种高超声速飞行器结构的多学科多约束序贯优化方法
Barnes et al. Structural optimisation of composite wind turbine blade structures with variations of internal geometry configuration
CN105843073B (zh) 一种基于气动力不确定降阶的机翼结构气动弹性稳定性分析方法
CN103366065B (zh) 一种基于区间可靠性的飞行器热防护系统尺寸优化设计方法
Li et al. Aeroelastic global structural optimization using an efficient CFD-based reduced order model
CN102262692B (zh) 飞机翼面蒙皮亚音速颤振优化方法
CN106126860A (zh) 一种考虑加工误差的高超声速机翼鲁棒优化设计方法
CN111191401A (zh) 一种基于协同优化的高超声速飞行器气动/控制/结构多学科优化设计方法
CN105046021A (zh) 非定常气动力最小状态有理近似的非线性优化算法
Maheri et al. Combined analytical/FEA-based coupled aero structure simulation of a wind turbine with bend–twist adaptive blades
CN112765731B (zh) 一种考虑局部屈曲的曲线纤维复材结构气动弹性优化方法
Sudhi et al. Design of transonic swept wing for hlfc application
Hui et al. A data-driven CUF-based beam model based on the tree-search algorithm
CN113221251B (zh) 一种高超声速飞行器整机结构设计方法及系统
CN111274624B (zh) 一种基于rbf代理模型的多工况异形节点拓扑优化设计方法
CN111551343B (zh) 带栅格舵火箭子级全速域气动特性风洞试验设计方法
CN110826182B (zh) 基于顶点法和序贯优化策略的飞行器结构气动弹性设计法
Zhang et al. An sequential optimization and aeroelastic constraint transformation method for strength-aeroelastic comprehensive design
Rui et al. A novel approach for modelling of an injector powered transonic wind tunnel
Nguyen et al. Multi-point jig twist optimization of mach 0.745 transonic truss-braced wing aircraft and high-fidelity cfd validation
CN112632728A (zh) 基于深度学习的透平机械叶型设计及性能预测方法
Vedam et al. Evaluation of Gradient and Curvature-Based Adaptive Mesh Refinement for Viscous Transonic Flows
CN110135038A (zh) 一种应用于客车快速轻量化的分析方法
Amrit et al. Aerodynamic design exploration through point-by-point pareto set identification using local surrogate models
Tang et al. Aero-structure coupled optimization for high aspect ratio wings using multi-model fusion method

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20201117

RJ01 Rejection of invention patent application after publication