CN111936724A - 涡轮动叶以及燃气轮机 - Google Patents

涡轮动叶以及燃气轮机 Download PDF

Info

Publication number
CN111936724A
CN111936724A CN201980019689.3A CN201980019689A CN111936724A CN 111936724 A CN111936724 A CN 111936724A CN 201980019689 A CN201980019689 A CN 201980019689A CN 111936724 A CN111936724 A CN 111936724A
Authority
CN
China
Prior art keywords
cooling
blade
ventral
wall
side opening
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201980019689.3A
Other languages
English (en)
Other versions
CN111936724B (zh
Inventor
宫久靖夫
羽田哲
若园进
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Power Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Power Ltd filed Critical Mitsubishi Power Ltd
Publication of CN111936724A publication Critical patent/CN111936724A/zh
Application granted granted Critical
Publication of CN111936724B publication Critical patent/CN111936724B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/14Form or construction
    • F01D5/18Hollow blades, i.e. blades with cooling or heating channels or cavities; Heating, heat-insulating or cooling means on blades
    • F01D5/187Convection cooling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/14Form or construction
    • F01D5/18Hollow blades, i.e. blades with cooling or heating channels or cavities; Heating, heat-insulating or cooling means on blades
    • F01D5/186Film cooling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/14Form or construction
    • F01D5/20Specially-shaped blade tips to seal space between tips and stator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C7/00Features, components parts, details or accessories, not provided for in, or of interest apart form groups F02C1/00 - F02C6/00; Air intakes for jet-propulsion plants
    • F02C7/12Cooling of plants
    • F02C7/16Cooling of plants characterised by cooling medium
    • F02C7/18Cooling of plants characterised by cooling medium the medium being gaseous, e.g. air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2220/00Application
    • F05D2220/30Application in turbines
    • F05D2220/32Application in turbines in gas turbines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2240/00Components
    • F05D2240/20Rotors
    • F05D2240/30Characteristics of rotor blades, i.e. of any element transforming dynamic fluid energy to or from rotational energy and being attached to a rotor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2250/00Geometry
    • F05D2250/10Two-dimensional
    • F05D2250/18Two-dimensional patterned
    • F05D2250/185Two-dimensional patterned serpentine-like
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2250/00Geometry
    • F05D2250/20Three-dimensional
    • F05D2250/29Three-dimensional machined; miscellaneous
    • F05D2250/292Three-dimensional machined; miscellaneous tapered
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2250/00Geometry
    • F05D2250/30Arrangement of components
    • F05D2250/31Arrangement of components according to the direction of their main axis or their axis of rotation
    • F05D2250/314Arrangement of components according to the direction of their main axis or their axis of rotation the axes being inclined in relation to each other
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/20Heat transfer, e.g. cooling
    • F05D2260/202Heat transfer, e.g. cooling by film cooling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/20Heat transfer, e.g. cooling
    • F05D2260/232Heat transfer, e.g. cooling characterized by the cooling medium

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)

Abstract

一种涡轮动叶,其具备包括腹侧叶片壁和背侧叶片壁的叶片主体。所述叶片主体包括:弯曲流路,其由冷却流路构成,所述冷却流路被连接所述腹侧叶片壁与所述背侧叶片壁且沿着所述叶片主体的高度方向延伸的隔壁分隔为多个;以及第一冷却孔,其是一端经由在所述腹侧叶片壁的内壁面或所述背侧叶片壁的内壁面形成的第一入口侧开口而与所述冷却流路连通、且另一端与在所述叶片主体的所述腹侧叶片壁的外壁面或所述背侧叶片壁的外壁面形成的第一出口侧开口连通的冷却孔,所述第一冷却孔从所述第一入口侧开口朝向所述第一出口侧开口而向前缘方向延伸。

Description

涡轮动叶以及燃气轮机
技术领域
本发明涉及涡轮动叶以及燃气轮机。
背景技术
例如,用于燃气轮机等的涡轮动叶被在高温的燃烧气体中使用,因此在其内部具备用于冷却的冷却流路,通过使冷却空气在冷却流路中流通来抑制叶片金属的温度上升(参照专利文献1)。
现有技术文献
专利文献
专利文献1:日本特开2003-322002号公报
发明内容
发明所要解决的课题
在专利文献1所记载的燃气轮机叶片中,在叶片主体内具备弯曲流路,使冷却空气在该弯曲流路中流通从而冷却叶片主体,并进一步通过设置于叶片壁的薄膜冷却孔来冷却叶片壁以及隔壁。然而,在专利文献1所记载的薄膜冷却孔中,不能说高效地利用了冷却空气的冷却能力。
鉴于上述情况,本发明的至少一实施方式的目的在于高效地利用冷却流体的冷却能力。
用于解决课题的方案
(1)本发明的至少一实施方式的涡轮动叶是具备包括腹侧叶片壁和背侧叶片壁的叶片主体的涡轮动叶,其中,
所述叶片主体包括:
弯曲流路,其由冷却流路构成,所述冷却流路被连接所述腹侧叶片壁与所述背侧叶片壁且沿着所述叶片主体的高度方向延伸的隔壁分隔为多个;以及
第一冷却孔,其是一端经由在所述腹侧叶片壁的内壁面或所述背侧叶片壁的内壁面形成的第一入口侧开口而与所述冷却流路连通、且另一端与在所述叶片主体的所述腹侧叶片壁的外壁面或所述背侧叶片壁的外壁面形成的第一出口侧开口连通的冷却孔,所述第一冷却孔从所述第一入口侧开口朝向所述第一出口侧开口而向前缘方向延伸。
根据上述(1)的结构,经由第一入口开口而与冷却流路连通的第一冷却孔形成于形成所述冷却流路的隔壁的冷却流体的流动方向的下游侧的流路的内壁面。向第一冷却孔供给的冷却流体是对隔着所述隔壁而配置于冷却流路的上游侧的上游侧冷却流路进行了冷却后的冷却流体。供给的冷却流体在对隔壁下游侧的冷却流路进行了冷却后,在流过第一冷却孔的过程中对隔壁附近的叶片主体进行对流冷却。因此,通过冷却流体的循环使用,能够高效地利用冷却流体的冷却能力。
(2)在几个实施方式中,在上述(1)的结构的基础上,
所述第一冷却孔包括腹侧第一冷却孔和背侧第一冷却孔中的至少一方,
所述腹侧第一冷却孔是一端经由在所述腹侧叶片壁的所述内壁面形成的腹侧第一入口侧开口而与所述冷却流路连通、且另一端与在所述叶片主体的所述腹侧叶片壁的所述外壁面形成的腹侧第一出口侧开口连通的所述冷却孔,所述腹侧第一冷却孔从所述腹侧第一入口侧开口朝向所述腹侧第一出口侧开口而向所述前缘方向延伸,
所述背侧第一冷却孔是一端经由在所述背侧叶片壁的所述内壁面形成的背侧第一入口侧开口而与所述冷却流路连通、且另一端与在所述叶片主体的所述背侧叶片壁的所述外壁面形成的背侧第一出口侧开口连通的所述冷却孔,所述背侧第一冷却孔从所述背侧第一入口侧开口朝向所述背侧第一出口侧开口而向所述前缘方向延伸。
根据上述(2)的结构,由于第一冷却孔包括腹侧第一冷却孔与背侧第一冷却孔中的至少一方,因此能够冷却叶片主体的腹侧与背侧中的至少一方。
(3)在几个实施方式中,在上述(1)或(2)的结构的基础上,
所述冷却流路包括与所述第一冷却孔连通的后缘侧冷却流路、以及与所述后缘侧冷却流路的前缘侧相邻地配置的前缘侧冷却流路,
所述叶片主体包括第二冷却孔,
所述第二冷却孔是一端经由在所述腹侧叶片壁的所述内壁面或所述背侧叶片壁的所述内壁面形成的第二入口侧开口而与所述前缘侧冷却流路连通、且另一端与在所述叶片主体的所述外壁面形成的第二出口侧开口连通的所述冷却孔,所述第二冷却孔从所述第二入口侧开口朝向所述第二出口侧开口而向后缘方向延伸。
根据上述(3)的结构,由于除了上述的第一冷却孔以外还包括第二冷却孔,因此叶片主体的形成冷却流路的隔壁的难以冷却区域的冷却得到进一步强化,从而能够更高效地冷却叶片主体。
(4)在几个实施方式中,在上述(3)的结构的基础上,
所述第二冷却孔包括腹侧第二冷却孔和背侧第二冷却孔中的至少一方,
所述腹侧第二冷却孔是一端经由在所述腹侧叶片壁的所述内壁面形成的腹侧第二入口侧开口而与所述前缘侧冷却流路连通、且另一端与在所述叶片主体的所述腹侧叶片壁的所述外壁面形成的腹侧第二出口侧开口连通的所述冷却孔,所述腹侧第二冷却孔从所述腹侧第二入口侧开口朝向所述腹侧第二出口侧开口而向所述后缘方向延伸,
所述背侧第二冷却孔是一端经由在所述背侧叶片壁的所述内壁面形成的背侧第二入口侧开口而与所述前缘侧冷却流路连通、且另一端与在所述叶片主体的所述背侧叶片壁的所述外壁面形成的背侧第二出口侧开口连通的所述冷却孔,所述背侧第二冷却孔从所述背侧第二入口侧开口朝向所述背侧第二出口侧开口而向所述后缘方向延伸。
根据上述(4)的结构,由于第二冷却孔包括腹侧第二冷却孔与背侧第二冷却孔中的至少一方,因此从腹侧与背侧中的至少一方对叶片主体的形成冷却流路的隔壁进行对流冷却,从而能够更高效地冷却叶片主体。
(5)在几个实施方式中,在上述(3)或(4)的结构的基础上,
所述第一出口侧开口的位置与所述第二出口侧开口的位置之间的前缘后缘方向(前缘-后缘方向)上的长度比所述第一入口侧开口的位置与所述第二入口侧开口的位置之间的所述前缘后缘方向上的长度短。
根据上述(5)的结构,由于第一出口侧开口的位置与第二出口侧开口的位置之间的前缘后缘方向上的长度比第一入口侧开口的位置与第二入口侧开口的位置之间的前缘后缘方向上的长度短,因此夹着隔壁配置的第一冷却孔与第二冷却孔随着接近出口侧开口而进一步接近隔壁,从而隔壁的难以冷却区域的冷却得到进一步强化。
(6)在几个实施方式中,在上述(3)至(5)的结构的基础上,所述第一出口侧开口的位置与所述第二出口侧开口的位置之间的前缘后缘方向上的长度比所述隔壁的厚度短。
在上述(6)的结构中,由于第一冷却孔的第一出口侧开口的位置与第二出口侧开口的位置之间的前缘后缘方向上的长度比隔壁的厚度短,因此第一出口侧开口的位置与第二出口侧开口的位置进一步接近。因此,第一冷却孔与第二冷却孔在前缘后缘方向上进一步接近,从而隔壁的难以冷却区域的冷却得到进一步强化。
(7)在几个实施方式中,在上述(3)至(6)中任一结构的基础上,
所述腹侧叶片壁和所述背侧叶片壁分别包括接合所述隔壁的隔壁接合区域,
所述第一冷却孔和所述第二冷却孔中的至少一方通过所述隔壁接合区域的一部分。
如上所述,隔壁接合区域是由于未与冷却流路直接相接而难以冷却的区域,从而在隔壁接合区域难以得到基于在冷却流路中流动的冷却流体的冷却效果。
关于这一点,根据上述(7)的结构,由于第一冷却孔与第二冷却孔中的至少一方通过隔壁接合区域的一部分,因此能够通过在第一冷却孔与第二冷却孔的至少一方中流动的冷却流体来对难以冷却的隔壁接合区域进行冷却。
(8)在几个实施方式中,在上述(7)的结构的基础上,所述第一出口侧开口和所述第二出口侧开口中的至少一方以中心位置存在于所述隔壁接合区域的方式形成于所述叶片主体的所述外壁面。
根据上述(8)的结构,由于第一出口侧开口与第二出口侧开口中的至少一方以中心位置存在于隔壁接合区域的方式形成于叶片主体的外壁面,因此能够高效地冷却隔壁接合区域。
(9)在几个实施方式中,在上述(3)至(8)中任一结构的基础上,
所述叶片主体具备形成于前端侧的顶板,
所述第一出口侧开口和所述第二出口侧开口中的至少一方形成于所述顶板的外壁面。
通常,在涡轮动叶中,当燃烧气体通过顶板和与顶板对置的外壳之间时,由于顶板与外壳之间的间隙较小,因此燃烧气体的流速变高,相对于叶片主体的热传递率上升,从而顶板处的热负荷比其他部位高。
根据上述(9)的结构,由于第一出口侧开口与第二出口侧开口中的至少一方形成于顶板的外壁面,因此能够利用通过了第一冷却孔与第二冷却孔中的至少一方的冷却流体来高效地冷却热负荷比其他部位高的顶板。
(10)在几个实施方式中,在上述(3)至(8)中任一结构的基础上,
所述叶片主体具备形成于前端侧的顶板,
在所述腹侧叶片壁与所述顶板连接的连接部且所述叶片主体的所述外壁面侧形成有相对于所述腹侧叶片壁以及所述顶板倾斜的倾斜面,
所述第一出口侧开口和所述第二出口侧开口中的至少一方形成于所述倾斜面。
如上所述,在涡轮动叶中,当燃烧气体通过顶板和与顶板对置的外壳之间时,由于顶板与外壳之间的间隙较小,因此燃烧气体的流速变高,相对于叶片主体的热传递率上升,从而顶板处的热负荷比其他部位高。因此,腹侧叶片壁与顶板的连接部的温度由于来自顶板的热传递而容易变高。
另外,在叶片主体中的腹侧叶片壁与顶板的连接部出,为了抑制该连接部附近的燃烧气体的流动的紊乱,或为了该连接部的倒角,有时会设置有倾斜面,该倾斜面在叶片主体的外部侧相对于腹侧叶片壁以及顶板这双方倾斜。
关于这一点,根据上述(10)的结构,由于第一出口侧开口与第二出口侧开口中的至少一方形成于上述倾斜面,因此能够利用通过了第一冷却孔与第二冷却孔中的至少一方的冷却流体来对热负荷比其他部位高的顶板进行冷却,同时高效地对温度容易变高的腹侧叶片壁与顶板的连接部进行冷却。
(11)在几个实施方式中,在上述(9)或(10)中任一结构的基础上,
所述第一入口侧开口和所述第二入口侧开口以面向所述弯曲流路的方式形成于从所述顶板向所述叶片主体的基端侧分开的位置。
在顶板与叶片壁的连接部,由于连接了延伸方向不同的顶板与叶片壁而容易产生应力集中。根据上述(11)的结构,由于第一入口侧开口和第二入口侧开口以面向弯曲流路的方式形成于从顶板向叶片主体的基端侧分开的位置,因此能够避免第一入口侧开口和第二入口侧开口形成于容易产生应力集中的部位。
(12)在几个实施方式中,在上述(2)至(11)中任一结构的基础上,所述第一入口侧开口以面向所述弯曲流路中的、在最靠后缘侧处沿着所述叶片主体的高度方向延伸的所述冷却流路的方式形成。
根据上述(12)的结构,由于第一入口侧开口以面向弯曲流路中的最靠后缘侧的冷却流路的方式形成,因此与第一入口侧开口形成于比该冷却流路靠上游侧的冷却流路的情况相比,从第一冷却孔向叶片主体的外部排出的冷却流体沿着弯曲流路流过更长的距离,从而能够带走更多的热量。这样,根据上述(12)的结构,由于能够通过从第一冷却孔向叶片主体的外部排出的冷却流体带走更多的热量,因此能够抑制冷却流体的流量,并能够抑制涡轮效率的降低。
(13)在几个实施方式中,在上述(2)至(12)中任一结构的基础上,所述腹侧第一入口侧开口形成于比所述背侧第一入口侧开口靠所述叶片主体的基端侧处。
如上所述,在顶板与叶片壁的连接部,由于连接了延伸方向不同的顶板与叶片壁而容易产生应力集中。另外,通常,在涡轮动叶中,与背侧相比,腹侧的叶片主体的温度容易变高。
关于这一点,根据上述(13)的结构,由于腹侧第一入口侧开口形成于比背侧第一入口侧开口靠叶片主体的基端侧,因此在与背侧相比温度容易变高的腹侧,能够使腹侧第一入口侧开口形成于进一步远离容易产生应力集中的顶板与腹侧叶片壁的连接部的位置。
(14)在几个实施方式中,在上述(1)至(13)中任一结构的基础上,对于所述隔壁,从所述腹侧叶片壁和所述背侧叶片壁中的任一方朝向另一方的所述隔壁的中心线相对于弧线倾斜。
在上述(14)的结构中,由于从腹侧叶片壁与背侧叶片壁中的任一方朝向另一方的隔壁的中心线相对于弧线倾斜,因此隔壁的剖面形状变形,腹侧隔壁接合区域、背侧隔壁接合区域的前缘后缘方向上的宽度变大,存在难以冷却的区域扩大的倾向。关于这一点,在上述(14)的结构中,通过第一冷却孔与第二冷却孔的组合,能够抑制腹侧的隔壁接合区域、背侧的隔壁接合区域中的至少一方的温度上升。
(15)本发明的至少一实施方式的燃气轮机具备上述结构(1)至(14)中的任一涡轮动叶,因此能够高效地利用冷却流体的冷却能力来高效地冷却叶片主体。由此,能够抑制冷却流体的流量,从而能够抑制涡轮效率的降低。
发明效果
根据本发明的至少一实施方式,能够高效地利用冷却流体的冷却能力。
附图说明
图1是示出使用几个实施方式的涡轮动叶的一实施方式的燃气轮机的简要结构图。
图2是一实施方式的涡轮动叶的内部剖视图。
图3是一实施方式的涡轮动叶的图2中的A-A向视剖视图。
图4A是从涡轮动叶1的前端侧向径向内侧方向观察一实施方式的涡轮动叶的后缘附近时的图。
图4B是图4A的隔壁周围的放大剖视图。
图5是用于对图4A所示的一实施方式的涡轮动叶的叶片主体中的各冷却孔的延伸状态进行说明的示意性剖视图。
图6是用于对图4A所示的一实施方式的涡轮动叶的叶片主体中的各冷却孔的其他实施方式说明各冷却孔的延伸状态的示意性剖视图。
图7是从涡轮动叶的前端侧观察其他实施方式的涡轮动叶的后缘附近时的图(图8中的B-B向视剖视图)。
图8是用于对图7所示的其他实施方式的涡轮动叶的叶片主体中的各冷却孔的延伸状态进行说明的示意性剖视图。
具体实施方式
以下,参照附图对本发明的几个实施方式进行说明。但是,作为实施方式所记载的或附图中所示的构成部件的尺寸、材质、形状、其相对配置等并不旨在将本发明的范围限定于此,仅仅是说明例而已。
例如,“在某方向上”、“沿着某方向”、“平行”、“正交”、“中心”、“同心”或者“同轴”等表示相对或绝对的配置的表述不仅表示严格上该种配置,也表示具有公差或者以能够得到相同功能的程度的角度、距离相对位移了的状态。
例如,“相同”、“相等”以及“均质”等表示物事相等的状态的表达不仅表示严格相等的状态,也表示存在公差、或者能够得到相同功能的程度的差的状态。
例如,表示四边形状、圆筒形状等形状的表述不仅表示几何学中严格意义上的四边形状、圆筒形状等形状,也表示在能够得到相同效果的范围内包含凹凸部、倒角部等的形状。
另一方面,“具备”、“包括”、“含有”、“包含”或“具有”一构成要素这样的表述不是将其他构成要素的存在排除在外的排他性表述。
参照图1对使用几个实施方式的涡轮动叶的燃气轮机进行说明。需要说明的是,图1是示出使用几个实施方式的涡轮动叶的一实施方式的燃气轮机100的简要结构图。
如图1所示,一实施方式的燃气轮机100具备用于生成压缩空气的压缩机102、用于使用压缩空气以及燃料而生成燃烧气体的燃烧器104、以及构成为由燃烧气体驱动而旋转的涡轮106。在发电用的燃气轮机100的情况下,在涡轮106连结有未图示的发电机,利用涡轮106的旋转能量来进行发电。
对燃气轮机100中的各部位的具体结构例进行说明。
压缩机102具备压缩机机室110、设置于压缩机机室110的入口侧且用于取入空气的空气取入口112、以同时贯穿压缩机机室110和后述的涡轮机室122的方式设置的转子轴108、以及配置于压缩机机室110内的各种叶片。各种叶片包括设置于空气取入口112侧的入口引导叶片114、固定于压缩机机室110侧的多个压缩机静叶116、以及以在轴向上与压缩机静叶116交替排列的方式植设于转子轴108的多个压缩机动叶118。需要说明的是,压缩机102也可以具备未图示的抽气室等其他构成要素。在这样的压缩机102中,从空气取入口112取入的空气通过多个压缩机静叶116以及多个压缩机动叶118而被压缩,由此生成压缩空气。然后,压缩空气从压缩机102被送至后级的燃烧器104。
燃烧器104配置于外壳(燃烧器机室)120内。如图1所示,燃烧器104可以在外壳120内以转子轴108为中心而呈环状地配置有多个。向燃烧器104供给燃料和由压缩机102生成的压缩空气,并使燃料燃烧,由此产生涡轮106的工作流体即高温高压的燃烧气体。然后,燃烧气体从燃烧器104被送至后级的涡轮106。
涡轮106具备涡轮机室(外壳)122、以及配置于涡轮机室122内的各种涡轮叶片。各种涡轮叶片包括固定于涡轮机室122侧的多个涡轮静叶124,以在轴向上与涡轮静叶124交替排列的方式植设于转子轴108的多个涡轮动叶1。
需要说明的是,在涡轮106中,转子轴108沿轴向延伸,燃烧气体从图1中的左侧朝向右侧流动。在图1中,图示左侧为轴向上游侧,图示右侧为轴向下游侧。
涡轮动叶1构成为,与涡轮静叶124一起由在涡轮机室122内流动的高温高压的燃烧气体产生旋转驱动力。通过将该旋转驱动力传递至转子轴108,从而驱动与转子轴108连结的发电机。需要说明的是,关于涡轮动叶1的具体结构例,将在后文叙述。
在涡轮机室122的下游侧经由排气机室128而连结有排气室129。驱动涡轮106后的燃烧气体通过排气机室128以及排气室129而向外部排出。
图2是一实施方式的涡轮动叶1的内部剖视图。图3是一实施方式的涡轮动叶1的图2中的A-A向视剖视图。图4A从涡轮动叶1的前端17a侧向径向内侧方向观察一实施方式的涡轮动叶1的后缘附近时的图。图4B是图4A中的隔壁10周围的放大剖视图。一实施方式的涡轮动叶1是在涡轮106中使用的涡轮动叶,该涡轮动叶1具备平台、作为基端17b侧的叶柄部2、以及叶片部(叶片主体)3,叶片主体3暴露于高温高压的燃烧气体中。
叶片主体3具有叶片面形成为凹状的正压面即腹侧的壁部(腹侧叶片壁)13、叶片面形成为凸状的负压面即背侧的壁部(背侧叶片壁)14、以及前端17a侧的顶板15。在叶片主体3的内部,在对置的腹侧叶片壁13的内壁面13a与背侧叶片壁14的内壁面14a之间形成有供作为冷却流体(冷却介质)的冷却空气流动的前缘侧弯曲流路6和后缘侧弯曲流路7,前缘侧弯曲流路6和后缘侧弯曲流路7整体形成弯曲流路5。
具体而言,在叶片主体3的内部,设置有将腹侧叶片壁13与背侧叶片壁14连接的隔壁10a、10b、10c、10d、10e,从而形成由隔壁10a、10b、10c、10d、10e、腹侧叶片壁13以及背侧叶片壁14围成的冷却流路4a、4b、4c、4d、4e、4f。各冷却流路4a、4b、4c、4d、4e、4f是与涡轮动叶1的径向、即转子轴108正交并沿着径向延伸的流路。
即,叶片主体3在内部具有弯曲流路5(前缘侧弯曲流路6、后缘侧弯曲流路7),该弯曲流路5包括由连接腹侧叶片壁13与背侧叶片壁14且沿着叶片主体3的高度方向延伸的隔壁10a、10b、10c、10d、10e分隔为多个的冷却流路4a、4b、4c、4d、4e、4f。
需要说明的是,在以下的说明中,在无需区别各隔壁10a、10b、10c、10d、10e的情况下,有时省略附图标记中数字后的字母的记载而仅将其称为隔壁10。同样地,在以下的说明中,在无需区别各冷却流路4a、4b、4c、4d、4e、4f的情况下,有时省略附图标记中数字后的字母的记载而仅将其称为冷却流路4。
前缘侧弯曲流路6是设置在比后缘侧弯曲流路7靠前缘18侧的位置的冷却流路,且该前缘侧弯曲流路6包括冷却流路4a、4b、4c。冷却流路4a与冷却流路4b由转向部4g连接,冷却流路4b与冷却流路4c由转向部4h连接。
前缘侧弯曲流路6的冷却空气的供给流路9a的入口9c设置于涡轮动叶1的基端17b侧,冷却空气的出口6b设置于叶片主体3的前端17a侧的端部。
后缘侧弯曲流路7是设置在比前缘侧弯曲流路6靠后缘19侧的位置的冷却流路,且该后缘侧弯曲流路7包括冷却流路4d、4e、4f。冷却流路4d与冷却流路4e由转向部4i连接,冷却流路4e与冷却流路4f由转向部4j连接。
后缘侧弯曲流路7的冷却空气的供给流路9b的入口9d设置于涡轮动叶1的基端17b侧,冷却空气的出口7b与后缘侧弯曲流路7中的相对于冷却空气的流动处于最下游侧的冷却流路4f连通,并在叶片主体3的后缘19的后缘端面19a开口。
在弯曲流路5(前缘侧弯曲流路6、后缘侧弯曲流路7)内,设置有多个用于促进向冷却空气的热传递的堰状的肋12。另外,在后缘侧弯曲流路7中的处于最下游侧的冷却流路4f形成有在后缘19的后缘端面19a开口的后缘冷却流路8,以对后缘区域进行对流冷却。在后缘冷却流路8设置有多个用于促进向冷却空气的热传递的多个钉状翅片20。需要说明的是,也可以在后缘冷却流路8设置配置有多个冷却孔的冷却结构来代替钉状翅片20。
对于向涡轮动叶1供给的冷却空气,例如利用从压缩机102抽出的压缩空气。
在前缘侧弯曲流路6中,从入口9c流入的冷却空气经由供给流路9a而依次流过冷却流路4a、4b、4c,从而在叶片主体3的前端17a侧与基端17b侧之间蜿蜒前行,并从出口6b向涡轮动叶1的外部流出。这样,在前缘侧弯曲流路6中,冷却空气依次流过冷却流路4a、4b、4c,从而该冷却空气在叶片主体3内从前缘18侧朝向后缘19侧流动、即从燃烧气体的流动方向的上游侧朝向下游侧流动。
在后缘侧弯曲流路7中,从入口9d流入的冷却空气经由供给流路9b而依次流过冷却流路4d、4e、4f,从而在叶片主体3的前端17a侧与基端17b侧之间形成蛇行流路,并从出口7b向涡轮动叶1的外部流出。这样,在后缘侧弯曲流路7中,冷却空气依次流过冷却流路4d、4e、4f,从而该冷却空气在叶片主体3内从前缘18侧朝向后缘19侧流动,即从燃烧气体的流动方向的上游侧朝向下游侧流动。最接近后缘19侧的冷却流路4f形成后缘侧弯曲流路7的最末流路,在最末流路中流动的冷却空气的一部分从在前端17a侧的顶板15形成的出口7a被排出至外部的燃烧气体中。其他的冷却空气通过后缘冷却流路8而对后缘区域进行对流冷却,并从后缘端面19a被排出至燃烧气体中。
需要说明的是,也可以是,冷却流路4c与冷却流路4d由转向部连接,从而前缘侧弯曲流路6与后缘侧弯曲流路7一体化。在该情况下,从冷却空气的供给流路9a流入的冷却空气依次流过冷却流路4a、4b、4c、4d、4e、4f,从而在叶片主体3的前端17a侧与基端17b侧之间形成蛇行流路,并从出口7b向涡轮动叶1的外部流出。
在图2所示的叶片结构中,使冷却空气在弯曲流路5中流通从而对叶片主体进行对流冷却,并且利用设置于叶片壁(腹侧叶片壁13、背侧叶片壁14)的薄膜冷却孔(未图示)来对叶片壁进行薄膜冷却。
如图4A以及图7所示,在几个实施方式中,叶片主体3包括腹侧第一冷却孔32,该腹侧第一冷却孔32的一端经由在腹侧叶片壁13的内壁面13a形成的腹侧第一入口侧开口32A(第一入口侧开口31A)而与冷却流路4连通,另一端与在叶片主体3的腹侧叶片壁13的外壁面13b形成的腹侧第一出口侧开口32B(第一出口侧开口31B)连通。腹侧第一冷却孔32从第一入口侧开口31A(腹侧第一入口侧开口32A)朝向第一出口侧开口31B(腹侧第一出口侧开口32B)而向前缘18方向延伸。换言之,以沿着叶片主体3的弧线C而第一出口侧开口31B(腹侧第一出口侧开口32B)位于比第一入口侧开口31A(腹侧第一入口侧开口32A)靠前缘18侧的位置的方式形成有腹侧第一冷却孔32。另外,如图4A、7所示,在几个实施方式中,叶片主体3包括背侧第一冷却孔33,该背侧第一冷却孔33的一端经由在背侧叶片壁14的内壁面14a形成的背侧第一入口侧开口33A而与冷却流路4连通,另一端与在叶片主体3的外壁面14b形成的背侧第一出口侧开口33B连通。背侧第一冷却孔33从背侧第一入口侧开口33A朝向背侧第一出口侧开口33B而向前缘18方向延伸。换言之,以沿着叶片主体3的弧线C而背侧第一出口侧开口33B位于比背侧第一入口侧开口33A靠前缘18侧的位置的方式形成有背侧第一冷却孔33。
在冷却流体在弯曲流路5中流动的过程中,冷却流体对叶片主体3进行对流冷却,从而冷却流体的温度上升。另一方面,在冷却流体在弯曲流路5中流动的过程中,由于冷却流体的压力损失而冷却流体的压力降低。在冷却流体的流动方向的下游侧流动的冷却流体与在上游侧流动的冷却流体相比,由于冷却流体的循环使用而被高效地利用。
例如,在图2以及图3中,在使用相邻的冷却流路4e、4f进行比较的情况下,在夹着隔壁10e而位于上游侧的冷却流路4e(后述的上游侧冷却流路4U)中流动并对叶片主体3进行了对流冷却的冷却流体经过转向部4j而流入与隔壁10e的冷却流体的流动方向的下游侧相邻的冷却流路4f(后述的下游侧冷却流路4D)。冷却流体在冷却流路4e中流动的过程中,由于压力损失而压力降低并被供给至冷却流路4f。并且,冷却流体在冷却流路4f中流动的过程中,进一步对冷却流路4f的叶片壁等进行冷却。
即,对于在夹着隔壁10e而位于冷却流体的流动方向的上游侧的冷却流路4e中流动的冷却流体,尽管冷却流体自身的温度仍较低、压力仍较高、而仍具备足够的冷却能力,但其从后述的第二冷却孔41、42、43被排出至燃烧气体中,因此具有冷却能力的冷却流体被白白舍弃。另一方面,对于在对隔壁10e的冷却流体的流动方向的上游侧的冷却流路4e进行了冷却后被供给至隔壁10e的下游侧的冷却流路4f的冷却流体,在进一步冷却了冷却流路4f后,其从上述的第一冷却孔31、32、33被排出至燃烧气体中。因此,与从将隔壁10e夹在中间而位于上游侧的冷却流路4e经由第二冷却孔41、42、43被排出至燃烧气体中的冷却流体相比,在将隔壁10e夹在中间而位于下游侧的冷却流路4f中流动的冷却流体在对下游侧的冷却流路4f进行了冷却后,进一步在第一冷却孔31、32、33中流动。由于在第一冷却孔31、32、33中流动的过程中对叶片主体3进行对流冷却,因此进行冷却流体的循环使用,从而进行高效的冷却。特别地,在冷却流路4f是最接近于后缘19的最末流路的情况下,与其他上游侧的流路相比,其效果最大。
由此,从面向冷却流路4的腹侧第一入口侧开口32A流入的冷却空气在腹侧第一冷却孔32内朝向腹侧第一出口侧开口32B而向前缘18方向流动,由此对隔壁10附近的腹侧叶片主体3进行对流冷却。
同样地,从面向冷却流路4的背侧第一入口侧开口33A流入的冷却空气在背侧第一冷却孔33内朝向背侧第一出口侧开口33B而向前缘18方向流动,由此对隔壁10附近的背侧叶片主体3进行对流冷却。
并且,由于第一冷却孔31、32、33与隔壁10的冷却流体的流动方向的下游侧的冷却流路连通,因此能够进行冷却流体的有效的循环使用。因此,能够高效地利用冷却空气的冷却能力来高效地冷却叶片主体3。
另外,在几个实施方式的燃气轮机100中,由于具备几个实施方式的涡轮动叶1,因此能够高效地利用冷却空气的冷却能力来高效地冷却叶片主体3。由此,能够抑制冷却空气的流量,从而能够抑制涡轮效率的降低。
需要说明的是,在叶片主体3中,只要设置有腹侧第一冷却孔32与背侧第一冷却孔33中的至少一方即可。若在叶片主体3设置有腹侧第一冷却孔32以及背侧第一冷却孔33这双方,则能够从腹侧和背侧这两侧高效地冷却叶片主体3。
在弯曲流路5(前缘侧弯曲流路6、后缘侧弯曲流路7)的冷却流路4中,将相对于冷却空气的流动方向而位于任意隔壁10的上游侧的冷却流路4称作上游侧冷却流路4U,将相对于冷却空气的流动而位于该隔壁10的下游侧的冷却流路4称作下游侧冷却流路4D。
例如,冷却流路4e相对于隔壁10e为上游侧冷却流路4U,但相对于隔壁10d为下游侧冷却流路4D。
需要说明的是,上游侧冷却流路4U相对于下游侧冷却流路4D在前缘18侧相邻地配置。因此,在以下的说明中,有时也将上游侧冷却流路4U称为前缘侧冷却流路4U。另外,下游侧冷却流路4D相对于上游侧冷却流路4U在后缘19侧相邻地配置。因此,在以下的说明中,有时也将下游侧冷却流路4D称为后缘侧冷却流路4D。
以下,使用图2、图4A、图4B对形成弯曲流路5(前缘侧弯曲流路6、后缘侧弯曲流路7)的隔壁10与叶片主体3的接合结构进行说明。
隔壁10将冷却流路4分隔,发挥形成弯曲流路5(前缘侧弯曲流路6、后缘侧弯曲流路7)的分隔壁的作用,该隔壁10与叶片壁13、14一起通过铸造而一体地形成。隔壁10在除了前端17a侧的转向部4g、4i以及基端17b侧的转向部4h、4j以外的位置,沿径向从前端17a侧延伸至基端17b侧,从而形成各通路。
使用图4B,对沿径向观察叶片主体时的隔壁10、10e周围的剖面结构进行说明。隔壁10以光滑地与腹侧的内壁面13a和背侧的内壁面14a内接的方式形成。即,形成隔壁10的一部分且与叶片主体3的内壁面13a、14a内接的接合部10A1、10A2、10B1、10B2由于制造上的原因而形成为具有曲面状的形状。若将各接合部10A1、10A2、10B1、10B2与叶片主体3的内壁面13a、14a内接的内缘设为点P11、P12、P21、P22,则各接合部10A1、10A2、10B1、10B2与内壁面13a、14a相接的末端相当于点P11、P12、P21、P22。需要说明的是,若将规定叶片主体3的前缘-后缘方向的中心轴的弧线C与隔壁交叉的前缘侧的位置设为点P51,将后缘侧的位置设为点P52,则点P51与点P52之间的长度相当于隔壁10的最小厚度。在以下的说明中,有时也隔着连字符一并记载两端的点的附图标记来表示连结某两个点之间的线段。例如,有时也将连结点P51和点P52的线段简单地表示为P51-P52。
如图4B所示,若将通过内缘P11、P12、P21、P22且与隔壁10的中心线Wx平行的线与叶片主体3的外表面即腹侧叶片壁13、背侧叶片壁14交叉的位置设为点P13、P14、P23、P24,则将由点P11、P12、P13、P14围起的区域称为腹侧隔壁接合区域52,将由点P21、P22、P23、P24围起的区域称为背侧隔壁接合区域53。如图4B所示,腹侧隔壁接合区域52以及背侧隔壁接合区域53均未与冷却流路4直接相接,因此腹侧隔壁接合区域52以及背侧隔壁接合区域53是难以进行基于冷却流体的冷却的区域。将包括腹侧隔壁接合区域52和背侧隔壁接合区域53在内的区域统称为隔壁接合区域51。需要说明的是,形成腹侧隔壁接合区域52和背侧隔壁接合区域53的内侧的区域的内缘P11与P12以及内缘P21与P22各自的前缘-后缘方向上的长度均大于隔壁10的厚度(最小厚度P51-P52)。即,腹侧隔壁接合区域52以及背侧隔壁接合区域53的前缘-后缘方向上的宽度大于隔壁10的厚度。需要说明的是,隔壁10的中心线Wx由将连结在腹侧叶片壁13的内壁面13a形成的内缘P11与P12的线(边界线P11-P12)的中点、连结在背侧叶片壁14的内壁面14a形成的内缘P21与P22的线(边界线P21-P22)的中点、以及隔壁的最小厚度P51-P52的中间点连结的直线状的线规定。
腹侧叶片壁13和背侧叶片壁14是通过隔壁10而结合的结构体。因此,由于来自燃烧气体侧的热量输入,叶片壁13、14产生热延伸。另一方面,由于叶片壁13、14与隔壁10接合的接合部分被隔壁10约束,因此在叶片壁13、14与隔壁10接合的接合部分即腹侧隔壁接合区域52以及背侧隔壁接合区域53存在产生较大的热应力的倾向。另外,由于腹侧隔壁接合区域52以及背侧隔壁接合区域53未与冷却流路4直接相接,因此由于来自燃烧气体侧的热量输入,金属温度容易变高。另一方面,由于隔壁10在冷却空气的流动方向上游侧以及下游侧这两侧与冷却流路4(上游侧冷却流路4U以及下游侧冷却流路4D)直接相接,因此金属温度变得较低。由于两者的温度差的差异,存在热应力进一步变大的倾向。
划定腹侧隔壁接合区域52以及背侧隔壁接合区域53的内壁面13a、14a侧的位置的边界线P11-P12、P21-P22(连接内缘P11与内缘P12的线以及连接内缘P21与内缘P22的线)越长,则腹侧隔壁接合区域52以及背侧隔壁接合区域53越难以冷却,热应力越高。
因此,如图4B所示,为了对腹侧隔壁接合区域52以及背侧隔壁接合区域53进行冷却,配置有第一冷却孔31、32、33以及第二冷却孔41、42、43。该配置的结构的详细内容将后述。
也假设仅利用一个第一冷却孔31、32、33和第二冷却孔41、42、43中的任一方的冷却孔来对腹侧隔壁接合区域52和背侧隔壁接合区域53进行冷却的结构。在来自燃烧气体流的热量输入较小且热应力不大的叶片结构的情况下,也存在仅配置任一方的冷却孔也能够进行冷却的情况。然而,在来自燃烧气体侧的热量输入较大且由于结构上的约束而热应力变高的叶片结构的情况下,存在仅基于任一方的冷却孔的冷却会导致冷却不足,从而无法抑制过大的热应力的产生的情况。
使用图4B,举一例进行说明。架设为了对腹侧隔壁接合区域52进行冷却而仅配置腹侧第一冷却孔32的情况。在该情况下,在腹侧第一冷却孔32的内壁面13a形成的腹侧第一入口侧开口32A的开口需要配置在比内缘P11的位置靠后缘侧的位置,以使得至少不会与隔壁10的接合部10A1的内缘P11发生干涉。另一方面,在腹侧第一冷却孔32的另一方的开口,形成于外壁面13b的腹侧第一出口侧开口32B期望延伸至划定腹侧隔壁接合区域52的前缘侧的位置的边界线P12-P14(La2)附近。然而,为了以将腹侧第一入口开口32A配置在比内缘P11更靠后缘侧的位置并使腹侧第一出口侧开口32B延伸至前缘侧的边界线P12-P14附近的方式,来将腹侧第一冷却孔32形成于腹侧叶片壁13的内部,期望使腹侧第一冷却孔32的中心轴(AXa1)相对于腹侧叶片壁13或腹侧的内壁面13a的倾斜角θ(图4B)较小。即,虽然冷却孔通过电火花加工或机械加工等而形成,但加工喷嘴相对于叶片外表面的倾斜角度是有限的,若加工喷嘴相对于前缘-后缘方向的中心轴(弧线C)的倾斜度变小,则孔加工变得困难。该状况对于背侧第一冷却孔33也相同,对于第二冷却孔41、42、43也相同。
另外,在仅通过第一冷却孔31、32、33来对腹侧隔壁接合区域52以及背侧隔壁接合区域53进行的情况下,存在冷却不足的情况。即,在冷却流路4f中流动并被供给至第一冷却孔31、32、33的冷却空气与被供给至在冷却流路4e开口的第二冷却孔41、42、43的冷却空气相比,压力降低。另一方面,若仅通过第一冷却孔31、32、33来对腹侧隔壁接合区域52以及背侧隔壁接合区域53进行冷却,则第一冷却孔31、32、33延伸至隔壁接合区域51、52、53的前缘侧的边界线P12-P14以及P22-P24附近。即,若使冷却孔的长度延长则压力损失变大,另一方面,燃烧气体侧与冷却流路4f之间的差压变小。因此,根据运转条件的不同,存在无法充分确保在第一冷却孔31、32、33中流动的冷却空气的流量的情况。
在上述那样的涡轮叶片的情况下,单独配置第一冷却孔31、32、33会导致冷却不足,存在期望第一冷却孔31、32、33与第二冷却孔41、42、43的组合的情况。
在叶片主体3中,若接近后缘则叶片宽度变小,冷却流路4的背腹方向上的流路宽度变小。因此,对于冷却流路4的形状,背腹方向上的流路宽度变小,前缘-后缘方向上的流路的长度变长,从而成为梯形形状、菱形形状、三角形状等变形后的流路形状。因此,结合内壁面13a、14a的隔壁10的剖面形状也变形为菱形形状,存在隔壁10的中心线Wx相对于弧线C的倾斜度变小的倾向。即,若隔壁10的中心线Wx相对于弧线C的倾斜度变小,则隔壁10的接合部10A1、10A2、10B1、10B2的曲率变大,与隔壁10的厚度(P51-P52)相比,腹侧隔壁接合区域52与背侧隔壁接合区域53的前缘-后缘方向上的长度相对变长,腹侧隔壁接合区域52以及背侧隔壁接合区域53成为更难以冷却的结构。在这样的情况下,从设置空间的观点出发,期望在腹侧隔壁接合区域52以及背侧隔壁接合区域53,针对各个隔壁接合区域配置多个冷却孔。即,期望选择第一冷却孔31、32、33与第二冷却孔41、42、43的组合,即期望选择至少腹侧第一冷却孔32与腹侧第二冷却孔42的组合、或背侧第一冷却孔33与背侧第二冷却孔43的组合中的任一种。
腹侧隔壁接合区域52由划定前缘-后缘方向上的前缘侧的位置的边界线La2和划定前缘-后缘方向上的后缘侧的位置的边界线La1确定,背侧隔壁接合区域53由划定前缘-后缘方向上的前缘侧的位置的边界线Lb2和划定前缘-后缘方向上的后缘侧的位置的边界线Lb1确定。另外,在无需特别区分腹侧隔壁接合区域52与背侧隔壁接合区域53的情况下,在以下的说明中,有时也简单称为隔壁接合区域51。
如图4A、图4B、图7所示,在几个实施方式中,冷却流路4与腹侧第一冷却孔32和背侧第一冷却孔33连通的后缘侧冷却流路(下游侧冷却流路)4D、以及与后缘侧冷却流路4D的前缘18侧相邻地配置的前缘侧冷却流路(上游侧冷却流路)4U。
叶片主体3包括腹侧第二冷却孔42,该腹侧第二冷却孔42的一端经由在腹侧叶片壁13的内壁面13a形成的腹侧第二入口侧开口42A而与前缘侧冷却流路4U连通,另一端与在叶片主体3的外壁面13b形成的腹侧第二出口侧开口42B连通。腹侧第二冷却孔42从腹侧第二入口侧开口42A朝向腹侧第二出口侧开口42B而向后缘19方向延伸。
另外,如图4A、4B、图7所示,在几个实施方式中,叶片主体3包括背侧第二冷却孔43,该背侧第二冷却孔43的一端经由在背侧叶片壁14的内壁面14a形成的背侧第二入口侧开口43A而与前缘侧冷却流路4U连通,另一端与在叶片主体3的外壁面14b形成的背侧第二出口侧开口43B连通。背侧第二冷却孔43从背侧第二入口侧开口43A朝向背侧第二出口侧开口43B而向后缘19方向延伸。
由于叶片主体3包括腹侧第一冷却孔32与背侧第一冷却孔33中的至少一方,因此能够对叶片主体3中的、第一入口侧开口31A的形成位置与第一出口侧开口31B的形成位置之间的与隔壁10接合的区域进行对流冷却。即,能够对腹侧第一入口侧开口32A的形成位置与腹侧第一出口侧开口32B的形成位置之间的与隔壁10接合的区域、或背侧第一入口侧开口33A的形成位置与背侧第一出口侧开口33B的形成位置之间的与隔壁10接合的区域进行对流冷却。
另外,由于叶片主体3包括腹侧第二冷却孔42与背侧第二冷却孔43中的至少一方,因此能够对叶片主体3中的、腹侧第二入口侧开口42A的形成位置与腹侧第二出口侧开口42B的形成位置之间的与隔壁10接合的区域、或背侧第二入口侧开口43A的形成位置与背侧第二出口侧开口43B的形成位置之间的与隔壁10接合的区域中的至少一方进行对流冷却。
根据上述的结构,能够对第二入口侧开口41A、42A、43A的形成位置与第二出口侧开口41B、42B、43B的形成位置之间的、难以冷却的与隔壁10接合的区域进行对流冷却。
并且,通过从腹侧第二出口侧开口42B和背侧第二出口侧开口43B中的至少一方流出并沿着叶片的表面向后缘侧流动的冷却空气,能够对比腹侧第二出口侧开口42B靠后缘侧的叶片主体的外表面、以及比背侧第二出口侧开口43B靠后缘侧的叶片主体的外表面中的至少一方进行薄膜冷却。由此,基于腹侧第一冷却孔32和背侧第一冷却孔33中的至少一方的冷却效果、与基于腹侧第二冷却孔42和背侧第二冷却孔43中的至少一方的冷却效果相结合,从而能够更高效地冷却叶片主体3。因此,能够通过两个冷却孔的组合来更高效地对例如叶片主体3中存在温度变高的倾向的部位进行冷却。
需要说明的是,在叶片主体3中,只要设置有腹侧第二冷却孔42和背侧第二冷却孔43中的至少一方即可。若在叶片主体3设置有腹侧第二冷却孔42以及背侧第二冷却孔43这双方,则能够从腹侧和背侧这两侧高效地冷却叶片主体3。
如图4A、图4B、图7所示,在几个实施方式中,对于腹侧第一冷却孔32,腹侧第一冷却孔32的至少一部分通过腹侧隔壁接合区域52。
如图4A、图7、图9所示,在几个实施方式中,对于腹侧第二冷却孔42,腹侧第二冷却孔42的至少一部分通过腹侧隔壁接合区域52。
如图4A、图4B、图7所示,在几个实施方式中,对于背侧第一冷却孔33,背侧第一冷却孔33的至少一部通过背侧隔壁接合区域53。
如图4A、图4B、图7所示,对于背侧第二冷却孔43,背侧第二冷却孔43的至少一部分通过背侧隔壁接合区域53。
图5是用于对图4A所示的一实施方式的涡轮动叶1的叶片主体3中的冷却孔32、33、42、43的延伸状态进行说明的示意性剖视图。图6是针对图4A所示的一实施方式的涡轮动叶1的叶片主体3中的各冷却孔32、33、42、43的其他实施方式,用于说明冷却孔32、33、42、43的延伸状态的示意性剖视图。图7是从涡轮动叶1的前端17a侧观察其他实施方式的涡轮动叶1的后端附近时的图。图8是用于对图7所示的其他实施方式的涡轮动叶1的叶片主体3中的冷却孔32、33、42、43的延伸状态进行说明的示意性剖视图。
需要说明的是,为了便于说明,图5、图6、图8中图示出的冷却孔32、33、42、43的剖面是将冷却孔32、33、42、43沿着各自的延伸方向剖切时所表现出的剖面从前缘18侧投影而得到的示意性的剖面。
在图4A、图4B、图7所示的几个实施方式中,冷却孔32、33、42、43夹着沿着冷却空气的流动而位于最下游侧的隔壁10e而配置于上游侧与下游侧的叶片壁。来自位于上游侧和下游侧的上游侧冷却流路4U或下游侧冷却流路4D的冷却空气被供给至冷却孔32、33、42、43。然而,冷却孔32、33、42、43也可以构成为,从夹着隔壁10e以外的任一隔壁10a~10d而位于上游侧和下游侧的上游侧冷却流路4U或下游侧冷却流路4D供给冷却空气。在以下的说明中,即使在参照图4A、图4B、图7进行说明的情况下,只要没有特别提到,则冷却孔32、33、42、43采用从夹着任一隔壁10a~10e而位于上游侧和下游侧的上游侧冷却流路4U或下游侧冷却流路4D供给冷却空气的结构。
如图4A、图4B、图7所示,在几个实施方式中,叶片主体3具有腹侧第一冷却孔32、腹侧第二冷却孔42、背侧第一冷却孔33、以及背侧第二冷却孔43。然而,叶片主体3只要具有冷却孔32、33、42、43中的至少任一个,就能够对至少任一个冷却孔的至少一部分所通过的隔壁接合区域51进行冷却。
例如,叶片主体3也可以具有腹侧第一冷却孔32和背侧第一冷却孔33中的至少一方。
如图4A、图4B、图7所示,在几个实施方式中,腹侧第一冷却孔32以及腹侧第二冷却孔42中的、腹侧第一出口侧开口32B的位置与腹侧第二出口侧开口42B的位置之间的前缘-后缘方向上的长度、即连结前缘18与后缘19的叶弦方向上的长度比腹侧第一入口侧开口32A的位置与腹侧第二入口侧开口42A的位置之间的前缘-后缘方向上的长度短。
由此,夹着隔壁10e配置的腹侧第一冷却孔32与腹侧第二冷却孔42随着接近腹侧第一出口侧开口32B以及腹侧第二出口侧开口42B而进一步接近隔壁10e,隔壁10e的难以冷却区域的冷却得到进一步强化。
同样地,如图4A、图4B、图7所示,在几个实施方式中,背侧第一冷却孔33以及背侧第二冷却孔43中的、背侧第一出口侧开口33B的位置与背侧第二出口侧开口43B的位置之间的前缘-后缘方向上的长度比背侧第一入口侧开口33A的位置与背侧第二入口侧开口43A的位置之间的前缘-后缘方向上的长度短。
由此,夹着隔壁10e配置的背侧第一冷却孔33与背侧第二冷却孔43随着接近背侧第一出口侧开口33B以及背侧第二出口侧开口43B而进一步接近隔壁10e,隔壁10e的难以冷却区域的冷却得到进一步强化。
在图4A以及图4B所示的实施方式中,腹侧第一冷却孔32的腹侧第一出口侧开口32B的位置与腹侧第二冷却孔42的腹侧第二出口侧开口42B的位置之间的前缘-后缘方向上的长度比隔壁10e的厚度短。
同样地,在图4A以及图4B所示的实施方式中,背侧第一冷却孔33的背侧第一出口侧开口33B的位置与背侧第二冷却孔43的背侧第二出口侧开口43B的位置之间的前缘-后缘方向上的长度比隔壁10e的厚度短。
在几个实施方式中,在夹着隔壁10而相邻配置的前缘侧冷却流路4U与后缘侧冷却流路4D之中,在前缘侧冷却流路4U连通有腹侧第二冷却孔42以及背侧第二冷却孔43,在后缘侧冷却流路4D连通有腹侧第一冷却孔32以及背侧第一冷却孔33。
因此,在腹侧第一冷却孔32的腹侧第一出口侧开口32B的位置与腹侧第二冷却孔42的腹侧第二出口侧开口42B的位置之间的前缘-后缘方向上的长度比隔壁10e的厚度短的情况下,腹侧第一冷却孔32以及腹侧第二冷却孔42进一步接近隔壁10e,腹侧隔壁接合区域52的冷却得到强化。
同样地,在背侧第一冷却孔33的背侧第一出口侧开口33B的位置与背侧第二冷却孔43的背侧第二出口侧开口43B的位置之间的前缘-后缘方向上的长度比隔壁10e的厚度短的情况下,背侧第一冷却孔33以及背侧第二冷却孔43进一步接近隔壁10e,背侧隔壁接合区域53的冷却得到强化。
由此,在腹侧叶片壁13中,能够通过在腹侧第一冷却孔32和腹侧第二冷却孔42中的至少一方中流动的冷却空气来对与面向冷却流路4的区域相比难以冷却的腹侧隔壁接合区域52进行冷却。同样地,在背侧叶片壁14中,能够通过在背侧第一冷却孔33和背侧第二冷却孔43中的至少一方中流动的冷却空气来对与面向冷却流路4的区域相比难以冷却的背侧隔壁接合区域53进行冷却。
例如在图6所示的实施方式中,腹侧第一冷却孔32和腹侧第二冷却孔42分别具有以面向弯曲流路5的方式形成的腹侧第一入口侧开口32A和腹侧第二入口侧开口42A、以及形成于顶板15的表面(外壁面)15b的腹侧第一出口侧开口32B和腹侧第二出口侧开口42B。
与腹侧第一冷却孔32的腹侧第一入口侧开口32A相比,腹侧第一冷却孔32的腹侧第一出口侧开口32B沿着腹侧叶片壁13的厚度方向形成于叶片主体3的外壁面13b侧。
与腹侧第二冷却孔42的腹侧第二入口侧开口42A相比,腹侧第二冷却孔42的腹侧第二出口侧开口42B沿着腹侧叶片壁13的厚度方向形成于叶片主体3的外壁面13b侧。
通常,在涡轮动叶1中,当燃烧气体通过顶板15和与顶板15对置的涡轮机室(外壳)122之间时,由于顶板15与外壳122之间的间隙较小,因此燃烧气体的流速变高,相对于叶片主体3的热传递率变高,从而顶板15处的热负荷比其他部位高。
若如图6所示的实施方式那样,腹侧第一冷却孔32和腹侧第二冷却孔42的腹侧第一出口侧开口32B和腹侧第二出口侧开口42B形成于顶板15的表面15b,且与腹侧第一冷却孔32和腹侧第二冷却孔42的腹侧第一入口侧开口32A和腹侧第二入口侧开口42A相比,腹侧第一出口侧开口32B和腹侧第二出口侧开口42B的位置沿着腹侧叶片壁13的厚度方向位于叶片主体3的外壁面13b侧,则能够通过从腹侧第一入口侧开口32A和腹侧第二入口侧开口42A流入腹侧第一冷却孔32和腹侧第二冷却孔42的冷却空气来高效地对热负荷比其他部位高的顶板15进行冷却,同时对腹侧隔壁接合区域52进行冷却。
需要说明的是,也可以是仅腹侧第一冷却孔32和腹侧第二冷却孔42的腹侧第一出口侧开口32B和腹侧第二出口侧开口42B中的任一方如上述那样构成。
需要说明的是,对于背侧也可以是同样的。即,例如,在图6所示的实施方式中,背侧第一冷却孔33和背侧第二冷却孔43分别具有以面向弯曲流路5的方式形成的背侧第一入口侧开口33A和背侧第二入口侧开口43A、以及形成于顶板15的外壁面15b的背侧第一出口侧开口33B和背侧第二出口侧开口43B。
与背侧第一冷却孔的背侧第一入口侧开口33A相比,背侧第一冷却孔33的背侧第一出口侧开口33B沿着背侧叶片壁14的厚度方向形成于叶片主体3的外壁面14b侧。
与背侧第二冷却孔43的背侧第二入口侧开口43A相比,背侧第二冷却孔43的背侧第二出口侧开口43B沿着背侧叶片壁14的厚度方向形成于叶片主体3的外壁面14b侧。
由此,能够通过从背侧第一入口侧开口33A和背侧第二入口侧开口43A流入背侧第一冷却孔33和背侧第二冷却孔43的冷却空气来高效地对热负荷比其他部位高的顶板15进行冷却,同时对背侧隔壁接合区域53进行冷却。
需要说明的是,也可以是仅背侧第一冷却孔33和背侧第二冷却孔43的背侧第一出口侧开口33B和背侧第二出口侧开口43B中的任一方如上述那样构成。
例如在图5所示的实施方式中,腹侧第一冷却孔32和腹侧第二冷却孔42分别具有以面向弯曲流路5的方式形成的腹侧第一入口侧开口32A和腹侧第二入口侧开口42A、以及形成于腹侧叶片壁13的表面的腹侧第一出口侧开口32B和腹侧第二出口侧开口42B。
腹侧第一冷却孔32的腹侧第一出口侧开口32B形成于比腹侧第一冷却孔32的腹侧第一入口侧开口32A靠前端17a侧的位置。
腹侧第二冷却孔42的腹侧第二出口侧开口42B形成于比腹侧第二冷却孔42的腹侧第二入口侧开口42A靠前端17a侧的位置。
如上所述,通常,在涡轮动叶1中,顶板15处的热负荷比其他部位高,因此对于前端17a附近的叶片壁的温度,前端17a侧由于来自顶板15的热传递而容易变高。
若如图5所示的实施方式那样,腹侧第一冷却孔32和腹侧第二冷却孔42的腹侧第一出口侧开口32B和腹侧第二出口侧开口42B形成于腹侧叶片壁13的表面,且与腹侧第一冷却孔32和腹侧第二冷却孔42的腹侧第一入口侧开口32A和腹侧第二入口侧开口42A相比,腹侧第一出口侧开口32B和腹侧第二出口侧开口42B的位置位于前端17a侧,则能够通过从入口侧开口32A、42A流入腹侧第一冷却孔32和腹侧第二冷却孔42的冷却空气来冷却腹侧隔壁接合区域52,并高效地冷却前端17a侧附近的腹侧叶片壁13。
需要说明的是,也可以是仅腹侧第一冷却孔32和腹侧第二冷却孔42的腹侧第一出口侧开口32B和腹侧第二出口侧开口42B中的任一方如上述那样构成。
需要说明的是,对于背侧也可以是同样的。即,例如在图5所示的实施方式中,背侧第一冷却孔33和背侧第二冷却孔43分别具有以面向弯曲流路5(前缘侧弯曲流路6、后缘侧弯曲流路7)的方式形成的背侧第一入口侧开口33A和背侧第二入口侧开口43A、以及形成于背侧叶片壁14的表面的背侧第一出口侧开口33B和背侧第二出口侧开口43B,
背侧第一冷却孔33的背侧第一出口侧开口33B形成于比背侧第一冷却孔33的背侧第一入口侧开口33A靠前端17a侧的位置。
背侧第二冷却孔43的背侧第二出口侧开口43B形成于比背侧第二冷却孔43的背侧第二入口侧开口43A靠前端17a侧的位置。
由此,能够通过从背侧第一入口侧开口33A和背侧第二入口侧开口43A流入背侧第一冷却孔33和背侧第二冷却孔43的冷却空气来冷却背侧隔壁接合区域53,并高效地冷却前端17a侧附近的背侧叶片壁14。需要说明的是,也可以是仅背侧第一冷却孔33和背侧第二冷却孔43的背侧第一出口侧开口33B和背侧第二出口侧开口43B中的任一方如上述那样构成。
在图7以及图8所示的一实施方式中,为了抑制叶片主体3中的腹侧叶片壁13与顶板15的连接部的附近的燃烧气体的流动的紊乱、或为了该连接部的倒角,设置有具有倾斜面16a的连接部16,该倾斜面16a在叶片主体3的外部侧相对于腹侧叶片壁13与顶板15这双方倾斜。
另外,对于几个实施方式的叶片主体3,以降低由顶板15和与顶板15对置的外壳122的余隙的漏流引起的损失为目的,例如,如图7以及图8所示,也可以在顶板15设置凸肋27。
例如在图7以及图8所示的实施方式中,叶片主体3具有连接部16,该连接部16是腹侧叶片壁13与顶板15的连接部,且具有在叶片主体3的外部侧相对于腹侧叶片壁13与顶板15这双方倾斜的倾斜面16a。
腹侧第一冷却孔32和腹侧第二冷却孔42分别具有以面向弯曲流路5的方式形成的入口侧开口32A、42A、以及形成于连接部16的倾斜面16a的出口侧开口32B、42B。通过在腹侧叶片壁13与顶板15的连接部16设置倾斜面16a,从腹侧叶片面向顶板15流动的燃烧气体流的剥离减少,由燃烧气体流的紊乱引起的顶板的过热得到抑制。
如上所述,通常,在涡轮动叶1中,存在顶板15处的热负荷比其他部位高的倾向。
另外,在图7以及图8所示的一实施方式中,如上所述,设置有具有倾斜面16a的连接部16。
若如图7以及图8所示的实施方式那样,腹侧第一冷却孔32和腹侧第二冷却孔42的出口侧开口32B、42B形成于倾斜面16a,则能够通过流入腹侧第一冷却孔32和腹侧第二冷却孔42的冷却空气来对热负荷比其他部位高的顶板15进行冷却,同时高效地对前端17a侧的区域即腹侧叶片壁13与顶板15的连接部16进行冷却。
需要说明的是,也可以是仅腹侧第一冷却孔32和腹侧第二冷却孔42的出口侧开口32B、42B中的任一方如上述那样构成。
需要说明的是,虽未图示,但如图7以及图8所示的实施方式的倾斜面16a那样,在背侧叶片壁14与顶板15的连接部形成有在叶片主体3的外部侧相对于背侧叶片壁14与顶板15这双方倾斜的倾斜面的情况下,与上述结构相同地,也可以在该倾斜面形成背侧第一冷却孔33以及背侧第二冷却孔43的出口侧开口33B、43B。
由此,能够通过流入背侧第一冷却孔33和背侧第二冷却孔43的冷却空气来对热负荷比其他部位高的顶板15进行冷却,同时高效地对背侧隔壁接合区域53中的温度容易变高的前端17a侧的区域进行冷却。
需要说明的是,也可以是仅背侧第一冷却孔33和背侧第二冷却孔43的出口侧开口33B、43B中的任一方如上述那样构成。
另外,如图7以及图8所示,若在顶板15设置凸肋27,则与上述结构相同地,也可以在凸肋27形成背侧第一冷却孔33和背侧第二冷却孔43的出口侧开口33B、43B。
需要说明的是,图7以及图8所示,在凸肋27形成有相对于背侧叶片壁14与顶板15这双方倾斜的倾斜面27a的情况下,也可以在凸肋27的倾斜面27a形成背侧第一冷却孔33以及背侧第二冷却孔43的出口侧开口33B、43B。根据上述那样的结构,也能够对热负荷比其他部位高的顶板15进行冷却,同时高效地对前端17a侧的背侧叶片壁14以及凸肋27进行冷却。
例如在图4A以及图7所示的实施方式中,腹侧第一冷却孔32和腹侧第二冷却孔42分别具有以面向弯曲流路5的方式形成的入口侧开口32A、42A、以及以开口的中心位置存在于腹侧隔壁接合区域52的方式形成于叶片主体3的表面的出口侧开口32B、42B。需要说明的是,在此,叶片主体3的表面不仅是叶片壁13、14的表面,也包括顶板15、连接部16、凸肋27的表面。
这样,例如在图4A以及图7所示的实施方式中,由于腹侧第一冷却孔32和腹侧第二冷却孔42的出口侧开口32B、42B以开口的中心位置存在于腹侧隔壁接合区域52的方式形成于叶片主体3的表面,因此与出口侧开口32B、42B的开口的中心位置不存在于腹侧隔壁接合区域52的情况相比,能够增大腹侧第一冷却孔32和腹侧第二冷却孔42通过腹侧隔壁接合区域52的距离。由此,能够高效地对腹侧隔壁接合区域52进行冷却。
另外,通过将腹侧第一冷却孔32和腹侧第二冷却孔42的出口侧开口32B、42B以其中心位置存在于腹侧隔壁接合区域52的方式形成于叶片主体3的表面,从而能够通过从出口侧开口32B、42B流出的冷却空气来高效地对腹侧隔壁接合区域52中的叶片面进行冷却。
需要说明的是,也可以是仅腹侧第一冷却孔32和腹侧第二冷却孔42的出口侧开口32B、42B中的任一方如上述那样构成。
需要说明的是,对于背侧也可以是同样的。即,例如在图4A以及图7所示的实施方式中,背侧第一冷却孔33和背侧第二冷却孔43分别具有以面向弯曲流路5的方式形成的入口侧开口33A、43A、以及以中心位置存在于背侧隔壁接合区域53的方式形成于叶片主体3的表面的出口侧开口33B、43B。
这样,通过如上述那样设定背侧第一冷却孔33和背侧第二冷却孔43的出口侧开口33B、43B的形成位置,从而与出口侧开口33B、43B的开口的中心位置不存在于背侧隔壁接合区域53的情况相比,能够增大背侧第一冷却孔33和背侧第二冷却孔43通过背侧隔壁接合区域53的距离。由此,能够高效地对背侧隔壁接合区域53进行冷却。
另外,通过将背侧第一冷却孔33和背侧第二冷却孔43的出口侧开口33B、43B以开口的中心位置存在于背侧隔壁接合区域53的方式形成于叶片主体3的表面,从而能够通过从出口侧开口33B、43B流出的冷却空气来高效地对背侧隔壁接合区域53中的叶片面进行冷却。
需要说明的是,也可以是仅背侧第一冷却孔33和背侧第二冷却孔43的出口侧开口33B、43B中的任一方如上述那样构成。
在例如图4A以及图7中,几个实施方式的腹侧第一冷却孔32在弯曲流路5中的、最靠下游侧的位置即最接近后缘19侧的位置,具有以面向沿着涡轮动叶1的径向延伸的冷却流路4c、4f的方式形成的入口侧开口32A。
由此,与在比冷却流路4c、4f靠上游侧处的沿着涡轮动叶1的径向延伸的冷却流路中的任一个形成有腹侧第一冷却孔32的腹侧第一入口侧开口32A的情况相比,从腹侧第一冷却孔32向叶片主体3的外部排出的冷却空气沿着弯曲流路5流过更长的距离,从而能够从形成冷却流路的叶片主体带走更多的热量。因此,通过从腹侧第一冷却孔32向叶片主体3的外部排出的冷却空气进一步冷却叶片主体3,因此能够抑制冷却空气的流量,并能够抑制涡轮效率的降低。
需要说明的是,可以设置具有以面向前缘侧弯曲流路6的冷却流路4c的方式形成的入口侧开口32A的腹侧第一冷却孔32、以及以面向后缘侧弯曲流路7的冷却流路4f的方式形成的入口侧开口32A的腹侧第一冷却孔32这双方,也可以仅设置其中一方。关于这一点,对于以下所述的背侧也是同样的。
即,例如在图4A以及图7中,几个实施方式的背侧第一冷却孔33在弯曲流路5中的最靠下游侧处,具有以面向沿着涡轮动叶1的径向延伸的冷却流路4c、4f的方式形成的入口侧开口33A。
由此,与在比冷却流路4c、4f靠上游侧处的沿着涡轮动叶1的径向延伸的冷却流路中的任一个形成有背侧第一冷却孔33的入口侧开口33A的情况相比,从背侧第一冷却孔33向叶片主体3的外部排出的冷却空气沿着弯曲流路5流过更长的距离,从而能够从叶片主体3带走更多的热量。因此,通过从背侧第一冷却孔33向叶片主体3的外部排出的冷却空气对叶片主体3进一步冷却,从而能够抑制冷却空气的流量,并能够抑制涡轮效率的降低。
例如在图5、图6、图8所示的实施方式中,腹侧第一冷却孔32分别具有入口侧开口32A,该入口侧开口32A以面向弯曲流路5的方式形成于从顶板15向叶片主体3的基端17b侧分开的位置。
在顶板15与腹侧叶片壁13的连接部处,由于连接了延伸方向不同的顶板15与腹侧叶片壁13,因此容易产生热应力。关于这一点,例如在图5、图6、图8所示的实施方式中,由于腹侧第一冷却孔32的入口侧开口32A以面向弯曲流路5的方式形成于从顶板15向叶片主体3的基端17b侧分开的位置,因此能够避免入口侧开口32A形成于容易产生热应力的部位。
需要说明的是,对于背侧也可以是同样的。即,例如在图5、图6、图8所示的实施方式中,背侧第一冷却孔33分别具有入口侧开口33A,该入口侧开口33A以面向弯曲流路5的方式形成于从顶板15向叶片主体3的基端17b侧分开的位置。
在顶板15与背侧叶片壁14的连接部处,由于连接了延伸方向不同的顶板15与背侧叶片壁14,因此容易产生热应力。关于这一点,例如在图5、图6、图8所示的实施方式中,由于背侧第一冷却孔33的入口侧开口33A以面向弯曲流路5的方式形成于从顶板15向叶片主体3的基端17b侧分开的位置,因此能够避免入口侧开口33A形成于容易产生热应力的部位。
例如在图5、图6、图8所示的实施方式中,叶片主体3具有腹侧第一冷却孔32以及背侧第一冷却孔33。
腹侧第一冷却孔32和背侧第一冷却孔33分别具有入口侧开口32A、33A,该入口侧开口32A、33A以面向弯曲流路5的方式形成于从顶板15向叶片主体3的基端17b侧分开的位置。
腹侧第一冷却孔32的入口侧开口32A形成于比背侧第一冷却孔33的入口侧开口33A靠叶片主体3的基端17b侧处。
如上所述,在顶板15与腹侧叶片壁13的连接部处,由于连接了延伸方向不同的顶板15与腹侧叶片壁13而容易产生热应力。同样地,在顶板15与背侧叶片壁14的连接部处,由于连接了延伸方向不同的顶板15与背侧叶片壁14而容易产生热应力。关于这一点,例如在图5、图6、图8所示的实施方式中,由于腹侧第一冷却孔32和背侧第一冷却孔33各自的入口侧开口32A、33A以面向弯曲流路5的方式形成于从顶板15向叶片主体3的基端17b侧分开的位置,因此能够避免入口侧开口32A、33A形成于容易产生热应力的部位。
另外,如上所述,通常,在涡轮动叶1中,与背侧相比,腹侧的叶片主体3的温度容易变高。例如在图5、图6、图8所示的实施方式中,由于腹侧第一冷却孔32的入口侧开口32A形成于比背侧第一冷却孔33的入口侧开口33A靠叶片主体3的基端17b侧的位置,因此在与背侧相比温度容易变高的腹侧,能够使腹侧第一冷却孔32的入口侧开口32A形成于进一步远离容易产生热应力的顶板15与腹侧叶片壁13的连接部的位置。
需要说明的是,对于腹侧第二冷却孔42以及背侧第二冷却孔43也可以是同样的。即,例如在图5、图6、图8所示的实施方式中,叶片主体3具有腹侧第二冷却孔42以及背侧第二冷却孔43。
腹侧第二冷却孔42和背侧第二冷却孔43分别具有入口侧开口42A、43A,该入口侧开口42A、43A以面向弯曲流路5的方式形成于从顶板15向叶片主体3的基端17b侧分开的位置。
腹侧第二冷却孔42的入口侧开口42A形成于比背侧第二冷却孔43的入口侧开口43A靠叶片主体的基端17b侧的位置。
如上所述,在顶板15与腹侧叶片壁13的连接部处、以及顶板15与背侧叶片壁14的连接部处容易产生热应力。例如在图5、图6、图8所示的实施方式中,由于腹侧第二冷却孔42和背侧第二冷却孔43各自的入口侧开口42A、43A以面向弯曲流路5的方式形成于从顶板15向叶片主体3的基端17b侧分开的位置,因此能够避免入口侧开口42A、43A形成于容易产生热应力的部位。
另外,如上所述,通常,在涡轮动叶1中,与背侧相比,腹侧的叶片主体3的温度容易变高。例如在图5、图6、图8所示的实施方式中,由于腹侧第二冷却孔42的入口侧开口42A形成于比背侧第二冷却孔43的入口侧开口43A靠叶片主体3的基端17b侧的位置,因此在与背侧相比温度容易变高的腹侧,能够使腹侧第二冷却孔42的入口侧开口42A形成于进一步远离容易产生热应力的顶板15与腹侧叶片壁13的连接部的位置。
例如在图4A以及图7所示的实施方式中,对于隔壁10,从腹侧叶片壁13与背侧叶片壁14中的任一方朝向另一方的隔壁10的中心线Wx相对于弧线C倾斜。即,在图4A以及图7所示的实施方式中,对于隔壁10,从腹侧叶片壁13与背侧叶片壁14中的任一方朝向另一方的隔壁10的中心线Wx与正交于弧线C的线段交叉。
这样,例如在图4A以及图7所示的实施方式中,由于隔壁的中心线Wx相对于翼型的中心线即弧线C倾斜,因此隔壁的中心线Wx以相对于腹侧叶片壁13以及背侧叶片壁14倾斜的状态连接。因此,腹侧隔壁接合区域52、背侧隔壁接合区域53变大。若腹侧隔壁接合区域52、背侧隔壁接合区域53变大,则难以通过在弯曲流路5中流动的冷却空气来对腹侧隔壁接合区域52、背侧隔壁接合区域53进行冷却。
关于这一点,例如在图4A以及图7所示的实施方式中,由于具有至少一部分通过腹侧隔壁接合区域52的腹侧第一冷却孔32与腹侧第二冷却孔42的组合、以及至少一部分通过背侧隔壁接合区域53的背侧第一冷却孔33与背侧第二冷却孔43的组合中的至少一方,因此即使腹侧隔壁接合区域52、背侧隔壁接合区域53由于上述理由而变大,也能够抑制腹侧隔壁接合区域52、背侧隔壁接合区域53中的至少一方的温度上升。
本发明并不局限于上述实施方式,也包括对上述的实施方式施加变形而得的方式、将这些方式适当组合而成的方式。
例如,如上所述,叶片主体3只要具有各冷却孔32、33、42、43中的至少任一个,就能够对该至少任一个冷却孔的至少一部分所通过的隔壁接合区域51进行冷却。
需要说明的是,在叶片主体3构成为具有各冷却孔32、33、42、43中的至少任一个的情况下,能够采用上述的几个实施方式的各冷却孔32、33、42、43中的任一实施方式的冷却孔。另外,在叶片主体3构成为具有各冷却孔32、33、42、43中的至少两个以上的情况下,能够从上述的几个实施方式的各冷却孔32、33、42、43中将不同的实施方式的冷却孔适当地组合并采用。另外,只要没有特别记载,则第一冷却孔31包括腹侧第一冷却孔32以及背侧第一冷却孔33,第二冷却孔41包括腹侧第二冷却孔42以及背侧第二冷却孔43。另外,只要没有特别记载,则在仅表示为入口侧开口的情况下,包括腹侧第一入口侧开口32A、腹侧第二入口侧开口42A、背侧第一入口侧开口33A、背侧第二入口侧开口43A。并且,只要没有特别记载,在仅表示为出口侧开口的情况下,包括腹侧第一出口侧开口32B、腹侧第二出口侧开口42B、背侧第一出口侧开口33B、背侧第二出口侧开口43B。
附图标记说明:
1...涡轮动叶;
3...叶片部(叶片主体);
4、4a、4b、4c、4d、4e、4f...冷却流路;
4U...上游侧冷却流路(前缘侧冷却流路);
4D...下游侧冷却流路(后缘侧冷却流路);
5...弯曲流路;
6...前缘侧弯曲流路;
7...后缘侧弯曲流路;
8...后缘冷却流路;
9a、9b...供给流路;
10...隔壁;
13...腹侧的壁部(腹侧叶片壁);
14...背侧的壁部(背侧叶片壁);
13a、14a...内壁面;
13b、14b、15b...外壁面;
15...顶板;
16...连接部;
16a...倾斜面;
17a...前端;
17b...基端;
31...第一冷却孔;
31A...第一入口侧开口;
31B...第一出口侧开口;
32...腹侧第一冷却孔;
32A...腹侧第一入口侧开口;
32B...腹侧第一出口侧开口;
33...背侧第一冷却孔;
33A...背侧第一入口侧开口;
33B...背侧第一出口侧开口;
41...第二冷却孔;
41A...第二入口侧开口;
41B...第二出口侧开口;
42...腹侧第二冷却孔;
42A...腹侧第二入口侧开口;
42B...腹侧第二出口侧开口;
43...背侧第二冷却孔;
43A...背侧第二入口侧开口;
43B...背侧第二出口侧开口;
AXa1、AXa2、AXb1、AXb2...中心轴;
C...弧线;
51...隔壁接合区域;
52...腹侧隔壁接合区域;
53...背侧隔壁接合区域;
Wx...中心线。

Claims (15)

1.一种涡轮动叶,其具备包括腹侧叶片壁和背侧叶片壁的叶片主体,其中,
所述叶片主体包括:
弯曲流路,其由冷却流路构成,所述冷却流路被连接所述腹侧叶片壁与所述背侧叶片壁且沿着所述叶片主体的高度方向延伸的隔壁分隔为多个;以及
第一冷却孔,其是一端经由在所述腹侧叶片壁的内壁面或所述背侧叶片壁的内壁面形成的第一入口侧开口而与所述冷却流路连通、且另一端与在所述叶片主体的所述腹侧叶片壁的外壁面或所述背侧叶片壁的外壁面形成的第一出口侧开口连通的冷却孔,所述第一冷却孔从所述第一入口侧开口朝向所述第一出口侧开口而向前缘方向延伸。
2.根据权利要求1所述的涡轮动叶,其中,
所述第一冷却孔包括腹侧第一冷却孔和背侧第一冷却孔中的至少一方,
所述腹侧第一冷却孔是一端经由在所述腹侧叶片壁的所述内壁面形成的腹侧第一入口侧开口而与所述冷却流路连通、且另一端与在所述叶片主体的所述腹侧叶片壁的所述外壁面形成的腹侧第一出口侧开口连通的所述冷却孔,所述腹侧第一冷却孔从所述腹侧第一入口侧开口朝向所述腹侧第一出口侧开口而向所述前缘方向延伸,
所述背侧第一冷却孔是一端经由在所述背侧叶片壁的所述内壁面形成的背侧第一入口侧开口而与所述冷却流路连通、且另一端与在所述叶片主体的所述背侧叶片壁的所述外壁面形成的背侧第一出口侧开口连通的所述冷却孔,所述背侧第一冷却孔从所述背侧第一入口侧开口朝向所述背侧第一出口侧开口而向所述前缘方向延伸。
3.根据权利要求1或2所述的涡轮动叶,其中,
所述冷却流路包括与所述第一冷却孔连通的后缘侧冷却流路、以及与所述后缘侧冷却流路的前缘侧相邻地配置的前缘侧冷却流路,
所述叶片主体包括第二冷却孔,
所述第二冷却孔是一端经由在所述腹侧叶片壁的所述内壁面或所述背侧叶片壁的所述内壁面形成的第二入口侧开口而与所述前缘侧冷却流路连通、且另一端与在所述叶片主体的所述外壁面形成的第二出口侧开口连通的所述冷却孔,所述第二冷却孔从所述第二入口侧开口朝向所述第二出口侧开口而向后缘方向延伸。
4.根据权利要求3所述的涡轮动叶,其中,
所述第二冷却孔包括腹侧第二冷却孔和背侧第二冷却孔中的至少一方,
所述腹侧第二冷却孔是一端经由在所述腹侧叶片壁的所述内壁面形成的腹侧第二入口侧开口而与所述前缘侧冷却流路连通、且另一端与在所述叶片主体的所述腹侧叶片壁的所述外壁面形成的腹侧第二出口侧开口连通的所述冷却孔,所述腹侧第二冷却孔从所述腹侧第二入口侧开口朝向所述腹侧第二出口侧开口而向所述后缘方向延伸,
所述背侧第二冷却孔是一端经由在所述背侧叶片壁的所述内壁面形成的背侧第二入口侧开口而与所述前缘侧冷却流路连通、且另一端与在所述叶片主体的所述背侧叶片壁的所述外壁面形成的背侧第二出口侧开口连通的所述冷却孔,所述背侧第二冷却孔从所述背侧第二入口侧开口朝向所述背侧第二出口侧开口而向所述后缘方向延伸。
5.根据权利要求3或4所述的涡轮动叶,其中,
所述第一出口侧开口的位置与所述第二出口侧开口的位置之间的前缘后缘方向上的长度比所述第一入口侧开口的位置与所述第二入口侧开口的位置之间的所述前缘后缘方向上的长度短。
6.根据权利要求3至5中任一项所述的涡轮动叶,其中,
所述第一出口侧开口的位置与所述第二出口侧开口的位置之间的前缘后缘方向上的长度比所述隔壁的厚度短。
7.根据权利要求3至6中任一项所述的涡轮动叶,其中,
所述腹侧叶片壁和所述背侧叶片壁分别包括接合所述隔壁的隔壁接合区域,
所述第一冷却孔和所述第二冷却孔中的至少一方通过所述隔壁接合区域的一部分。
8.根据权利要求7所述的涡轮动叶,其中,
所述第一出口侧开口和所述第二出口侧开口中的至少一方以中心位置存在于所述隔壁接合区域的方式形成于所述叶片主体的所述外壁面。
9.根据权利要求3至8中任一项所述的涡轮动叶,其中,
所述叶片主体具备形成于前端侧的顶板,
所述第一出口侧开口和所述第二出口侧开口中的至少一方形成于所述顶板的外壁面。
10.根据权利要求3至8中任一项所述的涡轮动叶,其中,
所述叶片主体具备形成于前端侧的顶板,
在所述腹侧叶片壁与所述顶板连接的连接部且所述叶片主体的所述外壁面侧形成有相对于所述腹侧叶片壁以及所述顶板倾斜的倾斜面,
所述第一出口侧开口和所述第二出口侧开口中的至少一方形成于所述倾斜面。
11.根据权利要求9或10中任一项所述的涡轮动叶,其中,
所述第一入口侧开口和所述第二入口侧开口以面向所述弯曲流路的方式形成于从所述顶板向所述叶片主体的基端侧分开的位置。
12.根据权利要求2至11中任一项所述的涡轮动叶,其中,
所述第一入口侧开口以面向所述弯曲流路中的、在最靠后缘侧处沿着所述叶片主体的高度方向延伸的所述冷却流路的方式形成。
13.根据权利要求2至12中任一项所述的涡轮动叶,其中,
所述腹侧第一入口侧开口形成于比所述背侧第一入口侧开口靠所述叶片主体的基端侧处。
14.根据权利要求1至13中任一项所述的涡轮动叶,其中,
对于所述隔壁,从所述腹侧叶片壁和所述背侧叶片壁中的任一方朝向另一方的所述隔壁的中心线相对于弧线倾斜。
15.一种燃气轮机,其中,
所述燃气轮机具备权利要求1至14中任一项所述的涡轮动叶。
CN201980019689.3A 2018-03-27 2019-03-19 涡轮动叶以及燃气轮机 Active CN111936724B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2018060015A JP7093658B2 (ja) 2018-03-27 2018-03-27 タービン動翼及びガスタービン
JP2018-060015 2018-03-27
PCT/JP2019/011455 WO2019188588A1 (ja) 2018-03-27 2019-03-19 タービン動翼及びガスタービン

Publications (2)

Publication Number Publication Date
CN111936724A true CN111936724A (zh) 2020-11-13
CN111936724B CN111936724B (zh) 2022-12-27

Family

ID=68061619

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201980019689.3A Active CN111936724B (zh) 2018-03-27 2019-03-19 涡轮动叶以及燃气轮机

Country Status (6)

Country Link
US (1) US11346231B2 (zh)
JP (1) JP7093658B2 (zh)
KR (1) KR102526809B1 (zh)
CN (1) CN111936724B (zh)
DE (1) DE112019000921T5 (zh)
WO (1) WO2019188588A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BR112016023078B1 (pt) 2014-05-05 2022-08-02 Sulzer Management Ag Arranjo de vedação para uma bomba de alta pressão e bomba de alta pressão com referido arranjo de vedação
EP3974618B1 (en) 2020-09-24 2023-04-19 Doosan Enerbility Co., Ltd. A technique for cooling squealer tip of a gas turbine blade

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020182074A1 (en) * 2001-05-31 2002-12-05 Bunker Ronald Scott Film cooled blade tip
CN1861988A (zh) * 2005-05-13 2006-11-15 斯奈克玛 燃气轮发动机的涡轮机的空心转子叶片及其“浴形槽”
US20160010463A1 (en) * 2013-03-04 2016-01-14 United Technologies Corporation Gas turbine engine high lift airfoil cooling in stagnation zone
WO2017056997A1 (ja) * 2015-09-29 2017-04-06 三菱日立パワーシステムズ株式会社 動翼及びこれを備えるガスタービン

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62228603A (ja) * 1986-03-31 1987-10-07 Toshiba Corp ガスタ−ビンの翼
JPS6466401A (en) * 1987-09-07 1989-03-13 Toshiba Corp Turbine cooling blade
US5326224A (en) * 1991-03-01 1994-07-05 General Electric Company Cooling hole arrangements in jet engine components exposed to hot gas flow
JP3137527B2 (ja) * 1994-04-21 2001-02-26 三菱重工業株式会社 ガスタービン動翼チップ冷却装置
US6092982A (en) * 1996-05-28 2000-07-25 Kabushiki Kaisha Toshiba Cooling system for a main body used in a gas stream
JPH1054203A (ja) * 1996-05-28 1998-02-24 Toshiba Corp 構造要素
JPH10231703A (ja) 1997-02-17 1998-09-02 Toshiba Corp ガスタービンの翼
JPH11200805A (ja) * 1998-01-14 1999-07-27 Toshiba Corp 構造要素の冷却方法、冷却用流路付構造要素および冷却用流路付ガスタービン翼
US6491496B2 (en) * 2001-02-23 2002-12-10 General Electric Company Turbine airfoil with metering plates for refresher holes
JP4137508B2 (ja) 2002-05-02 2008-08-20 ゼネラル・エレクトリック・カンパニイ リフレッシュ用孔のメータリング板を備えるタービン翼形部
US7249934B2 (en) 2005-08-31 2007-07-31 General Electric Company Pattern cooled turbine airfoil
US7645122B1 (en) * 2006-12-01 2010-01-12 Florida Turbine Technologies, Inc. Turbine rotor blade with a nested parallel serpentine flow cooling circuit
US20100239409A1 (en) * 2009-03-18 2010-09-23 General Electric Company Method of Using and Reconstructing a Film-Cooling Augmentation Device for a Turbine Airfoil
US8684691B2 (en) * 2011-05-03 2014-04-01 Siemens Energy, Inc. Turbine blade with chamfered squealer tip and convective cooling holes
US8920124B2 (en) * 2013-02-14 2014-12-30 Siemens Energy, Inc. Turbine blade with contoured chamfered squealer tip
US10605170B2 (en) * 2015-11-24 2020-03-31 General Electric Company Engine component with film cooling
US10227876B2 (en) * 2015-12-07 2019-03-12 General Electric Company Fillet optimization for turbine airfoil
KR20190096569A (ko) * 2018-02-09 2019-08-20 두산중공업 주식회사 가스 터빈

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020182074A1 (en) * 2001-05-31 2002-12-05 Bunker Ronald Scott Film cooled blade tip
CN1861988A (zh) * 2005-05-13 2006-11-15 斯奈克玛 燃气轮发动机的涡轮机的空心转子叶片及其“浴形槽”
US20160010463A1 (en) * 2013-03-04 2016-01-14 United Technologies Corporation Gas turbine engine high lift airfoil cooling in stagnation zone
WO2017056997A1 (ja) * 2015-09-29 2017-04-06 三菱日立パワーシステムズ株式会社 動翼及びこれを備えるガスタービン

Also Published As

Publication number Publication date
US11346231B2 (en) 2022-05-31
KR102526809B1 (ko) 2023-04-27
WO2019188588A1 (ja) 2019-10-03
CN111936724B (zh) 2022-12-27
JP2019173595A (ja) 2019-10-10
US20210071535A1 (en) 2021-03-11
DE112019000921T5 (de) 2020-11-05
JP7093658B2 (ja) 2022-06-30
KR20200116517A (ko) 2020-10-12

Similar Documents

Publication Publication Date Title
US8668453B2 (en) Cooling system having reduced mass pin fins for components in a gas turbine engine
CN106907182B (zh) 具有后缘冷却回路的涡轮翼型件
US11732593B2 (en) Flared central cavity aft of airfoil leading edge
CN106907183B (zh) 带有后缘冷却回路的涡轮翼型件
EP3341567B1 (en) Internally cooled turbine airfoil with flow displacement feature
US20070128030A1 (en) Turbine airfoil with integral cooling system
CN111936724B (zh) 涡轮动叶以及燃气轮机
JP7130855B2 (ja) タービン静翼及びガスタービン
CN107435562B (zh) 在冷却剂通道的转弯部开口处具有应力减小球根状突起的叶片
US20190024520A1 (en) Turbine blade cooling
JP2019173595A5 (zh)
US10655478B2 (en) Turbine blade and gas turbine
US11187085B2 (en) Turbine bucket with a cooling circuit having an asymmetric root turn
US11643935B2 (en) Turbine blade and gas turbine
JP2021071085A (ja) タービン翼及びこれを備えたガスタービン
JP2019085973A5 (zh)
US11629601B2 (en) Turbomachine rotor blade with a cooling circuit having an offset rib
US12000304B2 (en) Turbine blade and gas turbine
CN110382823B (zh) 涡轮叶片、涡轮及涡轮叶片的冷却方法
US20230358141A1 (en) Turbine blade and gas turbine
CN114687808A (zh) 用于涡轮机部件的具有旁通导管的冷却回路

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
TA01 Transfer of patent application right
TA01 Transfer of patent application right

Effective date of registration: 20220426

Address after: Tokyo

Applicant after: MITSUBISHI HEAVY INDUSTRIES, Ltd.

Address before: Kanagawa County, Japan

Applicant before: Mitsubishi Power Co.,Ltd.

GR01 Patent grant
GR01 Patent grant