CN111921514B - 一种具有抗菌性的TiO2与多孔碳纳米复合材料的制备方法 - Google Patents

一种具有抗菌性的TiO2与多孔碳纳米复合材料的制备方法 Download PDF

Info

Publication number
CN111921514B
CN111921514B CN202010736222.5A CN202010736222A CN111921514B CN 111921514 B CN111921514 B CN 111921514B CN 202010736222 A CN202010736222 A CN 202010736222A CN 111921514 B CN111921514 B CN 111921514B
Authority
CN
China
Prior art keywords
tio
zif
composite material
preparation
porous carbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202010736222.5A
Other languages
English (en)
Other versions
CN111921514A (zh
Inventor
张伟
黄怡雯
魏发云
张广宇
戴家木
刘蓉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nantong University
Original Assignee
Nantong University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nantong University filed Critical Nantong University
Priority to CN202010736222.5A priority Critical patent/CN111921514B/zh
Publication of CN111921514A publication Critical patent/CN111921514A/zh
Application granted granted Critical
Publication of CN111921514B publication Critical patent/CN111921514B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • B01J21/063Titanium; Oxides or hydroxides thereof
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N59/00Biocides, pest repellants or attractants, or plant growth regulators containing elements or inorganic compounds
    • A01N59/16Heavy metals; Compounds thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/18Carbon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0009Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/082Decomposition and pyrolysis
    • B01J37/086Decomposition of an organometallic compound, a metal complex or a metal salt of a carboxylic acid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/30Against vector-borne diseases, e.g. mosquito-borne, fly-borne, tick-borne or waterborne diseases whose impact is exacerbated by climate change

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Nanotechnology (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Health & Medical Sciences (AREA)
  • Plant Pathology (AREA)
  • General Health & Medical Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Environmental Sciences (AREA)
  • Composite Materials (AREA)
  • Dentistry (AREA)
  • Pest Control & Pesticides (AREA)
  • Agronomy & Crop Science (AREA)
  • Thermal Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Catalysts (AREA)

Abstract

本发明提供了一种具有抗菌性的TiO2与多孔碳纳米复合材料的制备方法,包括如下步骤:S10使用六水合硝酸锌、2‑甲基咪唑以及甲醇制备ZIF‑8材料;S20制备ZIF‑8分散液,基于钛酸异丙酯和所述ZIF‑8分散液,制备TiO2前驱体包覆ZIF8复合材料;S30将所述TiO2前驱体包覆ZIF8复合材料高温碳化,制备纳米TiO2/碳复合材料。本发明的一种具有抗菌性的TiO2与多孔碳纳米复合材料的制备方法,与传统TiO2相比,纳米TiO2与空心多孔碳材料复合后比表面积增大,光催化活性增强,并且赋予了TiO2与多孔碳纳米复合材料一定的光热转换能力,同时ZIF‑8中的Zn在高温条件下蒸发,集中在复合材料表面,增强了复合材料的抗菌性。

Description

一种具有抗菌性的TiO2与多孔碳纳米复合材料的制备方法
技术领域
本发明涉及抗菌材料技术领域,具体涉及一种具有抗菌性的TiO2与多孔碳纳米复合材料的制备方法。
背景技术
随着科学技术的不断发展,人们对生活质量的要求越来越高,对微生物、环境和自身健康的关系也更加关注。因此,抗菌材料一度成为人们研究的热点。近年来,与有机抗菌材料相比,无机抗菌材料由于其良好的耐热性、耐久性和抗菌光谱性而备受关注,光催化抗菌剂是目前最具有研究价值与开发前景的无机抗菌剂,TiO2纳米材料由于其较好的活性、优异的热稳定性和高效持久的抗菌活性,以及价格低廉、对人体无毒,受到研究学者的广泛研究。然而,TiO2能级带隙较宽(约3.2eV),仅能吸收太阳光谱的紫外光部分,并且光生载流子容易发生复合,量子产率比较低,太阳能利用效率低。因此,大量的研究者针对如何抑制其光生电子空穴对的复合以及窄化其禁带宽度方面进行了大量的研究。
碳材料对于二氧化钛光催化性能的改善有优异的表现。比如某些碳材料具有优良的电子存储能力,可以接收二氧化钛迁移到碳上的电子,从而抑制其电子与空穴的复合;另外,碳原子以掺杂的形式进入二氧化钛的晶格中,可以窄化二氧化钛的禁带宽度,使之可以吸收更宽光谱的光。而金属有机骨架(Metal-Organic Frameworks,简称MOFs)材料是由金属离子或金属离子簇与有机配合物通过不同方式组成的一类多孔框架材料。MOFs材料具有孔隙率高、比表面积大、孔道规则、孔径可调等优点。进一步地,MOFs衍生物(例如多孔纳米碳、碳化物、硫化物、磷化物等)继承了MOFs的大比表面积、规则的孔结构等优点形成了高质量的纳米多孔材料,因此得到了广泛的关注。它们不仅增加了活性位点的暴露数目,还促进了载流子的传输。将TiO2与MOFs模板化纳米多孔材料结合,有望提高TiO2的光催化效率。然而这些基于MOF的混合光催化剂的研究仍然很少,而且处于起步阶段。
发明内容
为了解决上述问题,本发明提供一种具有抗菌性的TiO2与多孔碳纳米复合材料的制备方法,与传统TiO2相比,纳米TiO2与空心多孔碳材料复合后比表面积增大,光催化活性增强,并且赋予了TiO2与多孔纳米复合材料一定的光热转换能力,同时ZIF-8中的Zn在高温条件下蒸发,集中在复合材料表面,增强了复合材料的抗菌性。
为了实现以上目的,本发明采取的一种技术方案是:
一种具有抗菌性的TiO2与多孔碳纳米复合材料的制备方法,包括如下步骤:S10使用六水合硝酸锌、2-甲基咪唑以及甲醇制备有机金属框架2-甲基咪唑锌盐(ZIF-8);S20制备ZIF-8分散液,基于钛酸异丙酯和所述ZIF-8分散液,制备TiO2前驱体包覆ZIF8复合材料;S30将所述TiO2前驱体包覆ZIF8复合材料高温碳化,制备纳米TiO2/碳复合材料。
进一步地,所述步骤S10包括如下步骤:S11将六水合硝酸锌溶于甲醇,得到溶液A;S12将2-甲基咪唑和十六烷基三甲基溴化铵(CTAB)溶于甲醇,得到溶液B;以及S13将溶液B快速加入溶液A中,并在常温下搅拌分散2~6h后,静置8~12h离心并用乙醇洗涤获得ZIF-8材料。
进一步地,所述步骤S20包括如下步骤:S21将ZIF-8材料与乙醇混合,超声分散10~30min,获得ZIF-8分散液;S22在ZIF-8分散液中加入十六胺和氨水,在常温下搅拌分散5~20min,获得第一混合溶液;S23将钛酸异丙酯加入到第一混合溶液中,在常温下搅拌分散40~80min,获得第二混合溶液;以及S24将第二混合溶液离心,用去离子水洗涤后,冷冻干燥12~36h,获得白色产物,即TiO2前驱体包覆ZIF8复合材料。
进一步地,搅拌分散的转速为500~700rpm,离心转速为6000~10000rpm。
进一步地,在超声分散过程中功率为100%。
进一步地,所述步骤S30将TiO2前驱体包覆ZIF8复合材料在600~900℃下高温碳化1~3h,获得TiO2与多孔碳纳米复合材料。
进一步地,所述步骤S30的的碳化温度分别为650℃或800℃。
本发明的上述技术方案相比现有技术具有以下优点:
本发明的一种具有抗菌性的TiO2与多孔碳纳米复合材料的制备方法,通过牺牲模板的方法,将二氧化钛(TiO2)沉积在有机金属框架2-甲基咪唑锌盐(ZIF-8)表面,再经碳化后得到立方纳米复合材料,在高温的条件下,ZIF-8中有机框架被碳化,Zn2+逸出聚集在材料表面,从而实现TiO2光催化、光热以及金属离子协同抗菌,与传统TiO2相比,纳米TiO2与空心多孔碳材料复合后比表面积增大,光催化活性增强,并且赋予了TiO2与多孔纳米复合材料一定的光热转换能力,同时ZIF-8中的Zn在高温条件下蒸发,集中在复合材料表面,增强了复合材料的抗菌性。
附图说明
下面结合附图,通过对本发明的具体实施方式详细描述,将使本发明的技术方案及其有益效果显而易见。
图1所示为本发明一实施例的一种具有抗菌性的TiO2与多孔碳纳米复合材料的制备方法流程图;
图2所示为本发明一实施例的碳化前后ZIF-8材料的电镜图;
图3所示为本发明一实施例的包覆TiO2程度不同的TiO2/ZIF-8复合材料的电镜图;
图4所示为本发明一实施例的各样品的紫外光谱图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
本实施例提供了一种具有抗菌性的TiO2与多孔碳纳米复合材料的制备方法,如图1所示,包括如下步骤:S10使用六水合硝酸锌、2-甲基咪唑以及甲醇制备有机金属框架2-甲基咪唑锌盐(ZIF-8)。S20制备ZIF-8分散液,基于钛酸异丙酯和所述ZIF-8分散液,制备TiO2前驱体包覆ZIF8复合材料。S30将所述TiO2前驱体包覆ZIF8复合材料高温碳化,制备纳米TiO2/碳复合材料。S10以六水合硝酸锌为金属源,2-甲基咪唑为有机连接体,甲醇为溶剂,锌离子与咪唑配体发生配位反应,制备有机金属框架2-甲基咪唑锌盐(ZIF-8)。S20以乙醇为溶剂制备ZIF-8分散液,钛酸异丙酯为钛源,氨水为沉淀剂,通过直接沉淀法,制备TiO2前驱体包覆ZIF8复合材料。二氧化钛在吸收了波长小于387.5nm的近紫外光时,价带电子会被激发到导带,形成高活性电子,同时价带上产生空穴。形成的电子一空穴对在电场的作用下,发生分离并迁移到二氧化钛表面上的不同位置,并在表面发生各种氧化还原反应,从而产生活性氧,达到抗菌的目的。并且纳米TiO2作为杀菌剂还具有以下几个特点:一是即效性好,如银系列抗菌剂的效果约在24h左右发生,而纳米TiO2仅需1h左右;二是TiO2是一种半永久维持抗菌效果的抗菌剂,不像其它抗菌剂会随着抗菌剂的溶出而效果逐渐下降;三是有很好的安全性,与皮肤接触无不良影响。旦由于TiO2禁带宽度较宽,电子与空穴易发生复合,限制其在抗菌方面的应用。因此对其进行改性,以提高光催化活性。
制备了以ZIF-8为模板,表面包覆TiO2的纳米立方粉体,再将其高温碳化,得到TiO2/多孔碳纳米立方粉体。其中,经过碳化后的ZIF-8保留了其比表面积大的特点,增加了复合材料的氧化还原活性位点,并且增加了一定的光热性,同时在高温的作用下Zn从ZIF-8析出在TiO2表面形成结晶,从而实现光催化光热金属离子协同抗菌作用。
所述步骤S10包括如下步骤:S11将六水合硝酸锌溶于甲醇,得到溶液A。S12将2-甲基咪唑和十六烷基三甲基溴化铵(CTAB)溶于甲醇,得到溶液B。以及S13将溶液B快速加入溶液A中,并在常温下搅拌分散2~6h后,搅拌分散的转速为500~700rpm,静置8~12h离心,离心转速为6000~10000rpm,用乙醇洗涤获得ZIF-8材料。
所述步骤S20包括如下步骤:S21将ZIF-8材料与乙醇混合,超声分散10~30min,在超声分散过程中功率为100%,获得ZIF-8分散液。S22在ZIF-8分散液中加入十六胺和氨水,在常温下搅拌分散5~20min,搅拌分散的转速为500~700rpm,获得第一混合溶液。S23将钛酸异丙酯加入到第一混合溶液中,在常温下搅拌分散40~80min,获得第二混合溶液。以及S24将第二混合溶液离心,用去离子水洗涤后,离心转速为6000~10000rpm,冷冻干燥12~36h,获得白色产物,即TiO2前驱体包覆ZIF8复合材料。
所述步骤S30将TiO2前驱体包覆ZIF8复合材料在600~900℃下高温碳化1~3h,获得TiO2与多孔碳纳米复合材料。优选碳化温度分别为650℃或800℃。
实施例1
S11将0.5g~0.8g的六水合硝酸锌溶于30ml的甲醇,超声分散1min,得到溶液A。
S12将1.4g~1.6g的2-甲基咪唑和8~10mg的CTAB溶于10ml甲醇,超声分散1min,得到溶液B。
S13将溶液B快速加入溶液A中,在室温下以500rpm~700rpm速度搅拌分散2小时~6小时,并静置8小时~12小时。经7830rpm转速离心后得到的白色沉淀用乙醇洗涤3次,获得ZIF-8材料。
S21将ZIF-8材料溶于90ml-110ml乙醇混合,超声分散10~30min至完全分散,获得ZIF-8分散液。
S22在ZIF-8分散液中加入0.2g~0.4g的十六胺和0.5ml~1ml氨水,在常温下以500rpm~700rpm速度搅拌分散5分钟~20分钟,获得第一混合溶液。
S23将1.1ml~1.3ml的钛酸异丙酯加入到第一混合溶液中,在常温下以500rpm~700rpm速度搅拌分散40分钟~80分钟,获得第二混合溶液。
S24将第二混合溶液经7830rpm转速离心后得到的白色沉淀用去离子水洗涤3次,冷冻干燥12小时~36小时,获得TiO2前驱体包覆ZIF8复合材料。
S30将TiO2前驱体包覆ZIF8复合材料放入氮气气氛保护炉内于500℃、650℃、800℃分别烧结2小时,获得具有抗菌性的TiO2与多孔碳纳米复合材料。
实施例2
S11将0.5g~0.8g的六水合硝酸锌溶于30ml甲醇,超声分散1min,得到溶液A。
S12将1.4g~1.6g的2-甲基咪唑和8~10mg的CTAB溶于10ml甲醇,超声分散1min,得到溶液B。
S13将溶液B快速加入溶液A中,在室温下以500rpm~700rpm速度搅拌分散2小时~6小时,并静置8小时~12小时。经7830rpm转速离心后得到的白色沉淀用乙醇洗涤3次,获得ZIF-8材料。
S21将ZIF-8材料溶于90ml-110ml乙醇混合,超声分散10~30min至完全分散,获得ZIF-8分散液。
S22在ZIF-8分散液中加入0.2g~0.4g的十六胺和0.5ml~1ml氨水,在常温下以500rpm~700rpm速度搅拌分散5分钟~20分钟,获得第一混合溶液。
S23将0.8ml~1ml的钛酸异丙酯加入到第一混合溶液中,在常温下以500rpm~700rpm速度搅拌分散40分钟~80分钟,获得第二混合溶液。
S24将第二混合溶液经7830rpm转速离心后得到的白色沉淀用去离子水洗涤3次,冷冻干燥12小时~36小时,获得TiO2前驱体包覆ZIF8复合材料。
S30将TiO2前驱体包覆ZIF8复合材料放入氮气气氛保护炉内于650℃、800℃分别烧结2小时,获得具有抗菌性的TiO2与多孔碳纳米复合材料。
实施例3
S11将0.5g~0.8g的六水合硝酸锌溶于30ml甲醇,超声分散1min,得到溶液A。
S12将1.4g~1.6g的2-甲基咪唑和8~10mg的CTAB溶于10ml甲醇,超声分散1min,得到溶液B。
S13将溶液B快速加入溶液A中,在室温下以500rpm~700rpm速度搅拌分散2小时~6小时,并静置8小时~12小时。经7830rpm转速离心后得到的白色沉淀用乙醇洗涤3次,获得ZIF-8材料。
S21将ZIF-8材料溶于90ml-110ml乙醇混合,超声分散10~30min至完全分散,获得ZIF-8分散液。
S22在ZIF-8分散液中加入0.2g~0.4g的十六胺和0.5ml~1ml氨水,在常温下以500rpm~700rpm速度搅拌分散5分钟~20分钟,获得第一混合溶液。
S23将0.5ml~0.7ml的钛酸异丙酯加入到第一混合溶液中,在常温下以500rpm~700rpm速度搅拌分散40分钟~80分钟,获得第二混合溶液。
S24将第二混合溶液经7830rpm转速离心后得到的白色沉淀用去离子水洗涤3次,冷冻干燥12小时~36小时,获得TiO2前驱体包覆ZIF8复合材料。
S30将TiO2前驱体包覆ZIF8复合材料放入氮气气氛保护炉内于650℃、800℃分别烧结2小时,获得具有抗菌性的TiO2与多孔碳纳米复合材料。
实施例4
S11将0.5g~0.8g的六水合硝酸锌溶于30ml甲醇,超声分散1min,得到溶液A。
S12将1.4g~1.6g的2-甲基咪唑和CTAB溶于10ml甲醇,超声分散1min,得到溶液B。
S13将溶液B快速加入溶液A中,在室温下以500rpm~700rpm速度搅拌分散2小时~6小时,并静置8小时~12小时。经7830rpm转速离心后得到的白色沉淀用乙醇洗涤3次,获得ZIF-8材料。
S21将ZIF-8材料溶于90ml-110ml乙醇混合,超声分散10~30min至完全分散,获得ZIF-8分散液。
S22在ZIF-8分散液中加入0.2g~0.4g的十六胺和0.5ml~1ml氨水,在常温下以500rpm~700rpm速度搅拌分散5分钟~20分钟,获得第一混合溶液。
S23将0.2ml~0.4ml的钛酸异丙酯加入到第一混合溶液中,在常温下以500rpm~700rpm速度搅拌分散40分钟~80分钟,获得第二混合溶液。
S24将第二混合溶液经7830rpm转速离心后得到的白色沉淀用去离子水洗涤3次,冷冻干燥12小时~36小时,获得TiO2前驱体包覆ZIF8复合材料。
S30将TiO2前驱体包覆ZIF8复合材料放入氮气气氛保护炉内于650℃、800℃分别烧结2小时,获得具有抗菌性的TiO2与多孔碳纳米复合材料。
如图2所示,分别为50000放大倍数下ZIF8、ZIF8-C650和ZIF8-C800的扫描电镜图。可以明显观察到,随着温度的升高,ZIF8立方结构逐渐消失,形成多孔碳骨架,当温度为800℃时,ZIF-8中的Zn在高温条件下蒸发,集中在复合材料表面。
如图3所示,分别为50000放大倍数下不同含量TiO2包覆ZIF8的TiO2前驱体包覆ZIF8复合材料的扫描电镜图。可以明显观察到,随着TiO2含量的减少,包覆ZIF8的TiO2壳层越薄,TiO2前驱体包覆ZIF8复合材料形状越规整。
如图4所示,为不同材料的紫外可见吸收光谱图。可以明显观察到,在高温烧结后,材料对紫外以及可见光的吸收大幅度加强,800℃下TiO2/碳纳米复合材料对紫外以及可见光的吸收强度最高,从而提高复合材料的光催化抗菌效果。
以上所述仅为本发明的示例性实施例,并非因此限制本发明专利保护范围,凡是利用本发明说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本发明的专利保护范围内。

Claims (4)

1.一种具有抗菌性的TiO2与多孔碳纳米复合材料的制备方法,其特征在于,包括如下步骤:
S10使用六水合硝酸锌、2-甲基咪唑以及甲醇制备有机金属框架2-甲基咪唑锌盐ZIF-8;
S20制备ZIF-8分散液,基于钛酸异丙酯和ZIF-8分散液,制备TiO2前驱体包覆ZIF-8复合材料;
S30将所述TiO2前驱体包覆ZIF-8复合材料高温碳化,制备纳米TiO2/碳复合材料;
所述步骤S20包括如下步骤:
S21将ZIF-8材料与乙醇混合,超声分散10~30min,获得ZIF-8分散液;
S22在ZIF-8分散液中加入十六胺和氨水,在常温下搅拌分散5~20min,获得第一混合溶液;
S23将钛酸异丙酯加入到第一混合溶液中,在常温下搅拌分散40~80min,获得第二混合溶液;以及
S24将第二混合溶液离心,用去离子水洗涤后,冷冻干燥12~36h,获得白色产物,即TiO2前驱体包覆ZIF-8复合材料;
所述步骤S30将TiO2前驱体包覆ZIF-8复合材料在600~800℃ 下高温碳化1~3h,获得TiO2与多孔碳纳米复合材料。
2.根据权利要求1所述的具有抗菌性的TiO2与多孔碳纳米复合材料的制备方法,其特征在于,所述步骤S10包括如下步骤:
S11将六水合硝酸锌溶于甲醇,得到溶液A;
S12将2-甲基咪唑和十六烷基三甲基溴化铵CTAB溶于甲醇,得到溶液B;以及
S13将溶液B快速加入溶液A中,并在常温下搅拌分散2~6h后,静置8~12h离心并用乙醇洗涤获得ZIF-8材料。
3.根据权利要求1或2所述的具有抗菌性的TiO2与多孔碳纳米复合材料的制备方法,其特征在于,搅拌分散的转速为500~700rpm,离心转速为6000~10000rpm。
4.根据权利要求1所述的具有抗菌性的TiO2与多孔碳纳米复合材料的制备方法,其特征在于,所述步骤S30的碳化温度分别为650℃或800℃。
CN202010736222.5A 2020-07-28 2020-07-28 一种具有抗菌性的TiO2与多孔碳纳米复合材料的制备方法 Active CN111921514B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010736222.5A CN111921514B (zh) 2020-07-28 2020-07-28 一种具有抗菌性的TiO2与多孔碳纳米复合材料的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010736222.5A CN111921514B (zh) 2020-07-28 2020-07-28 一种具有抗菌性的TiO2与多孔碳纳米复合材料的制备方法

Publications (2)

Publication Number Publication Date
CN111921514A CN111921514A (zh) 2020-11-13
CN111921514B true CN111921514B (zh) 2023-07-04

Family

ID=73315762

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010736222.5A Active CN111921514B (zh) 2020-07-28 2020-07-28 一种具有抗菌性的TiO2与多孔碳纳米复合材料的制备方法

Country Status (1)

Country Link
CN (1) CN111921514B (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112889841B (zh) * 2021-01-26 2022-04-15 张斌翔 一种光催化磷灰石包裹技术专杀病毒喷剂
CN113069940B (zh) * 2021-04-20 2023-03-07 江苏理工学院 一种抗污染膜的制备方法
CN114870034B (zh) * 2022-02-17 2024-05-31 上海交通大学医学院附属仁济医院 一种具备高效抗感染能力的基因转染纳米材料及其制备
CN114539853B (zh) * 2022-03-26 2022-12-16 厦门市金宝源实业有限公司 一种卫浴行业用抗病毒油漆及其制备方法
CN115652692B (zh) * 2022-10-28 2023-07-14 深圳市德馨包装制品有限公司 一种复合纸塑包装材料及其制备方法
WO2024136828A1 (en) * 2022-12-23 2024-06-27 Atatürk Üni̇versi̇tesi̇ Fi̇kri̇ Mülki̇yet Haklari Koordi̇natörlüğü Döner Sermaye İşletmesi̇ Dental composite resin with enhanced properties

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108461306A (zh) * 2018-03-28 2018-08-28 浙江大学 一种多层级n掺杂碳纳米棒复合材料及其制备方法
CN109499620A (zh) * 2018-12-10 2019-03-22 怀化学院 TiO2/ZIF-8复合光催化剂的制备方法
CN109759110A (zh) * 2019-01-03 2019-05-17 华南理工大学 一种氮掺杂多孔碳负载二氧化钛光催化剂及其制备方法与应用
CN111180670A (zh) * 2020-01-22 2020-05-19 河北大学 一种基于可控TiO2微球制备铝离子电池正极的方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108461306A (zh) * 2018-03-28 2018-08-28 浙江大学 一种多层级n掺杂碳纳米棒复合材料及其制备方法
CN109499620A (zh) * 2018-12-10 2019-03-22 怀化学院 TiO2/ZIF-8复合光催化剂的制备方法
CN109759110A (zh) * 2019-01-03 2019-05-17 华南理工大学 一种氮掺杂多孔碳负载二氧化钛光催化剂及其制备方法与应用
CN111180670A (zh) * 2020-01-22 2020-05-19 河北大学 一种基于可控TiO2微球制备铝离子电池正极的方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"Mesoporous amorphous TiO2 shell-coated ZIF-8 as an efficient and recyclable catalyst for transesterification to synthesize diphenyl carbonate";Bingying Jia et al.;《J Mater Sci》;20190409;第54卷;摘要和实验部分 *

Also Published As

Publication number Publication date
CN111921514A (zh) 2020-11-13

Similar Documents

Publication Publication Date Title
CN111921514B (zh) 一种具有抗菌性的TiO2与多孔碳纳米复合材料的制备方法
Xu et al. Self-assembly of a 3D hollow BiOBr@ Bi-MOF heterostructure with enhanced photocatalytic degradation of dyes
He et al. A multifunctional platform by controlling of carbon nitride in the core-shell structure: from design to construction, and catalysis applications
Li et al. Highly efficient charge transfer at 2D/2D layered P-La2Ti2O7/Bi2WO6 contact heterojunctions for upgraded visible-light-driven photocatalysis
Wu et al. Mxene-modulated dual-heterojunction generation on a metal-organic framework (MOF) via surface constitution reconstruction for enhanced photocatalytic activity
Phoon et al. A review of synthesis and morphology of SrTiO 3 for energy and other applications
Dong et al. Nanostructure Engineering and Modulation of (Oxy) Nitrides for Application in Visible‐Light‐Driven Water Splitting
Ramasubbu et al. Highly interconnected porous TiO2-Ni-MOF composite aerogel photoanodes for high power conversion efficiency in quasi-solid dye-sensitized solar cells
Zhu et al. In situ growth of metal–organic framework on BiOBr 2D material with excellent photocatalytic activity for dye degradation
Tian et al. Cellulose nanofibrils enable flower-like BiOCl for high-performance photocatalysis under visible-light irradiation
Pan et al. The overall water splitting of CdS/Ti3+-SrTiO3 core–shell heterojunction via OER enhancement of MnOx nanoparticles
Liu et al. Titanium dioxide crystals with tailored facets
Wei et al. Spontaneous photoelectric field-enhancement effect prompts the low cost hierarchical growth of highly ordered heteronanostructures for solar water splitting
Lee et al. Fabrication of metal-doped BiOI/MOF composite photocatalysts with enhanced photocatalytic performance
Hasanvandian et al. Enhanced spatially coupling heterojunction assembled from CuCo2S4 yolk-shell hollow sphere capsulated by Bi-modified TiO2 for highly efficient CO2 photoreduction
Gao et al. A plasmonic Z-scheme three-component photocatalyst g-C3N4/Ag/LaFeO3 with enhanced visible-light photocatalytic activities
Zhang et al. Atomically dispersed iron cathode catalysts derived from binary ligand-based zeolitic imidazolate frameworks with enhanced stability for PEM fuel cells
TW201214726A (en) Dye-sensitized solar cell and process for production thereof
CN107983353B (zh) 一种TiO2-Fe2O3复合粉体的制备方法及其应用
Kadi et al. Decoration of mesoporous graphite-like C 3 N 4 nanosheets by NiS nanoparticle-driven visible light for hydrogen evolution
KR101421572B1 (ko) TiO2-포르피린 유도체의 복합체를 포함하는 광촉매 및 이의 제조방법
Xing et al. Constructing iron-group doped metal–organic framework films on hematite photoanodes for efficient solar water splitting
Parkash Pt nanoparticles anchored on Cu-MOF-74: an efficient and durable ultra-low Pt electrocatalyst toward oxygen reduction reaction
Priya et al. Construction of MoS2 nanoparticles incorporated TiO2 nanosheets heterojunction photocatalyst for enhanced visible light driven hydrogen production
Murali et al. Fabrication of barium titanate nanowires-GNP composite bilayer photoanodes for the high-performance dye-sensitized solar cells

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant