CN111948401A - CHCHD10在促进AChR亚基基因表达和维持NMJ稳定中的应用 - Google Patents
CHCHD10在促进AChR亚基基因表达和维持NMJ稳定中的应用 Download PDFInfo
- Publication number
- CN111948401A CN111948401A CN202010594787.4A CN202010594787A CN111948401A CN 111948401 A CN111948401 A CN 111948401A CN 202010594787 A CN202010594787 A CN 202010594787A CN 111948401 A CN111948401 A CN 111948401A
- Authority
- CN
- China
- Prior art keywords
- achr
- chchhd
- nmj
- atp
- subunit gene
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/48—Biological material, e.g. blood, urine; Haemocytometers
- G01N33/50—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
- G01N33/68—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving proteins, peptides or amino acids
- G01N33/6887—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving proteins, peptides or amino acids from muscle, cartilage or connective tissue
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q1/00—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
- C12Q1/68—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
- C12Q1/6844—Nucleic acid amplification reactions
- C12Q1/6851—Quantitative amplification
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2333/00—Assays involving biological materials from specific organisms or of a specific nature
- G01N2333/435—Assays involving biological materials from specific organisms or of a specific nature from animals; from humans
- G01N2333/46—Assays involving biological materials from specific organisms or of a specific nature from animals; from humans from vertebrates
- G01N2333/47—Assays involving proteins of known structure or function as defined in the subgroups
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2800/00—Detection or diagnosis of diseases
- G01N2800/28—Neurological disorders
- G01N2800/2835—Movement disorders, e.g. Parkinson, Huntington, Tourette
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Biomedical Technology (AREA)
- Organic Chemistry (AREA)
- Molecular Biology (AREA)
- Immunology (AREA)
- Microbiology (AREA)
- Hematology (AREA)
- Urology & Nephrology (AREA)
- Zoology (AREA)
- Wood Science & Technology (AREA)
- Biotechnology (AREA)
- Physics & Mathematics (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- Medicinal Chemistry (AREA)
- Pathology (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Biophysics (AREA)
- General Physics & Mathematics (AREA)
- Food Science & Technology (AREA)
- Cell Biology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- General Engineering & Computer Science (AREA)
- Genetics & Genomics (AREA)
- Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
Abstract
本发明公开了CHCHD10在促进AChR亚基基因表达和维持NMJ稳定中的应用。本发明通过免疫组化、电生理、电镜以及行为学等实验技术手段来探究骨骼肌中CHCHD10对NMJ稳态的调控作用;沉默或敲除CHCHD10基因能引起细胞或组织ATP水平下降,提示ATP的产生依赖于CHCHD10的表达;也进一步证实了ATP能促进Agrin诱导的AChR聚集;通过染色质免疫沉淀实验可得,ATP可以促进转录因子GABPα与AChR亚基基因的启动子结合;这提示着ATP通过促进AChR亚基基因表达,进而促使Agrin诱导的AChR聚集,从而维持NMJ正常的功能;本发明提示了靶向NMJ可能是早期治疗和干预ALS和其他神经肌肉疾病的重要手段。
Description
技术领域
本发明具体涉及CHCHD10在促进AChR亚基基因表达和维持NMJ稳定中的应用。
背景技术
肌肉萎缩侧索硬化症(amyotrophic lateral sclerosis,ALS)是一种致死性运动神经元退行性疾病。主要特征之一为脊髓中的运动神经元逐渐失去对骨骼肌的控制,临床表现为肌肉出现进行性萎缩和无力,接着累及呼吸肌,最终患者呼吸衰竭而死亡。ALS患者临床确诊后的存活期一般只有3-5年,人群发病率约为5/10000,大部分为散发型ALS,约5-10%的病人是家族遗传性ALS。目前ALS致病机制主要涉及神经元兴奋毒性,RNA代谢受损,蛋白质错误折叠,线粒体功能紊乱,运动神经元轴突运输障碍等以及其他致病因素。然而目前为止,ALS还没有有效的治疗手段,部分原因是对其了解还不够深入,对其致病机制的理解不完全,还缺乏能应用于临床早期诊断的特异性生物学标记。
神经肌肉接头(neuromuscular junction,NMJ)退化被认为是ALS发病早期特征。已有报道表明,在NMJ处含有大量的线粒体,而且ALS病人中存在线粒体功能紊乱现象。
CHCHD10(coiled-coil-helix-coiled-coil-helix domain containing 10,CHCHD10又称C22orf16)是CHCHD家族中的一个成员,目前CHCHD家族总共包含有9个成员(CHCHD1、CHCHD2、CHCHD3、CHCHD4、CHCHD5、CHCHD6、CHCHD7、CHCHD8和CHCHD10)。大多数CHCHD家族成员蛋白定位在线粒体上且均含有CHCH结构域的。CHCHD10基因含有四个外显子,共编码142个氨基酸。它是一种核基因编码的线粒体蛋白质,主要定位在线粒体膜间隙中,在嵴的连接处富集。虽然CHCHD10已被证实调控线粒体的结构和功能,但CHCHD10是否以及如何调节运动神经元和骨骼肌之间的神经传递目前仍然未知。
发明内容
针对上述情况,为克服现有技术的缺陷,本发明提供CHCHD10在促进AChR亚基基因表达和维持NMJ稳定中的应用。
为了实现上述目的,本发明提供以下技术方案:
CHCHD10在促进AChR亚基基因表达和维持NMJ稳定中的应用。
进一步地,CHCHD10为骨骼肌中的CHCHD10。
进一步地,分离野生型小鼠的骨骼肌、坐骨神经和脊髓组织,进行免疫印迹实验,显示CHCHD10蛋白的分子量大小约为15kD,CHCHD10在骨骼肌中表达量较高。
进一步地,CHCHD10会和突触后AChR聚集体有共定位,CHCHD10在神经肌肉接头突触后高表达。
进一步地,运用设计的CHCHD10的sgRNA转染C2C12细胞,并加入1nM Agrin刺激16小时,染色发现,在未转染的肌管中,聚集蛋白可以有效促进AChR簇的形成。
进一步地,用表达GFP或GFP-IRES-Cre的腺病毒感染离体培养的CHCHD10f/f小鼠原代肌肉细胞,待肌源细胞分化成肌管后,聚集蛋白Agrin刺激16小时,结果显示表明肌肉CHCHD10对于Agrin诱导的AChR聚集是必需的。
进一步地,CHCHD10介导线粒体产生的ATP能够调控Agrin诱导的AChR聚集。
进一步地,检测AChR亚基的mRNA水平采用实时荧光定量PCR,在C2C12肌管细胞中用ATP孵育后,AChRα,AChRβ,AChRδ和AChRγ的mRNA水平显著提高,ATP是通过调节AChR亚基基因表达促进Agrin诱导的AChR聚集。
进一步地,为了鉴定ATP刺激是否可以促进GABPα与AChR亚基基因的转录起始位点结合,采用ATP或无ATP处理C2C12肌管进行染色质免疫沉淀实验,检测转录因子GABPα与AChR亚基,AChRδ,AChRγ和AChRβ基因的启动子的结合丰度;经过荧光定量PCR扩增和DNA凝胶电泳,最终表明GABPα可以与AChR亚基的推定的起始位点结合;ATP刺激能促进GABPα与AChR亚基基因的启动子区域中的N-box的结合,增加AChR亚基数目和AChR聚集簇。
本发明的有益效果是:
(1)本发明通过免疫组化、电生理、电镜以及行为学等实验技术手段来探究骨骼肌中CHCHD10对NMJ稳态的调控作用;通过免疫印迹和染色实验发现,ALS新致病基因CHCHD10在NMJ突触后肌肉细胞线粒体中高表达;小鼠行为学和电生理实验发现,骨骼肌细胞条件性敲除CHCHD10的小鼠,表现出抓力下降,NMJ神经信号传递功能障碍;免疫染色实验发现,NMJ结构表现出年龄依赖性突触损伤的特点;进一步探究发现,沉默或敲除CHCHD10基因能引起细胞或组织ATP水平下降,提示ATP的产生依赖于CHCHD10的表达;也进一步证实了ATP能促进Agrin诱导的AChR聚集;通过染色质免疫沉淀实验可得,ATP可以促进转录因子GABPα与AChR亚基基因的启动子结合;这提示着ATP通过促进AChR亚基基因表达,进而促使Agrin诱导的AChR聚集。
(2)本发明研究得到CHCHD10是维持线粒体结构和产生ATP所必需的,并且ATP通过增强GABPα介导的AChR亚基基因表达来促进Agrin诱导的AChR聚集,从而维持NMJ正常的功能;并且本发明还提示了突触后CHCHD10对调节NMJ的稳态起着重要作用,并为ALS的致病机理提供新的假说;本发明还提示了靶向NMJ可能是早期治疗和干预ALS和其他神经肌肉疾病的重要手段。
附图说明
图1是两月龄野生型小鼠的CHCHD10在脊髓、坐骨神经和骨骼肌的表达示意图,其中GAPDH作为内参蛋白,SC,spinal cord脊髓;SN,sciatic nerve坐骨神经;SM,skeletalmuscle骨骼肌。
图2是CHCH10在神经肌肉接头突触后区域高度富集的示意图,其中A为小鼠坐骨神经切除手术示意图;B为对照组和去神经组的腓肠肌切片的免疫荧光染色图,绿色为CHCHD10免疫染色,红色为AChR染色,蓝色为DAPI染色。
图3是CHCHD10-floxp转基因小鼠构建示意图;A是CHCHD10条件性敲除小鼠构建示意图,CHCHD10基因组结构(双斜线之间)包括外显子1和2;第二组,CHCHD10靶向构建体,具有两个同向loxp位点和两个同源臂;第三组,利用CRISPR/Cas9方法进行同源重组后的CHCHD10等位基因;第四组,在与细胞特异性Cre重组酶杂交后,靶向CHCHD10等位基因而缺失外显子1和2(CHCHD10-cKO),B是HSA-Cre小鼠与lsl-tdTomato小鼠交配得到的骨骼肌特异性表达红色Tomato蛋白,SC:施旺氏细胞;MN:运动神经元;SM:骨骼肌;C是HSA-Cre;CHCHD10floxp/+小鼠和CHCHD10floxp/+小鼠交配子代基因型鉴定凝胶电泳图,WT条带大小为:541bp,CHCHD10 floxp/floxp条带分子量大小为620bp,Cre条带分子量大小为750bp,D是WT小鼠和骨骼肌条件性敲除CHCHD10小鼠免疫印迹结果显示,和WT小鼠相比,骨骼肌条件性敲除CHCHD10小鼠肌肉组织中CHCHD10的表达量下降,GAPDH为内参蛋白。
图4是骨骼肌CHCHD10缺失导致肌无力和神经递质传递障碍示意图;其中,control表示对照组,HSA-cKO表示实验组,A是实验组与对照组小鼠抓力统计结果示意图,n=13;非配对t-检验;**p<0.01;B是横梁实验显示示意图,HSA-CHCHD10-/-小鼠需要更久的时间穿越横梁,n=每组9只;非配对t检验;*p<0.05;C是爬杆实验显示突变小鼠需要更久时间到达杆底端,n=每组9只;非配对t检验;*p<0.05;D是给予P60小鼠坐骨神经10个连续不同频率的刺激,腓肠肌产生的复合动作电位;1st,2nd,10th分别指给予第1次,第2次和第10次刺激产生的具有代表性的动作电位发放图;E是对连续堆叠的10条CMAP轨迹线以进行比较示意图,随着连续的刺激,在HSA-CHCHD10-/-小鼠肌肉中,CMAP幅度下降;图中为两组小鼠的10个有代表性的CMAP连续堆叠而成的轨迹图;F是在30Hz下给予10次连续刺激,HSA-CHCHD10-/-小鼠肌肉中的CMAP振幅逐渐减小,每组n=4;配对t-检验;*p<0.05,**p<0.01;G是随着刺激频率的增大,HSA-CHCHD10-/-小鼠肌肉CMAP振幅逐渐减小;每组n=4;配对t-检验;*p<0.05,**p<0.01。
图5是小鼠骨骼肌CHCHD10缺失导致mEPP振幅下降示意图;A是实验组(两月龄肌肉敲除CHCHD10小鼠)和对照组小鼠的mEPP轨迹图,右侧是左侧轨迹图中单个发放信号的放大图;B是对照组与实验组小鼠膈肌部位记录的mEPP振幅分布的累积概率分布图;C是对照组与实验组小鼠膈肌部位记录的mEPP振幅对比示意图,HSA-CHCHD10-/-小鼠的mEPP振幅降低,n=每组4只;每只小鼠5-6根肌纤维;非配对t-检验;***p<0.001;D是两组小鼠膈肌部位记录的mEPP频率分布的累积概率图;E是两组小鼠膈肌部位记录的mEPP频率对比图,HSA-CHCHD10-/-小鼠中的mEPP频率上升,n=每组4只;每只5-6根肌纤维;非配对t-检验;*p<0.05。
图6是小鼠骨骼肌CHCHD10缺失导致AChR簇变小示意图,A是在P0、P60和P300时期,对照组和HSA-CHCHD10-/-小鼠的腓肠肌荧光染色图,R-BTX标记AChR簇;B是A图的AChR簇大小的统计结果,n=每组3只;非配对t-检验;*p<0.05,***p<0.001;C是A图中P60和P300小鼠腓肠肌AChR簇片段化的统计结果,n=每组3只;非配对t-检验;*p<0.05,***p<0.001。
图7是小鼠骨骼肌CHCHD10缺失导致突触前神经丝退化,发育延迟示意图,A是对照组和实验组小鼠腓肠肌染色示意图,R-BTX标记AChR,NF和SV2抗体分别标记神经纤维和囊泡,长箭头表示肿胀,片段化,缩回的神经丝,短箭头指示没有神经丝支配的突触后AChR;B是对照组和HSA-CHCHD10-/-小鼠中NMJ神经支配的统计结果,n=每组3只;双因素方差分析;**p<0.01;C是在P60时期,对照组和HSA-CHCHD10-/-小鼠肌肉中AChR亚基的mRNA水平示意图。
图8是CHCHD10对Agrin诱导肌肉细胞AChR聚集示意图,A是CHCHD10的sgRNA转染C2C12细胞,在CHCHD10 sgRNA转染的肌管中,Agrin诱导的AChR簇(长箭头)减少,B是A图中的AChR簇的数量统计结果,三个独立实验;非配对t-检验;***p<0.001;C是CHCHD10f/f原代肌管感染Ad-Ctrl-GFP或Ad-Cre-GFP腺病毒;1nM Agrin处理16小时,并用R-BTX染色;与Ad-Ctrl-GFP感染的相比,Ad-Cre-GFP感染的CHCHD10f/f肌管中聚集蛋白诱导的AChR簇(带有圆圈的箭头所示)减少,两组中未感染的肌管显示无差异(箭头所示);D是C图中的统计结果,三次独立实验;非配对t-检验;**p<0.01。
图9是ATP促进Agrin诱导的AChR聚集示意图;A是用50μM ATP和1nM Agrin对融合的C2C12肌管刺激16小时,并用R-BTX染色,箭头表示Agrin诱导的AChR簇,单独ATP处理对AChR聚集没有影响,但会增加BTX染色信号;B是用不同剂量的ATP(0、0.5μM、2.5μM、12.5μM)和Agrin共同刺激C2C12肌管,诱导的AChR的统计结果;三次独立实验;非配对t检验;**p<0.01,***p<0.001。
图10是ATP促进AChR亚基基因的表达示意图,ATP(ATP浓度为50μM;刺激16小时)刺激促进C2C12肌管中特定基因的表达,n=3;非配对t检验;***p<0.001。
图11是ATP促进GABPα与AChR亚基启动子结合示意图;A是AChRδ,AChRγ和AChRβ的染色质免疫沉淀(ChIP)实验的DNA凝胶电泳图,IgG为阴性对照,B是有ATP或无ATP刺激下,GABPα与AChR亚基基因启动子区结合的丰度;n=3;非配对t检验;***p<0.001,-表示无ATP刺激,+表示有ATP刺激。
图12是ATP促进HSA-CHCHD10-/-小鼠AChR的表达并修复NMJ缺陷示意图,图A是ATP治疗挽救了缺失CHCHD10的肌肉中NMJ尺寸变小,图B是对图A的单因素方差分析结果示意图;n=3;***p<0.001。
具体实施方式
以下结合附图对本发明的技术方案做进一步详细说明,应当指出的是,具体实施方式只是对本发明的详细说明,不应视为对本发明的限定。以下实施例中,所用到的试剂或者仪器等均能够通过商业途径购得,1M=1mol/L。除非特别说明,本发明中的图片处理,使用PowerPoint,Adobe Photoshop CS5,ImageJ软件;电生理数据主要使用Clampfit 9.2(Molecular Devices)分析。统计分析主要利用,Excel 2010和GraphPad Prism 5软件进行统计处理。数据分析主要应用双尾配对、双尾不配对t-检验,方差分析,数据表示方式为Mean±SEM。统计学显著性差异表示为*p<0.05,**p<0.01以及***p<0.001。
1.1CHCHD10的表达分布和特性
为了检测CHCHD10蛋白的分布,分离P60野生型小鼠的骨骼肌、坐骨神经和脊髓组织,进行免疫印迹实验:
1.11试剂配制:
a.裂解液:150mM NaCl,10mM EDTA,1%Triton X-100,0.1%SDS(w/v),1%Na-deoxycholate,0.25mM PMSF(苯甲基磺酰氟),50mM Tris-HCl(pH 8.0)。检测蛋白磷酸化时需添加1mM Na3VO4和1mM NaF,或磷酸酶抑制剂Cocktail;
b.考马斯亮蓝G250溶液配方:称取0.1g考马斯亮蓝,将其溶在50ml含有体积分数95%的乙醇溶液中,然后加入120ml浓度为85%的磷酸,用dH2O稀释至1L,混匀,4℃保存;
c.10x电泳液:称取30g Tris和144g Glycine,dH2O定容至1L;
d.电泳缓冲液:量取100ml 10x电泳液和10ml 10%SDS,dH2O定容至1L;
e.转膜缓冲液:100ml 10x电泳液,200ml无水甲醇,dH2O补到1L;
f.丽春红染液:称取0.5g Ponceau S粉末至1ml醋酸中,加水稀释至100ml;
g.2x加样缓冲液:0.125M Tris-HCl(pH6.8),4%SDS,质量分数20%甘油,体积分数10%2-巯基乙醇,质量分数0.2%溴酚蓝;
h.显色液ECL储液配置:2M Tris-HCl(pH 9.5),48.46g Tris于200ml ddH2O中,室温储存;1.25mM Luminol,0.44g于10ml DMSO中,-20℃保存;2mM 4IPBA,0.222g于10mlDMSO中;用盐酸调PH值,-20℃保存;
i.10ml 1x ECL solution A:先量取9.23ml ddH2O,添加500μl 2M Tris-HCl,接着用移液器加入220μL 4IPBA,最后加入50μL 1.25mM Luminol,混匀,可以在4℃放置2-4周;
j.1x ECL solution:1ml ECL solution A加入0.6μL Solution B(30%H2O2)。将A和B混合,时效为20-30min;
k.Strip buffer:62.5mM Tris-HCl(pH 6.7),2%SDS,100mM 2-巯基乙醇。
1.1.2制备样品:
细胞样品:
a.以6孔板为例,将细胞培养基轻轻吸弃,1x 0.01M PBS清洗一遍,洗去残留培养基,加入预先配置好的含有终浓度1mM PMSF/PI(检测磷酸化,加入Na3VO4,NaF)的预冷的RIPA裂解液500μL;
b.用细胞刮,将培养皿中的细胞刮下,转移至EP管中,4℃旋转棒上充分裂解0.5-3hour;
c.裂解完后,12,000rpm 4℃离心10min,吸回上清至新的EP管中,对蛋白进行定量。在EP管中加入等体积的2x加样缓冲液并混匀,置于金属浴中,95℃变性15min,结束后可以冻存-20℃;
组织样品:
a.按0.1g组织用1ml裂解液的比例在匀浆器中对组织进行研磨裂解,研磨充分后,将匀浆液吸至EP管中,至于冰箱内旋转机器上使样品充分混匀裂解1-3hour;
b.裂解完成后,12,000rpm 4℃离心10min,吸回上清,至新的EP管中,对蛋白进行定量;
c.定量完成后,在EP管中加入等体积的2x加样缓冲液并混匀,置于金属浴中,95℃变性15min,结束后可以冻存-20℃;
1.1.3蛋白定量:
a.首先配好考马斯亮蓝溶液,1g/l BSA和150mM NaCl;
b.按下表配置混合液,将其混匀,室温放置5min。将样品,加入透明96孔板中,每孔150μL,三个复孔,在多功能酶标仪上检测,以595nm的波长下检测;
c.根据蛋白浓度和OD值,绘制标准曲线;
d.将待测样品裂解液和考马斯亮蓝溶液混匀,相同条件下,检测OD值,根据绘制的标准曲线来确定待测样品浓度值,进行接下来的实验。
表1 Bradford法蛋白定量
1.1.4制胶:
a.制胶前将玻璃板清水洗干净,自然晾干(或吹风机吹干),注意与胶接触的玻璃板板面要干净。根据所跑蛋白分子量大小,选择合适的分离胶浓度。
表2分离胶和浓缩胶配方
b.先配分离胶,10%APS溶液失效溶液最好现配。按表格中配置分离胶;
c.配完之后,将液体及时转入到板中,然后加入异丙醇,起到消除气泡,压平液面,加快分离胶凝固的作用。室温下,20min作用,即可凝固;
d.倒去异丙醇,将胶板倾斜放置,待残余的异丙醇溶液汇聚到两板之间一角,用吸水纸小心吸尽,胶板放平,洗净并擦干梳子;
e.按上表配方配置浓缩胶,用1ml移液器轻轻吸取浓缩胶溶液(注意排出枪中气泡),小心注入胶板中,至胶板上缘。整个过程中注意不要产生气泡。然后轻轻将梳子插入。约20min浓缩胶凝固;
f.将梳子轻轻垂直拔出,将制好的板和胶转移到电泳槽中,加入制备好的电泳缓冲液。上样,100V电泳,并根据实验需求及时终止电泳;
g.在跑电泳过程中,可以提前配置转膜缓冲液,含有20%甲醇的Tris-glycine溶液,置于4℃冰箱预冷。
1.1.5转膜:
a.先从胶板中将胶取出,根据具体实验需要确定是否取出浓缩胶部分,将胶在转膜缓冲液中浸泡10min;
b.裁剪与胶大小一致的PVDF膜和滤纸(PVDF膜5.5x8.5 cm,滤纸7x9 cm),PVDF膜先用甲醇浸润1min,再转入转膜缓冲液中浸泡10min;
c.转膜时,转膜用的夹子黑色面在下,然后依次放:转膜用海绵垫,湿润的两层薄滤纸,蛋白胶,PVDF膜,湿润的两层薄滤纸,转膜用的海绵垫;
d.在放PVDF膜之前,先在蛋白胶上加少量的转膜缓冲液,放膜时将膜的一侧边缘与胶对齐,并避免产生气泡;
e.然后将夹子夹紧后放置到转膜槽内,注意夹子的黑色面要靠近转膜槽的黑色面,转膜槽电源接头处的颜色要与外面塑料槽标记的颜色匹配,防止正负电极接错。转膜条件:100V,2hour(大分子蛋白增加到3hour),冰浴;
f.转膜完成后,使用丽春红对膜进行染色,或将胶用考马斯亮蓝孵育,来判断转膜是否成功。丽春红染膜,条带清晰,浓度适中以及考马斯亮蓝溶液孵育后没看到条带或条带较淡,说明转膜是成功的,可以进行接下来实验。
1.1.6封闭和抗体孵育:
a.封闭使用含有5%脱脂奶粉的1xTBS(pH7.4),室温1hour,于摇床上进行;
b.一抗孵育在4℃冰箱的摇床上进行,孵育过夜,抗体稀释于含有2%脱脂奶粉的0.1%Tween/TBS(pH7.4)中(为防止回收抗体变质,孵育前需添加0.02%的NaN3;
c.孵育完一抗后,用1xTBST(0.1%Tween/TBS)洗膜,10min/次,共洗3次。加二抗孵育(二抗稀释比例为1:5,000,于含有2%脱脂奶粉的1xTBST,pH7.4;HRP二抗不能添加NaN3),于摇床上室温孵育1hour;
d.孵育完成后,用1xTBST洗膜,10min/次,共洗3次,进行下一步显影。
1.1.7显影:
a.在干净的塑料膜上加适量的显色底物,然后将膜正面朝向底物孵育,室温静置1-2min后可到暗室压片;
b.压片时需要根据荧光强弱选择适当的曝光时间。先曝光时间30s,根据X光片上的条带强弱情况,再选择合适的曝光时间;
c.压片完成后,及时标记,做好记录。化学发光显色也可以使用Bio-Rad化学发光成像仪进行扫描。
免疫印迹实验显示CHCHD10蛋白的分子量大小约为15kD,且在肌肉组织中高表达。如图1所示,CHCHD10在脊髓和坐骨神经中表达量较低,在骨骼肌中表达量较高,这说明骨骼肌中的CHCHD10对于NMJ的结构和功能稳定影响作用可能更大。
1.2 CHCHD10在神经肌肉接头(neuromuscular junction,NMJ)突触后高表达
用切除坐骨神经手术的方法,验证CHCHD10在NMJ突触后是否表达:取一只正常野生型成年小鼠,右后肢暴露出坐骨神经,并将坐骨神经完全切断(2-3cm),然后进行缝合。而左后肢进行假手术操作,仅暴露出坐骨神经,再缝合(图2A)。七天后,取两侧相同位置的腓肠肌切片染色:
a.将腓肠肌、解剖取材后用4%多聚甲醛PFA固定过夜;
b.固定完后用质量分数30%蔗糖进行过夜脱水;
c.用手术剪将肌腱剪断,用手术镊将肌纤维撕开,使其松散更有利抗体充分渗入;
d.将上述肌纤维置于0.1M Glycine中15min,进行解交联;
e.用PBS清洗,清洗三次,每次10min;
f.用1%Triton X-100破膜3hour;
g.加入封闭液,置于室温下1hour;
h.加入一抗Neurofilment和SV2,已经染料BTX(blocking buffer配制),在4℃孵育过夜;
i.用PBT(0.5%triton/PBS)清洗一抗,10min/次,共3次;
g.加入二抗,室温孵育1h,该过程注意避光;
k.用PBT(0.5%triton/PBS)清洗二抗,10min/次,共3次;
l..加入DAPI溶液(PBS配制),室温5min;
m.用PBT清洗DAPI,10min/次,共3次;
n.在体视显微镜下,光线调暗,将肌组织尽量分离成单根肌纤维,置于载玻片上,滴加封片液,用指甲油封片;
o.荧光或共聚焦显微镜下拍片;
p.细胞或组织冰冻切片免疫荧光染色:与组织免疫染色类似,0.01M PBS清洗细胞之后,4%PFA固定20min,PBS清洗三次,每次10min,加含有0.3%Triton的PBS溶液,破膜20min;换液,加封闭液,孵育封闭1hour;加一抗过夜。剩余步骤与组织染色类似,清洗用含有0.3%Triton的PBS溶液。
免疫染色发现,CHCHD10仍然会和突触后AChR聚集体有共定位(图2B)。这说明CHCHD10在神经肌肉接头突触后高表达。
2.1 CHCHD10-floxp转基因小鼠的构建
2.1.1转基因小鼠构建
CHCHD10floxp/floxp条件性敲除小鼠的构建,是委托北京百奥赛图基因生物技术有限公司完成的,序列经过测序和southern blot验证正确。为了得到骨骼肌特异性敲除小鼠,用CHCHD10floxp/floxp小鼠和含有骨骼肌特异性标记蛋白HSA(humanα-skeletal actin)启动子和Cre重组酶基因的小鼠进行杂交,得到HSA-Cre;CHCHD10floxp/+杂合小鼠。HSA-Cre转基因小鼠,购于The Jackson Laboratory(#006149)。待该小鼠性成熟以后继续和CHCHD10floxp/floxp纯合小鼠进行杂交,得到HSA-Cre;CHCHD10floxp/floxp骨骼肌细胞完全敲除CHCHD10基因小鼠。除非特别说明,对照组小鼠与骨骼肌细胞完全敲除小鼠为同窝,只携带HSA-Cre或CHCHD10floxp/floxp的小鼠。所有小鼠均饲养在12hour光照,12hour黑暗交替的环境中,可以自由觅食。所有的实验程序均通过浙江大学动物伦理委员会批准。
2.1.2小鼠基因型鉴定
溶液配制:运用碱裂解法提取基因组DNA。
A液:25mM NaOH/0.2mM EDTA;
B液:40mM Tris-HCL(pH7.5-8.0);
DNA提取:剪取1-2mm小鼠尾巴于1.5ml EP管中。加100μLA液,95℃金属浴加热45-60min。需注意,1)加热起始2min,掀开盖子,赶走EP管内的热气,防止管子爆开,溶液蒸干;2)加热期间震荡2次,帮助组织溶解,保证液体覆盖组织。加100μL B液,混匀,6000rpm离心1min,保存于-20℃。
转基因小鼠基因型鉴定,
CHCHD10引物序列:
正向序列,5’-CCAGCCCTCATTTGAAGGCAAAATA-3’
逆向序列,5’-GGCTAGACTACCCCAAGTTACAACA-3’
HSA-Cre引物序列:
正向序列,5’-GCCTGCATTACCGGTCGATGCAACGA-3’
逆向序列,5’-GTGGCAGATGGCGCGGCAACACCATT-3’
PCR反应体系:
PCR反应温度:
DNA电泳:称取1.5%琼脂糖粉末,溶于1xTAE溶液,微波炉加热至完全溶液状态,冷却至60℃左右,加入Gel-staining(1:10,000),摇匀,倒胶,上样,电压值为120V,跑DNA电泳时间30min-40min,使两条带分开。
构建的CHCHD10-floxp转基因小鼠模型(如图3A所示),并将其与骨骼肌特异性表达Cre重组酶的HSA-Cre小鼠(图3B)进行交配。Cre(cyclization recombination enzyme)环化重组酶在胚胎期E9.5时期躯体体节处开始表达,能特异性识别和催化两个同向的loxp位点之间的基因发生同源重组,导致DNA片段缺失。HSA-Cre小鼠和lsl-tdTomato小鼠交配后代中可以看到红色Tomato蛋白的表达,说明HSA-Cre转基因工具小鼠能够正常发挥作用(如图3B所示)。将HSA-Cre;CHCHD10floxp/+小鼠和CHCHD10floxp/+小鼠交配产生的子代,出现三种不同的基因型,HSA-Cre,HSA-Cre;CHCHD10floxp/+和HSA-Cre;CHCHD10floxp/floxp(如图3C所示,图3C中WT指野生型小鼠,KO(纯合子)指骨骼肌完全敲除CHCHD10的小鼠,Het(杂合子)指两条染色体中只有一个染色体中的CHCHD10基因被敲除的小鼠,f/f指含有(f)loxp的条带,f/f下方的WT指代不含(f)loxp的野生型小鼠的条带,相当于正常的野生型对照),且产生的子代个数符合孟德尔遗传规律。小鼠骨骼肌免疫印迹实验也证实,CHCHD10在HSA-Cre;CHCHD10floxp/floxp小鼠骨骼肌中的表达量是下降的(图3D),而在其他组织中表达量没有差异,说明整个Cre-loxp转基因构建系统是有效的。
2.2条件性敲除骨骼肌CHCHD10引起肌无力和CMAP下降
条件性敲除CHCHD10的纯合小鼠出生是存活的,并且符合孟德尔遗传分离定律。为了检测HSA-CHCHD10-/-小鼠肌肉功能是否受到影响,对小鼠进行了抓力测试(grip test),横梁穿越实验(beam traversal test)和爬杆试验(pole test)。
(1)抓力测试
a.在尾巴被悬挂时,小鼠有抓住水平金属网的本能反应。为了评估转基因小鼠神经肌肉功能,将同龄同性别的野生型和转基因小鼠作为实验对象。实验前先让小鼠熟悉一下实验环境和实验操作者;
b.先将小鼠四肢放置在连接有抓力传感器的金属网格上,待其身体平稳后,水平方向匀速牵拉小鼠尾部,这时仪器会显示读数,等出现“嘀”的声响,记录数值,仪器显示当次小鼠抓力的最大值。每只小鼠重复三次实验;
c.统计野生型和转基因小鼠的抓力值,单位为g。
(2)爬杆实验
a.爬杆实验(pole test),参照先前报道的方案进行(Karuppagounder et al.,2015;Paylor et al.,1998);
b.在测试之前,先训练小鼠两天,使其适应环境以及整个实验过程;
c.将小鼠头朝上放置在一根直径1cm,长度50cm的包有纱布的立杆上,放置距离杆顶端约5cm处,并开始计时,检测小鼠转头朝下爬行,到其前肢接触杆底端的标记线整个过程所用时间;
d.实验前研究者对小鼠的基因型不知,每只小鼠检测三次。
(3)横梁穿越实验
a.横梁穿越实验(beam walking test)主要参考先前报道的方案进行(Ornaghiet al.,2017;Quinn et al.,2007);
b.在测试之前,第一天,小鼠在以长100cm,直径4cm的横梁上进行训练,第二天,在以长度100cm,直径1cm横梁上训练。第三天在长度100cm,直径1cm的横梁上正式开始测试。
c.测试时,一束亮光投射在起始位置,以促使小鼠从起始线开始移动到含有巢穴的终点,爬行的总距离为90cm。
d.记录从起始位置到终点,整个过程所需的时间。实验前研究者对小鼠的基因型不知,每只小鼠测试三次。
通过抓力测试(grip test)发现与对照组(100±1.05%)相比,敲除CHCHD10的小鼠的抓力值有显著的下降(79.67±2.48%;n=13;**p<0.01)。横梁穿越实验(beamtraversal test)和爬杆试验(pole test),发现敲除CHCHD10的小鼠需要更长时间穿过横梁(对照组:4.44±0.21s,实验组:6.19±0.64s;n=每组9只;*p<0.05;图4B);爬杆实验(pole test)也显示敲除CHCHD10的小鼠需要更长时间到达杆的底部(对照组:7.58±1.17s,实验组:13.87±2.04s;n=每组9只;*p<0.05;图4C)。以上结果说明敲除骨骼肌中CHCHD10导致小鼠肌肉功能受损。
为了研究HSA-CHCHD10-/-突变小鼠(即敲除骨骼肌中CHCHD10的小鼠)肌肉无力的潜在原因,运用电生理手段鉴定神经肌肉接头的信号传递是否受到损害。在成年小鼠的腓肠肌中检测复合动作电位(CMAP)的变化。给予坐骨神经以连续的电极刺激,记录腓肠肌的响应。
(4)复合动作电位(CMAP)记录
a.将2月龄HSA-cKO(即敲除骨骼肌中CHCHD10的小鼠)以及同窝同性别对照组小鼠,用加有异氟烷的麻醉剂进行麻醉;
b.先用酒精棉擦拭小鼠左侧大腿部外侧区,用手术剪小心将小鼠皮肤剪开,暴露出坐骨神经;
c.将刺激电极(TECA;092-DMF25-S)靠近坐骨神经部位插入,参比电极插入至靠近跟腱侧,记录电极插入左腿靠近腓肠肌中部;参比电极和记录电极与Axopatch 200B放大器相连接;
d.分别在1、2、5、10、20、30以及40Hz下,给予坐骨神经处以一串连续的10次最大刺激,每串刺激间隔30s;
e.用Digidata 1550A(Molecular Devices)进行信号的收集,Clampfit 9.2(Molecular Devices)分析峰-峰振幅。在实验期间,将小鼠放在保温垫上保持在37℃。
对同窝对照小鼠给予10个连续不同频率的刺激发现,肌肉中产生的CMAP振幅几乎没有变化(图4D和4E)。而HSA-CHCHD10-/-小鼠肌肉中的CMAP振幅不能维持(图4D和E)。如在30Hz刺激下,HSA-CHCHD10-/-小鼠肌肉中的CMAP振幅从第二次刺激开始显著地下降,到第10次刺激时,CMAP振幅下降了13.71±2.12%(每组n=4;*p<0.05;图4F)。HSA-CHCHD10-/-小鼠肌肉中CMAP振幅的降低表现出频率依赖性的特点,并且从20Hz到40Hz,有显著性的降低(图4G)。这表明在给予重复刺激后,神经肌肉接头表现出进行性递质传递功能丧失。以上结果说明,肌肉CHCHD10对运动神经元和骨骼肌纤维之间行使正常的神经信号传递是必需的。
2.3骨骼肌条件性敲除CHCHD10引起mEPP振幅下降
为了探究神经递质传递障碍是否源于神经肌肉接头突触前或突触后损伤,进一步在膈肌上检测了微小终板电位mEPPs。
微小终板电位(mEPP)记录
f.记录完复合动作电位后,小鼠处死,解剖出膈肌,带有肋骨和膈神经远端的小鼠左侧膈肌解剖下来,准备记录mEPP;
g.快速解剖出带有肋骨和膈神经末端的左偏侧膈肌,用精细针固定在充氧的(体积分数95%O2,5%CO2)含有Ringer’s平衡盐溶液(136.8mM NaCl,5mM KCl,12mM NaHCO3,1mM NaH2PO4,1mM MgCl2,2mM CaCl2,11mM d-glucose;pH 7.3)的硅酮树脂中,微电极(充满3M KCI,20-40MΩ)插入到肌纤维中间区域;
h.整个实验过程,静息膜电位保持稳定,在–65到–75mV之间。每一个左偏侧膈肌上记录大于5个肌纤维,每个持续时间大于3min;
i.Axopatch 200B放大器收集信号,Digidata 1322A将信号进行数字化处理(10-kHz低通滤波),Clampfit 9.2(Molecular Devices)对结果进行分析。
结果显示,与对照组相比,敲除CHCHD10的小鼠的mEPP振幅下降了29%(对照组:1.140±0.067mV;实验组:0.806±0.051mV;n=5;***p<0.001;如图5B和5C所示),这说明HSA-CHCHD10-/-突变小鼠突触后膜AChR聚集体密度降低。另一方面,突变小鼠的mEPP频率与对照组相比,增加了大约27%(突变组:1.122±0.085Hz;对照组:0.884±0.056Hz;n=5;*p<0.05;如图5B和C所示),这说明突触后膜损伤引起突触前乙酰胆碱释放频率增加,对神经肌肉接头信息传递起到一个代偿性作用。因此,突触后CHCHD10的缺失会导致神经递质传递功能受损。
2.4骨骼肌缺失CHCHD10导致NMJ突触后发育和结构维持功能丧失
完整的神经肌肉接头(NMJ)结构是神经信号从突触前到突触后成功传递的保证。为了找到HSA-CHCHD10-/-突变体中的神经信号传递缺陷和肌无力的影响因素,运用免疫荧光染色的方法对小鼠腓肠肌组织进行染色,通过共聚焦显微镜将收集的连续Z轴扫描的图像叠加成单张图像,来鉴定突变体小鼠的NMJ结构是否发生了变化。
在两组小鼠的胚胎期,没有观察到NMJ结构有明显的差异。在正常野生型小鼠发育过程中,AChR聚集簇的形状也在慢慢发生着变化,在P0时期AChR聚集簇为椭圆形斑块状,到P60时期形成一个类似于椒盐卷饼干样(pretzel-like)并具有复杂的连续分支的稳定形态(图6A),P0表示小鼠出生后第0天,P60表示小鼠出生后第60天。而在P0时期,与对照组相比,HSA-CHCHD10-/-小鼠肌肉中AChR聚集簇较小(HSA-CHCHD10-/-小鼠指的是条件性骨骼肌CHCHD10敲除的小鼠),面积有8%左右的降低(突变体中AChR聚集簇面积为91.680±2.278%,而对照组中AChR聚集簇面积为100±2.574%;图6A和B)。值得注意的是,突变体中AChR聚集簇的减少具有年龄依赖性的特点。在P60时期,与对照组相比,HSA-CHCHD10-/-小鼠肌肉中AChR聚集簇较小,面积减少了约24%(突变体中AChR聚集簇面积为76.12±5.43%,对照组中AChR聚集簇面积为100.0±6.62%;**p<0.01;图6A和B);在P300时期,与对照组相比,HSA-CHCHD10-/-小鼠肌肉中AChR聚集簇较小,面积减少约34%(突变体中AChR聚集簇面积为66.08±5.20%,对照组中AChR聚集簇面积为100±7.38%;***p<0.001;图6A和B)。另外在P300时期,突变体小鼠中,AChR聚集簇出现片段化结构(图6A中白色箭头指示的部分),提示着NMJ结构遭到了破坏。这些结果表明肌肉中的CHCHD10是NMJ突触后结构的发育和维持所必需的,且具有年龄依赖性。
2.5骨骼肌条件性敲除CHCHD10导致NMJ神经丝退化
为了进一步检测敲除CHCHD10的小鼠突触前运动神经元轴突末端是否受损,使用抗神经纤维(NF)和囊泡蛋白SV2的抗体标记神经丝。在对照组成年小鼠(两月龄)中,NF/SV2抗体标记的运动神经元轴突末梢呈现出平滑流线状形态并且与突触后AChR簇共定位(图7A)。然而,在敲除CHCHD10的小鼠中,一些运动神经元轴突出现肿胀,这是神经退化的早期指标(图7A长箭头指示的部分是肿胀部位)。对于P300时期,突变小鼠NMJ损伤更明显:多个NMJ显示片段化,并且一些运动神经元轴突也已经开始退化变性(图7A短箭头指示部分是NMJ片段化的部分)。统计结果显示,NMJ的部分神经支配增加约1.7倍,而突变体中完全神经支配减少约67%(如图7B所示,图7B中Den即denervation,去神经,不受神经支配;Partial指部分神经支配;Full指完全神经支配)。
已知AChR亚基在早期发育阶段由AChRα/β/δ/γ四种亚基组成,并且在成年之后,转变为AChRα/β/δ/ε。然而发现在HSA-CHCHD10-/-小鼠中大多数AChR亚基(AChRα、AChRβ、AChRδ和AChRε)的mRNA水平降低,而AChRγmRNA水平则上调(3.219±0.797倍;*p<0.05)。这些结果说明敲除CHCHD10的小鼠NMJ的成熟可能被延迟或NMJ发生了再生现象(如图7C所示)。这一现象的发生与HSA-CHCHD10-/-小鼠肌肉中的NMJ结构不稳定相吻合(如图7A-B所示)。
3.1CHCHD10对于肌管中Agrin诱导的AChR聚集是必需的
细胞培养及转染
本发明主要用到的细胞均为贴壁细胞,主要有HEK293细胞(人胚胎肾上皮细胞系),C2C12(小鼠成肌细胞),以及小鼠原代肌肉细胞。
(1)培养基配置
表3 293细胞培养基
表4 C2C12细胞生长培养基
表5 C2C12细胞融合培养基
表6原代肌肉细胞生长培养基
表7原代肌肉细胞融合培养基
(2)细胞传代:
a.在细胞培养室的超净工作台中处理细胞。首先将细胞培养基用移液器转移到废液缸中,用不含钙镁离子的1x PBS清洗1次;
b.在10cm有细胞的培养皿中加入1-2ml的0.05%胰酶,放到37℃恒温箱中3min左右;
c.在显微镜下观察,如果细胞边缘变圆变亮,轻轻拍打培养皿壁,可以看到细胞脱落,即可加入与胰酶等量的培养基中和稀释胰酶,并将细胞吹打均匀,显微镜下观察大部分细胞为单细胞;
d.将细胞转移到15ml离心管进行离心,1,000rpm,3min;离心完之后,用含有75%的酒精棉擦洗整个离心管外壁以及双手,将离心管转移到超净工作台中,遗弃培养基,保留沉淀的细胞,加入1-2ml生长培养基,轻轻混匀;
e.对细胞进行计数,显微镜下可看到边缘光滑圆状透亮单个细胞,取一定量细胞,加入10ml(10cm培养皿)的培养基,混匀,将细胞转移到培养皿中培养;
f.对于C2C12细胞,需要注意,传代的C2C12用生长培养基;
g.如果需要做C2C12融合成肌管实验,将C2C12成肌细胞种在用0.3%gelatin铺板过夜处理的培养皿中,待C2C12密度到达80%左右,培养基换为融合培养基。
(3)细胞冻存:
a.将细胞冻存盒提前取出放到室温环境;按细胞传代的方法收集细胞;
b.将细胞离心沉淀,用含有10%FBS的培养基进行重悬;
c.按比例混匀,加入冻存管;DMSO:FBS:细胞培养基的体积比为1:3:6。
d.将细胞分装到冻存管中,封口,放到冻存盒中;再将冻存盒转移到-80℃冰箱中,过夜;
e.第二天将将冻存盒中的EP管转移到液氮中进行长期保存。
(4)细胞转染:
a.以293细胞转染为例。质粒及转染试剂用量:6孔板每孔转染质粒总量为2μg,可根据情况调整。质粒与转染试剂的比例为:1μg质粒使用1-2μl转染试剂。37℃预热opti-MEM;
b.以转染六孔板一个孔为例,分别吸取100μl预热的opti-MEM在两个EP管中,在一个EP管中加入2μg质粒,另一个EP管中加入2-4μl转染试剂,分别轻轻混匀后孵育5min;
c.再轻轻将两者混匀,盖上EP管盖,孵育15min,再将转染试剂加到细胞培养基中混匀,加到铺有细胞的培养皿中;
d.8hour以后,更换正常培养基。而对于C2C12细胞转染,如果需要观察C2C12肌管,需在C2C12成肌细胞密度到达80%左右之前进行转染。
(5)原代肌细胞培养:
a.取胚胎17天到出生后2天之间的小鼠进行取材,对小鼠表皮进行酒精消毒(10s,禁止长时间酒精浸泡);
b.剪取四肢,在解剖镜下,用解剖剪和解剖镊子在灭菌预冷的0.01M PBS中去皮处理;转移到另一灭过菌预冷的PBS中,去除骨和血管等组织;
c.最后把肌肉转到灭菌预冷的PBS中,在细胞房超净工作台内,吸去PBS,显微眼科剪剪碎肌肉组织;
d.加入3ml 0.25%typsin混匀,37℃,30-45min.5min混匀一次;
e.加入3ml原代肌肉细胞生长培养基,中和胰酶。然后用70μm和40μm孔径的尼龙膜将其过滤到50ml离心管中;
f.离心,1,500rpm,5min。小心去掉上清,沉淀用3ml生长培养基重悬;
g.计数,每只小鼠一般2x106个细胞;
h.种到未处理的培养皿中,培箱内放置45min到1hour,一般成纤维细胞会先吸附皿底,小心吸取上清;
i.将含有肌细胞的上清液种到0.3%gelatin铺板处理的培养皿或玻片上,24-孔板,接种密度为4x105个/孔;
j.24hour后,换液;
k.2-3天(观察到有少量肌管开始融合迹象)后,加入融合培养基;
l.1-2左右天可看到明显肌管,加Ara-C可抑制成纤维细胞增殖;
m.加入Agrin溶液过夜(8-12hour为佳),可检测AChR聚集。
(6)Agrin诱导肌管AChR聚集
a.首先要收集细胞分泌的Agrin培液。在转染Agrin质粒前一天,在10cm培养皿中接种293细胞,第二天待细胞密度达到60-70%可进行转染;
b.转染之前,37℃水浴锅中温热细胞培养基以及转染用的opti-DMEM。取高压灭菌过EP管(A),每管加入500μl opti-MEM,并加入Agrin或转染效率对照组GFP质粒8ug混匀;
c.另取灭菌EP管(B),每管加入500μl opti-MEM,并加入脂质转染试剂lipo200010μl混匀。混匀静置5min;
d.将A/B管液体轻轻混匀,室温静置15min;
e.将混合液混入9ml培养液中,轻轻混匀;将旧的培养基移弃,加入含有质粒的混合培养液,放置37℃细胞培养箱中,6-9hour后换正常293培养基。24hour后将培养基换成含有0.5%FBS培养基,过夜,将培养基离心并收集上清,冻存-20℃冰箱。可再次将培养基换成含0.5%FBS培养基过夜,离心收集上清。将收集的Agrin进行浓度测定;WB检验Agrin质粒表达效果。Agrin分泌液相对稳定,4℃可保存1个月;
f.待C2C12肌管或原代培养的肌管融合形成后,将收集的Agrin培液与C2C12融合培养基,按体积比1:5-10混合加入,8-12hour孵育后弃去培液,用0.01M PBS清洗2遍,用4%PFA固定20min,用PBS清洗2遍,加入BTX(1:2,000)过夜处理;用PBS清洗2遍,加DAPI染料孵育10min,再用PBS洗3遍,封片。对于需要用抗体孵育的实验,用4%PFA固定后,可以按细胞免疫染色方法,用一抗与BTX孵育。
为了进一步探究CHCHD10对NMJ稳态的影响,运用设计的CHCHD10的sgRNA转染C2C12细胞,并加入1nM Agrin刺激16小时。染色发现,在未转染的肌管中,聚集蛋白Agrin可以有效促进AChR簇的形成;然而,在转染的CHCHD10 sgRNA的肌管中,聚集蛋白Agrin诱导的AChR簇形成数目显著降低(对照组为13.8±1.744,而sgRNA组中为3.286±1.169;***p<0.001;图8A和8B,图8B中,#表示聚集的乙酰胆碱数量)。
为了进一步验证CHCHD10对AChR聚集的影响,用表达GFP(Ad-Ctrl)或GFP-IRES-Cre(Ad-Cre)的腺病毒感染离体培养的CHCHD10f/f小鼠原代肌肉细胞。待肌源细胞分化成肌管后,聚集蛋白Agrin刺激16小时。如图8C和D所示,与未感染的肌管(箭头指示的部分;Ad-Cre)相比,在Ad-Cre感染的肌管(位于圆圈内的白色箭头指示的部分;Ad-Cre)中,聚集蛋白诱导的AChR簇显著减少(图8C和8D,图8D中,Ad-Cre代表肌管被GFP-IRES-Cre的腺病毒感染组,Ad-Ctrl代表肌管被表达GFP的腺病毒感染组)。作为对照,在Ad-Ctrl感染的肌管(位于圆圈内的箭头指示的部分;Ad-Ctrl)和未感染的肌管(箭头指示的部分;Ad-Ctrl)中,AChR簇的大小在统计学上没有显著性差异(图8C和D)。这些数据表明肌肉CHCHD10对于Agrin诱导的AChR聚集是必需的。
3.2 ATP促进Agrin诱导的AChR聚集
探讨CHCHD10介导线粒体产生的ATP能否调控Agrin诱导的AChR聚集。如图9A所示,AChR簇的确能够响应Agrin的刺激而使得聚集增多。用ATP刺激处理,可以放大Agrin诱导的AChR聚集的效应,且这种效应在一定范围内是具有剂量依赖性的(如图9A和图9B所示,图9B中,#表示聚集的乙酰胆碱数量)。另外,虽然单独的ATP刺激对诱导AChR的聚集没有影响(图9A),但是R-BTX染色信号背景有增强,提示AChR蛋白的表达可能有增加。
3.3 ATP促进AChR受体亚基基因的表达
接下来,检测AChR亚基的mRNA水平。实时荧光定量PCR结果显示,在C2C12肌管细胞中用ATP孵育后,AChRα,AChRβ,AChRδ和AChRγ的mRNA水平显著提高(***p<0.001;图10中,Control指代对照组,没有ATP刺激;ATP指代实验组,进行ATP刺激处理)。这与单独ATP刺激时R-BTX染色信号的增加是一致的(图10)。PGC-1α、COXIII和CHCHD10基因对ATP刺激没有反应(图10),表明ATP可能是通过调节AChR亚基基因表达促进Agrin诱导的AChR聚集。
3.4 ATP促进转录因子GABPα调控AChR亚基基因的表达
为了鉴定ATP刺激是否可以促进GABPα与AChR亚基基因的转录起始位点结合,ATP或无ATP处理C2C12肌管进行染色质免疫沉淀(ChIP)实验,检测转录因子GABPα与AChR亚基,AChRδ(-58/-53),AChRγ(-1855/-1850)和AChRβ基因(根据JASPAR数据库推测)的启动子的结合丰度。
ChIP(染色质免疫共沉淀):
ChIP实验来探究ATP对乙酰胆碱受体亚基基因与其转录因子结合的调控作用。
a.种细胞前,用10cm培养板用0.3%gelatin处理过夜。第二天接种C2C12成肌细胞,当细胞密度达到80%左右,换成低能量的含马血清的分化培养基;
b.培养基要及时换,防止培养液变黄,细胞死掉。待分化第3-4天。有大量的肌管细胞形成,添加ATP(50μM),对照组添加PBS。16hour后收样;
c.细胞甲醛交联:将收取的细胞用PBS清洗两遍,每个培养皿中加入3ml新配置的1%甲醛溶液,室温孵育10min;
d.用冰浴处理的PBS清洗两遍,除去甲醛。加入含有蛋白蛋白酶抑制剂的预冷的PBS溶液1.5ml,用细胞刮将细胞收集至2ml EP管中。4℃离心处理,1,000g,5min;
e.弃去上清,沉淀即为待处理的细胞。每管中加入1ml预冷的含有蛋白酶抑制剂的超声处理细胞裂解液,重悬细胞,冰上孵育10min,4℃离心,5,000g,5min;
f.重复步骤e;
g.弃去上清,加入1ml预冷的含有蛋白酶抑制剂的超声处理细胞核裂解液,冰上孵育10min,将细胞转移到超声处理专用的1ml玻璃管中;
h.实验前需摸索超声条件。最优超声处理条件:PIP:140;Duty:5%;CPB:200;Time:12min;Temperature:6℃;
i.超声处理完成后,将细胞转入EP管中,4℃离心,21,000g,10min。将上清液转移到新的EP管中,作为接下来做免疫共沉淀实验的样品。测定蛋白浓度;留取50μl超声样品,加入100μl无核酸酶的ddH2O,6μl 5M NaCl,和2μl蛋白酶K,混匀,65℃,孵育2hour;
j.将从样品中纯化的DNA,跑1%琼脂糖凝胶,电泳后检测,弥散的DNA条带是否分布在200-1,000bp之间。如果不是,需要重新摸索超声条件;DNA条带适合,可继续进行接下来的实验。测定DNA浓度;
k.移出10μl混合液作为input,冻存-20℃;
l.每个IP样品,取10ug超声样品(约100μl),加入1xChIP缓冲液(含蛋白酶抑制剂),至500μl体系,混匀,置冰上。分别在加PBS和ATP处理的样品中加入1.5ug兔源IgG抗体或1.5ug兔源GABPα抗体,作为阳性对照,加入1.5ug兔源H3抗体,4℃,旋转过夜;
m.第二天,每个IP样品加30μl ChIP级别的蛋白G磁珠,轻轻混匀,4℃,旋转2hour;
n.将EP管放入磁分离架上,1-2min后,磁珠和上清分离,小心移出上清液;
o.每管加入1ml低盐清洗液(含蛋白酶抑制剂),4℃,旋转5min,放入磁分离架,移出上清,重复清洗三遍;
p.加入1ml高盐清洗液,4℃,旋转孵育5min。磁分离架上静置2min,移出上清,分离沉淀;
q.每管2%input样品中,加150μl 1xChIP洗脱溶液,室温放置约45min;同样加150μl 1xChIP洗脱溶液到每个IP管中,置于65℃水浴锅中孵育30min,此过程要时常拿出轻轻混匀,使其充分将DNA充分洗脱下来;
r.将IP样品10,000g离心10s,将管壁上的液体和磁珠沉到管底。磁分离架上静置2min,小心分离磁珠,将上清转移到新的EP管中;
s.对于所有样品,包括2%input,加入6μl 5M NaCl,和2μl蛋白酶K,在65℃水浴锅中,孵育2-4hour;
t.加750μl DNA结合缓冲液至每一个样品中,轻轻混匀;
u.将每个样品分别转到含有DNA吸附柱的管中,14,000g离心30s,将离心后的液体遗弃,加入750μl DNA清洗溶液,14,000rpm离心30s;
v.将DNA吸附柱取下,放入新的1.5ml EP管中,向吸附柱中加入50μl DNA洗脱液,14,000rpm离心30s,洗脱下来的样品即为IP后纯化的DNA。可储存在-20℃或-80℃冰箱中备用;
w.RT-PCR检测:引物的设计,AChRγ和AChRδ主要来源于参考文献(Koike et al.,1995),而AChRβ基因主要通过GeneCopoeia查找出AChRβ基因启动子区域,结合JASPARdatabase中GABPa转录因子结合位点预测,设计的引物序列。具体序列如下:
AChRβ,5’-GGTATGCTGCATCTGTGAGGT-3’;
5’-ATTGCTGAGTTGGGGGTCTC-3’;
AChRδ,5’-CCTGCCTGGGATCTTTTCGT-3’;
5’-GGACAGGTGCTGGTGGTTTA-3’;
AChRγ,5’-TGGCACTGCAGTATTAGCC-3’;
5’-CTCTTGCCACCACCTGTT-3’。
x.PCR反应包括:组蛋白H3阳性对照,DNA的空白对照组,以及每个检测基因的PBS处理,ATP处理,IgG处理的input组及IP组。
表8 PCR反应体系
RT-PCR反应条件:
1)初始变性,95℃,3min;
2)变性,95℃,15s;
3)退火和延伸:60℃,60s;
4)b和c重复,40个循环。
y.结果分析,Percent Input=2%x 2(C[T]2%Input Sample–C[T]IP Sample)
经过荧光定量PCR扩增和DNA凝胶电泳后可以看出,在GABPα抗体处理组,DNA条带(AChRβ,AChRδ和AChRγ)能特异地显示条带,但在IgG免疫沉淀的样品中不显示(或微量)(图11A),表明GABPα可以与AChR亚基的推定的起始位点结合。更重要的是,转录因子GABPα与AChRβ启动子区域的结合丰度增加了大约9倍(对照组为0.291±0.045%;而ATP处理组为2.816±0.173%;n=3;***p<0.001),与AChRδ的结合丰度增加了约7倍(对照组:0.425±0.0149%;ATP处理组:3.449±0.098%;n=3;***p<0.001),与AChRγ启动子区域的结合丰度增加了约3倍(对照组0.663±0.230%,ATP处理组:2.828±0.086%;n=3;***p<0.001)。以上结果表明,ATP刺激能促进GABPα与AChR亚基基因的启动子区域中的N-box的结合,使其基因表达增多,进而增加AChR亚基数目和AChR聚集簇。
鉴于HSA-CHCHD10-/-小鼠中ATP水平下降,接下来检测,ATP是否可以挽救突变小鼠肌肉中的NMJ的缺陷。将Ad-Ctr(GFP)或Ad-Cre(GFP-IRES-Cre)病毒注射到CHCHD10f/f小鼠(CHCHD10f/f小鼠指的是骨骼肌中不含有Cre重组酶的小鼠,CHCHD10基因是没有被敲除的)的腓肠肌中(图12A)。图12A中,Ad-Ctr表示对照组,统计结果和其他实验组相比,未发现有NMJ缺陷。Ad-Cre表示实验组,该组中的小鼠肌肉中有NMJ缺陷,且将Ad-Cre病毒注射到小鼠的腓肠肌中;Ad-Cre+ATP表示对Ad-Cre组小鼠,进行ATP给药。由图可知,ATP给药可部分挽救缺失CHCHD10小鼠肌肉中的NMJ缺陷(图12A和12B)。总之,以上结果说明了CHCHD10介导的ATP促进AChR亚基基因表达和维持NMJ稳定。
显然,所描述的实施例仅仅是本发明的一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都应当属于本发明保护的范围。
Claims (9)
1.CHCHD10在促进AChR亚基基因表达和维持NMJ稳定中的应用。
2.根据权利要求1所述的CHCHD10在促进AChR亚基基因表达和维持NMJ稳定中的应用,其特征是,CHCHD10为骨骼肌中的CHCHD10。
3.根据权利要求1所述的CHCHD10在促进AChR亚基基因表达和维持NMJ稳定中的应用,其特征是,分离野生型小鼠的骨骼肌、坐骨神经和脊髓组织,进行免疫印迹实验,显示CHCHD10蛋白的分子量大小约为15kD,CHCHD10在骨骼肌中表达量高。
4.根据权利要求1所述的CHCHD10在促进AChR亚基基因表达和维持NMJ稳定中的应用,其特征是,CHCHD10和突触后AChR聚集体有共定位,CHCHD10在神经肌肉接头突触后高表达。
5.根据权利要求1所述的CHCHD10在促进AChR亚基基因表达和维持NMJ稳定中的应用,其特征是,运用设计的CHCHD10的sgRNA转染C2C12细胞,并加入1nM Agrin刺激16小时,染色发现,在未转染的肌管中,聚集蛋白可以促进AChR簇的形成。
6.根据权利要求1所述的CHCHD10在促进AChR亚基基因表达和维持NMJ稳定中的应用,其特征是,用表达GFP或GFP-IRES-Cre的腺病毒感染离体培养的CHCHD10f/f小鼠原代肌肉细胞,待肌源细胞分化成肌管后,聚集蛋白Agrin刺激16小时,结果表明肌肉CHCHD10对于Agrin诱导的AChR聚集是必需的。
7.根据权利要求1所述的CHCHD10在促进AChR亚基基因表达和维持NMJ稳定中的应用,其特征是,CHCHD10介导线粒体产生的ATP能够调控Agrin诱导的AChR聚集。
8.根据权利要求1所述的CHCHD10在促进AChR亚基基因表达和维持NMJ稳定中的应用,其特征是,检测AChR亚基的mRNA水平采用实时荧光定量PCR,在C2C12肌管细胞中用ATP孵育后,AChRα,AChRβ,AChRδ和AChRγ的mRNA水平显著提高,ATP是通过调节AChR亚基基因表达促进Agrin诱导的AChR聚集。
9.根据权利要求1所述的CHCHD10在促进AChR亚基基因表达和维持NMJ稳定中的应用,其特征是,鉴定ATP刺激是否可以促进GABPα与AChR亚基基因的转录起始位点结合,采用ATP或无ATP处理C2C12肌管进行染色质免疫沉淀实验,检测转录因子GABPα与AChR亚基,AChRδ,AChRγ和AChRβ基因的启动子的结合丰度;经过荧光定量PCR扩增和DNA凝胶电泳,最终表明GABPα可以与AChR亚基的推定的起始位点结合;ATP刺激能促进GABPα与AChR亚基基因的启动子区域中的N-box的结合,增加AChR亚基数目和AChR聚集簇。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910560564 | 2019-06-26 | ||
CN2019105605643 | 2019-06-26 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN111948401A true CN111948401A (zh) | 2020-11-17 |
CN111948401B CN111948401B (zh) | 2022-04-15 |
Family
ID=73337268
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202010594787.4A Active CN111948401B (zh) | 2019-06-26 | 2020-06-28 | CHCHD10在促进AChR亚基基因表达和维持NMJ稳定中的应用 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN111948401B (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113604542A (zh) * | 2020-06-22 | 2021-11-05 | 浙江大学 | 一种Agrin-MuSK-DOK7信号通路的负调控机制、实验方法及应用 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20140371188A1 (en) * | 2011-11-23 | 2014-12-18 | University Of Iowa Research Foundation | Compositions and methods for inhibiting muscle atrophy and inducing muscle hypertrophy |
CN106822153A (zh) * | 2011-06-06 | 2017-06-13 | 爱荷华大学研究基金会 | 用于抑制肌萎缩的方法 |
CN107609338A (zh) * | 2017-10-24 | 2018-01-19 | 哈尔滨理工大学 | 一种基于代谢生理学的骨骼肌收缩模型 |
US20180100201A1 (en) * | 2015-06-29 | 2018-04-12 | The Broad Institute Inc. | Tumor and microenvironment gene expression, compositions of matter and methods of use thereof |
-
2020
- 2020-06-28 CN CN202010594787.4A patent/CN111948401B/zh active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106822153A (zh) * | 2011-06-06 | 2017-06-13 | 爱荷华大学研究基金会 | 用于抑制肌萎缩的方法 |
US20140371188A1 (en) * | 2011-11-23 | 2014-12-18 | University Of Iowa Research Foundation | Compositions and methods for inhibiting muscle atrophy and inducing muscle hypertrophy |
US20180100201A1 (en) * | 2015-06-29 | 2018-04-12 | The Broad Institute Inc. | Tumor and microenvironment gene expression, compositions of matter and methods of use thereof |
CN107609338A (zh) * | 2017-10-24 | 2018-01-19 | 哈尔滨理工大学 | 一种基于代谢生理学的骨骼肌收缩模型 |
Non-Patent Citations (9)
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113604542A (zh) * | 2020-06-22 | 2021-11-05 | 浙江大学 | 一种Agrin-MuSK-DOK7信号通路的负调控机制、实验方法及应用 |
Also Published As
Publication number | Publication date |
---|---|
CN111948401B (zh) | 2022-04-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US12102692B2 (en) | Materials and methods for delivering nucleic acids to cochlear and vestibular cells | |
de Pins et al. | Conditional BDNF delivery from astrocytes rescues memory deficits, spine density, and synaptic properties in the 5xFAD mouse model of Alzheimer disease | |
US20210069347A1 (en) | Gene augmentation therapies for inherited retinal degeneration caused by mutations in the prpf31 gene | |
ES2981970T3 (es) | Expresión transgénica selectiva de tejidos | |
US20230330268A1 (en) | Materials and methods for delivering nucleic acids to cochlear and vestibular cells | |
JP7430652B2 (ja) | 蝸牛および前庭細胞に核酸を送達するための組成物および方法 | |
TW201925474A (zh) | 工程化dna結合蛋白 | |
Xue et al. | Gene editing in a Myo6 semi-dominant mouse model rescues auditory function | |
CN110709060A (zh) | 用于治疗听力丧失的基因治疗构建体和方法 | |
BR112021010793A2 (pt) | Métodos de detecção, prevenção, reversão e tratamento de doenças neurológicas | |
CN111948401B (zh) | CHCHD10在促进AChR亚基基因表达和维持NMJ稳定中的应用 | |
Zhao et al. | Characterization of promoters for adeno-associated virus mediated efficient Cas9 activation in adult Cas9 knock-in murine cochleae | |
Alaee et al. | Biodistribution of LV-TSTA transduced rat bone marrow cells used for “ex-vivo” regional gene therapy for bone repair | |
Liu et al. | Allele-specific gene-editing approach for vision loss restoration in RHO-associated retinitis pigmentosa | |
Lorenzetto et al. | Impaired nerve regeneration in reeler mice after peripheral nerve injury | |
US20230295654A1 (en) | Methods and compositions for treatment of fragile x syndrome | |
Strepay et al. | Transgenic Tg (Kcnj10-ZsGreen) fluorescent reporter mice allow visualization of intermediate cells in the stria vascularis | |
US20220380806A1 (en) | Gene therapy for the regeneration of auditory hair cells | |
Mora-Jiménez | Gene therapy for dravet syndrome: Evaluation of adenoviral vectors expressing SCN1a in a new mouse model | |
Levin | Muscle Lim Protein in naïve and injured neurons | |
JP2024518552A (ja) | 難聴治療のための遺伝子治療用構築物および方法 | |
WO2023122720A1 (en) | Compositions and methods for delivery of agents to inner ear | |
Baez et al. | Using Herpes Simplex Virus Type 1-Based Amplicon Vectors for Neuroscience Research and Gene Therapy of Neurologic Diseases | |
JP2005504528A (ja) | 分断されたFgf14遺伝子を伴う動物モデル | |
Wise et al. | Regeneration of Cochlear Hair Cells with Atoh1 Gene Therapy after Noise-Induced Hearing Loss. J Regen Med 4: 1 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |