CN111916438A - 一种碳化硅维也纳整流器半桥模块的封装结构 - Google Patents

一种碳化硅维也纳整流器半桥模块的封装结构 Download PDF

Info

Publication number
CN111916438A
CN111916438A CN202010874358.2A CN202010874358A CN111916438A CN 111916438 A CN111916438 A CN 111916438A CN 202010874358 A CN202010874358 A CN 202010874358A CN 111916438 A CN111916438 A CN 111916438A
Authority
CN
China
Prior art keywords
metal layer
silicon carbide
bridge arm
bidirectional switch
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202010874358.2A
Other languages
English (en)
Other versions
CN111916438B (zh
Inventor
彭力
花伟杰
陈材
黄志召
刘新民
康勇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Huazhong University of Science and Technology
Original Assignee
Huazhong University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Huazhong University of Science and Technology filed Critical Huazhong University of Science and Technology
Priority to CN202010874358.2A priority Critical patent/CN111916438B/zh
Publication of CN111916438A publication Critical patent/CN111916438A/zh
Application granted granted Critical
Publication of CN111916438B publication Critical patent/CN111916438B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/16Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof the devices being of types provided for in two or more different main groups of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. forming hybrid circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/498Leads, i.e. metallisations or lead-frames on insulating substrates, e.g. chip carriers
    • H01L23/49838Geometry or layout
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/16Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic Table
    • H01L29/1608Silicon carbide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/86Types of semiconductor device ; Multistep manufacturing processes therefor controllable only by variation of the electric current supplied, or only the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched
    • H01L29/861Diodes
    • H01L29/872Schottky diodes
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/003Constructional details, e.g. physical layout, assembly, wiring or busbar connections
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/02Conversion of ac power input into dc power output without possibility of reversal
    • H02M7/04Conversion of ac power input into dc power output without possibility of reversal by static converters
    • H02M7/12Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/125Avoiding or suppressing excessive transient voltages or currents
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/02Conversion of ac power input into dc power output without possibility of reversal
    • H02M7/04Conversion of ac power input into dc power output without possibility of reversal by static converters
    • H02M7/12Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/21Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/217Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M7/219Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only in a bridge configuration
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/48227Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • H01L2224/491Disposition
    • H01L2224/4911Disposition the connectors being bonded to at least one common bonding area, e.g. daisy chain
    • H01L2224/49111Disposition the connectors being bonded to at least one common bonding area, e.g. daisy chain the connectors connecting two common bonding areas, e.g. Litz or braid wires
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Ceramic Engineering (AREA)
  • Geometry (AREA)
  • Rectifiers (AREA)

Abstract

本发明公开了一种碳化硅维也纳整流器半桥模块的封装结构,属于功率半导体器件技术领域。包括功率单元和绝缘基板;功率单元包括二极管整流上下桥臂和双向开关桥臂;双向开关桥臂包括共源极串联的第一、第二碳化硅MOSFET芯片;绝缘基板的表面铜层包括正极金属层、负极金属层、输入金属层、输出金属层、双向开关功率共源极金属层、驱动金属层和热敏电阻金属层;二极管整流上桥臂位于正极金属层,二极管整流下桥臂和第一碳化硅MOSFET芯片位于输入金属层,第二碳化硅MOSFET芯片位于输出金属层。本发明减小了换流回路中的寄生电感和从而减小开关损耗,更适用于高频化应用;功率开关管芯片的驱动采用Kelvin连接,增强了驱动的稳定性。

Description

一种碳化硅维也纳整流器半桥模块的封装结构
技术领域
本发明属于功率半导体器件技术领域,更具体地,涉及一种碳化硅维也纳整流器半桥模块的封装结构。
背景技术
碳化硅功率器件相对于传统硅基功率器件来说,具有更高的击穿电压、更小的体积、更高的导热系数及更高的工作温度,因而更适用于高压、高温、高频的场景中。为了追求更小的变换器体积,电源系统的开关频率不断上升,功率模块中的开关管开关速度不断提高,开关损耗不断下降。在高频领域,碳化硅器件有着巨大的前景。
理论上碳化硅器件的开关频率可达上兆赫兹,然而现有的大部分商用器件,寄生电感参数较大,这使得开关管芯片在以高速关断时会承受较大的尖峰电压,在开关暂态产生较大振荡,带来更大的损耗,甚至可能将器件击穿。在更快的开关速度和更高的开关频率下,这些效应会更加明显,这限制了功率模块开关速度的提升和高频化应用。
当前已有实现双向开关的功率模块,但是在实际应用(如维也纳整流器)中,单纯的双向开关功率模块常常需要与其他功率器件相连接,因此在换流回路中依然会产生较大的寄生电感,从而限制了变换器的工作频率。针对双向开关在维也纳整流器中的典型应用,亟需设计相应的碳化硅功率模块,弥补当前市场的缺失,并使其能发挥碳化硅器件的优势。
发明内容
针对相关技术的缺陷,本发明的目的在于提供一种碳化硅维也纳整流器半桥模块的封装结构,旨在降低维也纳整流器半桥换流回路中的寄生电感,减小关断时开关管承受的由寄生电感引起的电压尖峰,从而提高模块的可靠性并减小开关损耗,弥补市场缺失并适应该结构的高频化应用。
为实现上述目的,本发明的一个方面提供了一种碳化硅维也纳整流器半桥模块的封装结构,包括绝缘基板和功率单元;
所述功率单元附着于所述绝缘基板上,包括二极管整流上桥臂、二极管整流下桥臂和双向开关桥臂;其中,所述双向开关桥臂包括共源极串联的第一碳化硅MOSFET芯片和第二碳化硅MOSFET芯片;
所述绝缘基板的表面铜层包括正极金属层、负极金属层、输入金属层、输出金属层、双向开关功率共源极金属层、驱动金属层和热敏电阻金属层;
所述二极管整流上桥臂位于所述正极金属层,所述二极管整流下桥臂和第一碳化硅MOSFET芯片位于所述输入金属层,所述第二碳化硅MOSFET芯片位于所述输出金属层。
进一步地,所述驱动金属层包括第一驱动栅极第一金属层、第一驱动栅极第二金属层、双向开关驱动共源极金属层、第二驱动栅极第一金属层和第二驱动栅极第二金属层。
进一步地,所述第一碳化硅MOSFET芯片的漏极通过焊接直接与所述输入金属层相连,栅极通过引线键合至所述第一驱动栅极第二金属层,源极通过均匀分布于其上表面的粗铝键合线连接至所述双向开关功率共源极金属层的同时,还通过细铝键合线连接至所述双向开关驱动共源极金属层;
所述第二碳化硅MOSFET芯片的漏极通过焊接直接与所述输出金属层相连,栅极通过引线键合至所述第二驱动栅极第二金属层,源极通过均匀分布于其上表面的粗铝键合线连接至所述双向开关功率共源极金属层的同时,还通过细铝键合线连接至所述双向开关驱动共源极金属层。
进一步地,所述二极管整流上桥臂和二极管整流下桥臂均由碳化硅SBD芯片构成。
进一步地,所述二极管整流上桥臂的碳化硅SBD芯片的阴极通过焊接直接与所述正极金属层连接,阳极通过均匀分布于碳化硅SBD芯片上表面的铝键合线与所述输入金属层相连;
所述二极管整流下桥臂的碳化硅SBD芯片的阴极通过焊接直接与所述输入金属层相连,阳极通过均匀分布于碳化硅SBD芯片上表面的铝键合线与所述负极金属层相连。
进一步地,所述绝缘基板为三层结构,包括依次设置的上表面层、中间层和下表面层,所述上表面层和所述下表面层均为金属导电材料,所述中间层为绝缘材料。
进一步地,还包括热敏电阻、驱动电阻、端子和外壳。
进一步地,所述热敏电阻金属层包括热敏电阻第一金属层和热敏电阻第二金属层;
所述热敏电阻跨接在所述热敏电阻第一金属层和热敏电阻第二金属层上,用于测量碳化硅维也纳整流器半桥模块内部的温度。
进一步地,所述驱动金属层和驱动电阻均关于所述双向开关功率共源极金属层的水平轴线对称。
进一步地,在所述外壳与绝缘基板的上表面层之间的空间灌注有绝缘保护凝胶。
本发明所构思的以上技术方案使用全碳化硅功率器件,将维也纳整流器的半桥结构封装于功率模块中,弥补了此类模块的缺失,与现有技术相比,能够取得下列有益效果:
(1)相比于传统的维也纳整流器半桥构成,即采用全分立器件或二极管加双向开关模块的形式,将该结构封装于模块中,能减小换流回路所围成的面积,减小寄生电感,从而减小关断过程中开关管承受的电压尖峰,进一步减小开关损耗,提高模块的可靠性,有利于提高维也纳整流器的开关频率。
(2)本发明中开关管芯片的源极采用Kelvin连接,从而减小共源电感,功率源电流与驱动源电流方向垂直,降低了驱动回路与功率回路之间的耦合,极大程度降低了主功率部分对驱动部分的影响,进而提高驱动信号的稳定性。
附图说明
图1是本发明实施例提供的碳化硅维也纳整流器半桥模块的封装结构的外部结构示意图;
图2是本发明实施例提供的碳化硅维也纳整流器半桥模块的绝缘基板顶层示意图;
图3是本发明实施例提供的碳化硅维也纳整流器半桥模块的内部结构示意图;
图4是本发明实施例提供的碳化硅维也纳整流器半桥模块的内部结构平面示意图;
图5是本发明实施例提供的碳化硅维也纳整流器半桥模块对应的维也纳整流器半桥电路示意图。
附图标记:1为外壳、2为注入式螺钉夹、3为直流输出正电极端子、4为直流输出负电极端子、5为交流输入端子、6为直流输出中点端子,7为第一驱动栅极端子、8为第二驱动栅极端子、9为双向开关驱动共源极端子、10为热敏电阻端子、11为直接覆铜陶瓷(绝缘)基板、12为驱动电阻、13为热敏电阻、14为键合线、15为第一碳化硅MOSFET芯片、16为第二碳化硅MOSFET芯片、17为整流上桥臂SBD芯片、18为整流下桥臂SBD芯片、19为正极金属层、20为输入金属层、21为负极金属层、22为输出金属层、23为双向开关功率共源极金属层、24为热敏电阻第一金属层、25为热敏电阻第二金属层、26为第一驱动栅极第一金属层、27为第一驱动栅极第二金属层、28为第二驱动栅极第一金属层、29为第二驱动栅极第二金属层、30为双向开关驱动共源极金属层。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。值得说明的是,指示方位或位置关系的词如“上”、“下”、“左”、“右”、“中”等,均基于附图所示的方位或位置关系,仅是为了描述本发明,而不是对本发明进行的限制。此外,下面所描述的本发明各个实施方式中所涉及到的技术特征只要彼此之间未构成冲突就可以相互组合。
为实现上述目的,本发明实施例提供了一种碳化硅维也纳整流器半桥模块的封装结构,包括:绝缘基板和附着于所述绝缘基板上的功率单元;
所述功率单元为维也纳整流器半桥电路结构,包括:二极管整流上桥臂、二极管整流下桥臂和双向开关桥臂,所述二极管整流桥臂上桥臂和下桥臂均由碳化硅SBD芯片构成,由整流桥臂中点引出双向开关桥臂,所述双向开关桥臂由两个碳化硅MOSFET芯片共源极串联构成;
所述绝缘基板为三层结构,包括:依次设置的上表面层、中间层和下表面层,所述上表面层和所述下表面层的材料均为金属导电材料,所述中间层的材料为绝缘材料;上表面金属层包括正极金属层、负极金属层、输入金属层、输出金属层、双向开关功率共源极金属层、驱动金属层和热敏电阻金属层;
正极金属层、负极金属层和输出金属层在模块中上部自左向右依次等距排列,且三个金属层大小相同,输入金属层位于模块中下部,双向开关功率共源极金属层介于输出金属层和输入金属层之间。
整流上桥臂碳化硅SBD芯片位于正极金属层,其阴极通过焊接直接与正极金属层连接,其阳极通过三根均匀分布于芯片上表面的铝键合线与输入金属层相连;
整流下桥臂碳化硅SBD芯片位于输入金属层,其阴极通过焊接直接与输入金属层相连,其阳极通过三根均匀分布于芯片上表面的铝键合线与负极金属层相连;
第一碳化硅MOSFET芯片位于输入金属层,其漏极通过焊接直接与输入金属层相连,其源极通过均匀分布于其上表面的四根键合线连接至双向开关功率共源极金属层;第二碳化硅MOSFET芯片位于输出金属层,其漏极通过焊接直接与输出金属层相连,其源极通过均匀分布于其上表面的四根键合线连接至双向开关功率共源极金属层;
所述的双向开关桥臂,由两个共源极串联的碳化硅MOSFET芯片构成,其功率共源极的实现方式为:分别使用四根铝键合线将MOSFET芯片的源极表面引出到双向开关功率共源极金属层,金属层作为键合线的切刀点,且该金属层尽可能窄;驱动共源极的实现方式为:分别使用一根细铝键合线将两个MOSFET芯片的源极表面引出到双向开关驱动共源极金属层上;
所述驱动金属层包括第一驱动栅极第一金属层、第一驱动栅极第二金属层、第二驱动栅极第一金属层、第二驱动栅极第二金属层、双向开关驱动共源极金属层;
所述双向开关桥臂的两个MOSFET的栅极均朝向模块外侧,均通过一根键合线连接至各自对应的驱动栅极第二金属层;
其中,所述模块的封装结构还包括:热敏电阻、驱动电阻、端子及外壳;
热敏电阻跨接在热敏电阻第一金属层和热敏电阻第二金属层上,位于模块右下角,用于测量模块内部的温度;
进一步地,在外壳与所述绝缘基板上表面之间的空间灌注有绝缘保护凝胶,能有效提高模块内部的绝缘强度。
驱动电阻及驱动金属层位于模块右侧,为了保证驱动信号的对称性,两个驱动部分关于双向开关功率共源极金属层的水平轴线对称,进一步地,两驱动电阻的阻值相等,优选地取为1Ω,这样模块外部驱动电阻的配置可以更灵活;
优选地,上述功率单元中的两个碳化硅MOSFET芯片位置及其相应的驱动电阻及其对应金属层,均关于双向开关功率共源极金属层水平轴线对称。
优选地,绝缘基板的上表面金属层和下表面金属层均采用表面镀镍的高导无氧铜,因而能更可靠地引线键合,且具有更高的抗氧化性;绝缘基板的中间层采用高热导率的氮化铝陶瓷,以提高模块的散热性能。
此外,本发明所述模块的封装结构同样适用于硅功率模块以及碳化硅、氮化镓等宽禁带半导体功率模块。
下面结合一个优选实施例,对上述实施例中涉及的内容进行说明。
如图1所示,是本发明实施例提供的碳化硅维也纳整流器半桥模块的外部结构示意图;本实施例采用的外壳是已被广泛使用的EASY-1B型号,设计及工艺均已经过市场验证,具有很强的通用性。直流输出正电极端子3、直流输出负电极端子4、交流输入端子5、直流输出中点端子6,第一驱动栅极端子7、第二驱动栅极端子8、双向开关驱动共源极端子9、热敏电阻端子10均从外壳1上表面的通孔中伸出;注入式螺钉夹2用于将模块固定于散热器上。在外壳1与绝缘基板11上表面之间的空间灌注有绝缘保护凝胶。
如图2所示,是本发明实施例提供的碳化硅维也纳整流器半桥模块的绝缘基板11的顶层示意图。所述绝缘基板的上层铜层包括:(1)功率金属层:正极金属层19、输入金属层20、负极金属层21、输出金属层22、双向开关功率共源极金属层23;(2)驱动金属层及热敏电阻金属层包括:热敏电阻第一金属层24、热敏电阻第二金属层25、第一驱动栅极第一金属层26、第一驱动栅极第二金属层27、第二驱动栅极第一金属层28、第二驱动栅极第二金属层29、双向开关驱动信号回线金属层30。
正极金属层19、负极金属层21和输出金属层22在模块中上部自左向右依次等距排列,且三个金属层大小相同,输入金属层20位于模块中下部,双向开关功率共源极金属层23介于输出金属层22和输入金属层20之间,考虑到模块内部的绝缘性能以及模块的总体大小,各功率金属层之间的绝缘距离优选为1mm。
驱动金属层及热敏电阻金属层均位于模块的右侧,自上而下分别为第二驱动栅极第二金属层29、第二驱动栅极第一金属层28、双向开关驱动共源极金属层30、第一驱动栅极第一金属层26、第一驱动栅极第二金属层27、热敏电阻第二金属层25和热敏电阻第一金属层24。
为了保证驱动信号的对称性,两个开关管的驱动部分关于双向开关功率共源极金属层23的水平轴线对称。
如图3所示是本发明实施例提供的碳化硅维也纳整流器半桥模块的内部结构示意图;图4是本发明实施例提供的碳化硅维也纳整流器半桥模块的内部结构平面示意图。本发明实施例提供的封装结构包括:绝缘基板和附着于所述绝缘基板上的功率单元;功率单元为维也纳整流器半桥电路结构,包括:二极管整流上桥臂、二极管整流下桥臂和双向开关桥臂,所述二极管整流桥臂上桥臂和下桥臂均由碳化硅SBD(Schottky Barrier Diode,肖特基势垒二极管)芯片构成,由整流桥臂中点引出双向开关桥臂,所述双向开关桥臂由两个碳化硅MOSFET芯片共源极串联构成。
在本发明实施例中,整流上桥臂碳化硅SBD芯片17的阴极贴装焊接在正极金属层19上,其阳极通过三根均匀分布于芯片上表面的粗铝键合线与输入金属层20相连。整流下桥臂碳化硅SBD芯片18的阴极和第一碳化硅MOSFET芯片15的漏极均贴装焊接至输入金属层20上,其阳极通过三根均匀分布于其上表面的粗铝键合线与负极金属层21相连。第一碳化硅MOSFET芯片15的源极通过均匀分布于其上表面的四根粗铝键合线连接至双向开关功率共源极金属层23,构成功率源极,栅极通过引线键合至第一驱动栅极第二金属层27,源极通过一根细铝键合线连接至双向开关驱动共源极金属层30,构成驱动源极。第二碳化硅MOSFET芯片16的漏极贴装焊接在输出金属层22上,其源极通过均匀分布于其上表面的四根粗铝键合线连接至双向开关功率共源极金属层23,构成功率源极,栅极通过一根细铝键合线键合至第二驱动栅极第二金属层29,源极通过一根细铝键合线连接至双向开关驱动共源极金属层30,构成驱动源极。
可以看出,所述双向开关桥臂,是由两个共源极串联的碳化硅MOSFET芯片构成的,其功率共源极的实现方式为:分别使用四根粗铝键合线将MOSFET的源极表面引出到双向开关功率共源极金属层23,该金属层作为键合线的切刀点,且该金属层尽可能窄。驱动共源极的实现方式为:分别使用一根细铝键合线将两个MOSFET的源极表面引出到双向开关驱动共源极金属层30上;
此外,双向开关桥臂的两个MOSFET的栅极均朝向模块右侧。
本发明实例中,为了保证双向开关的两个MOSFET开关速度一致,每个开关管芯片连接的驱动电阻值大小相等,且应尽可能小,以便于模块外部更灵活地配置驱动电阻,因此驱动电阻值优选为1Ω;此外,开关管芯片的源极采用Kelvin连接,降低共源电感,使得功率源电流与驱动源电流方向相互垂直,降低了驱动回路与功率回路之间的耦合,从而提高驱动信号的稳定性。
热敏电阻13的两个电极分别焊接至热敏电阻第一金属层24及热敏电阻第二金属层25上,用于测量模块内部的温度;
本发明实施例中,正极金属层19连接至直流输出正电极端子3后形成正电极;负极金属层21连接至直流输出负电极端子4后形成负电极;输入金属层20接至交流输入端子5后形成交流输入电极;输出金属层22连接至直流输出中点端子6后形成输出中点电极;第一驱动栅极第一金属层26连接至第一驱动栅极端子7后形成双向开关第一MOSFET栅极电极;第二驱动栅极第一金属层28连接至第二驱动栅极端子8后形成双向开关第二MOSFET栅极电极;双向开关驱动共源极金属层30连接至双向开关驱动共源极端子9形成驱动源极电极;热敏电阻第一金属层28和热敏电阻第二金属层29连接至相应热敏电阻端子形成温度测量电极。
本发明的直流电极端子即直流输出正电极端子3、直流输出负电极端子4和直流输出中点端子6分布在模块的上部,交流电极端子即交流输入端子5位于模块的下部,驱动端子即第一驱动栅极端子7、第二驱动栅极端子8和双向开关驱动共源极端子9位于模块的右侧,各功能端子分区布置,使得本模块在使用时能更方便地布局。
优选地,本发明实施例中,绝缘基板11的上层金属和下层金属均为高导无氧铜材料,且表面镀镍,从而具有更强的抗氧化性,能提高引线键合的可靠性;中间层为高热导率的氮化铝陶瓷,能有效提高模块的散热性能。
如图5所示,是本发明实施例提供的碳化硅维也纳整流器半桥模块对应的电路示意图。维也纳整流器半桥结构,由直流输出正电极端子3、直流输出负电极端子4、交流输入端子5、直流输出中点端子6、第一驱动栅极端子7、第二驱动栅极端子8、双向开关驱动共源极端子9、第一碳化硅MOSFET芯片15、第二碳化硅MOSFET芯片16、整流上桥臂SBD芯片17、整流下桥臂SBD芯片18、驱动电阻12以及它们之间的电气连接形成。
本领域的技术人员容易理解,以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (10)

1.一种碳化硅维也纳整流器半桥模块的封装结构,其特征在于,包括绝缘基板和功率单元;
所述功率单元附着于所述绝缘基板上,包括二极管整流上桥臂、二极管整流下桥臂和双向开关桥臂;其中,所述双向开关桥臂包括共源极反向串联的第一碳化硅MOSFET芯片和第二碳化硅MOSFET芯片;
所述绝缘基板的上表面铜层包括正极金属层、负极金属层、输入金属层、输出金属层、双向开关功率共源极金属层、驱动金属层和热敏电阻金属层;
所述二极管整流上桥臂位于所述正极金属层,所述二极管整流下桥臂和第一碳化硅MOSFET芯片位于所述输入金属层,所述第二碳化硅MOSFET芯片位于所述输出金属层。
2.如权利要求1所述的封装结构,其特征在于,所述驱动金属层包括第一驱动栅极第一金属层、第一驱动栅极第二金属层、双向开关驱动共源极金属层、第二驱动栅极第一金属层和第二驱动栅极第二金属层。
3.如权利要求2所述的封装结构,其特征在于,所述第一碳化硅MOSFET芯片的漏极通过焊接直接与所述输入金属层相连,栅极通过引线键合至所述第一驱动栅极第二金属层,源极通过均匀分布于其上表面的粗铝键合线连接至所述双向开关功率共源极金属层的同时,还通过细铝键合线连接至所述双向开关驱动共源极金属层;
所述第二碳化硅MOSFET芯片的漏极通过焊接直接与所述输出金属层相连,栅极通过引线键合至所述第二驱动栅极第二金属层,源极通过均匀分布于其上表面的粗铝键合线连接至所述双向开关功率共源极金属层的同时,还通过细铝键合线连接至所述双向开关驱动共源极金属层。
4.如权利要求1所述的封装结构,其特征在于,所述二极管整流上桥臂和二极管整流下桥臂均由碳化硅SBD芯片构成。
5.如权利要求4所述的封装结构,其特征在于,所述二极管整流上桥臂的碳化硅SBD芯片的阴极通过焊接直接与所述正极金属层连接,阳极通过均匀分布于碳化硅SBD芯片上表面的铝键合线与所述输入金属层相连;
所述二极管整流下桥臂的碳化硅SBD芯片的阴极通过焊接直接与所述输入金属层相连,阳极通过均匀分布于碳化硅SBD芯片上表面的铝键合线与所述负极金属层相连。
6.如权利要求1所述的封装结构,其特征在于,所述绝缘基板为三层结构,包括依次设置的上表面层、中间层和下表面层,所述上表面层和所述下表面层均为金属导电材料,所述中间层为绝缘材料。
7.如权利要求6所述的封装结构,其特征在于,还包括热敏电阻、驱动电阻、端子和外壳。
8.如权利要求7所述的封装结构,其特征在于,所述热敏电阻金属层包括热敏电阻第一金属层和热敏电阻第二金属层;
所述热敏电阻跨接在所述热敏电阻第一金属层和热敏电阻第二金属层上,用于测量碳化硅维也纳整流器半桥模块内部的温度。
9.如权利要求7所述的封装结构,其特征在于,所述驱动金属层和驱动电阻均关于所述双向开关功率共源极金属层的水平轴线对称。
10.如权利要求7-9任一项所述的封装结构,其特征在于,在所述外壳与绝缘基板的上表面层之间的空间灌注有绝缘保护凝胶。
CN202010874358.2A 2020-08-25 2020-08-25 一种碳化硅维也纳整流器半桥模块的封装结构 Active CN111916438B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010874358.2A CN111916438B (zh) 2020-08-25 2020-08-25 一种碳化硅维也纳整流器半桥模块的封装结构

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010874358.2A CN111916438B (zh) 2020-08-25 2020-08-25 一种碳化硅维也纳整流器半桥模块的封装结构

Publications (2)

Publication Number Publication Date
CN111916438A true CN111916438A (zh) 2020-11-10
CN111916438B CN111916438B (zh) 2022-03-18

Family

ID=73279785

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010874358.2A Active CN111916438B (zh) 2020-08-25 2020-08-25 一种碳化硅维也纳整流器半桥模块的封装结构

Country Status (1)

Country Link
CN (1) CN111916438B (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113391180A (zh) * 2021-05-07 2021-09-14 西安交通大学 一种可用于极高温度下的碳化硅器件动态特性测试平台
CN113764386A (zh) * 2021-09-09 2021-12-07 黄山谷捷散热科技有限公司 多单元功率集成模块的低寄生叠装结构及封装工艺
CN115763409A (zh) * 2022-11-10 2023-03-07 北京智慧能源研究院 芯片电极引出结构及其封装结构、功率半导体器件模块
CN117174680A (zh) * 2023-11-01 2023-12-05 深圳基本半导体有限公司 功率模块、封装结构及电子设备

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6266256B1 (en) * 1999-03-30 2001-07-24 Patent-Treuhand-Gesellschaft Fuer Elektrische Gluehlampen Mbh Circuit for correcting the power factor
JP2009273242A (ja) * 2008-05-08 2009-11-19 Panasonic Corp 直流電源装置およびそれを備えた空気調和機
CN201937483U (zh) * 2010-10-29 2011-08-17 深圳市大富科技股份有限公司 一种通用电源装置
US20120268976A1 (en) * 2009-02-27 2012-10-25 Delta Electronics (Shanghai) Co., Ltd. Three-phase rectifier circuit
CN204597799U (zh) * 2015-05-28 2015-08-26 哈尔滨理工大学 基于60°坐标系的三相vienna整流器

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6266256B1 (en) * 1999-03-30 2001-07-24 Patent-Treuhand-Gesellschaft Fuer Elektrische Gluehlampen Mbh Circuit for correcting the power factor
JP2009273242A (ja) * 2008-05-08 2009-11-19 Panasonic Corp 直流電源装置およびそれを備えた空気調和機
US20120268976A1 (en) * 2009-02-27 2012-10-25 Delta Electronics (Shanghai) Co., Ltd. Three-phase rectifier circuit
CN201937483U (zh) * 2010-10-29 2011-08-17 深圳市大富科技股份有限公司 一种通用电源装置
CN204597799U (zh) * 2015-05-28 2015-08-26 哈尔滨理工大学 基于60°坐标系的三相vienna整流器

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113391180A (zh) * 2021-05-07 2021-09-14 西安交通大学 一种可用于极高温度下的碳化硅器件动态特性测试平台
CN113391180B (zh) * 2021-05-07 2022-03-01 西安交通大学 一种可用于极高温度下的碳化硅器件动态特性测试平台
CN113764386A (zh) * 2021-09-09 2021-12-07 黄山谷捷散热科技有限公司 多单元功率集成模块的低寄生叠装结构及封装工艺
CN113764386B (zh) * 2021-09-09 2023-04-07 黄山谷捷股份有限公司 多单元功率集成模块的低寄生叠装结构及封装工艺
CN115763409A (zh) * 2022-11-10 2023-03-07 北京智慧能源研究院 芯片电极引出结构及其封装结构、功率半导体器件模块
CN117174680A (zh) * 2023-11-01 2023-12-05 深圳基本半导体有限公司 功率模块、封装结构及电子设备
CN117174680B (zh) * 2023-11-01 2024-01-30 深圳基本半导体有限公司 功率模块、封装结构及电子设备

Also Published As

Publication number Publication date
CN111916438B (zh) 2022-03-18

Similar Documents

Publication Publication Date Title
CN111916438B (zh) 一种碳化硅维也纳整流器半桥模块的封装结构
US10943845B2 (en) Three-dimensional packaging structure and packaging method of power devices
WO2018227655A1 (zh) 一种低寄生电感功率模块及双面散热低寄生电感功率模块
CN107591377B (zh) 一种功率器件的多dbc封装结构及封装方法
CN111540730B (zh) 基于导电金属夹扣互连的多芯片宽禁带功率模块封装结构
CN107170720A (zh) 一种叠层封装双面散热功率模块
WO2023000823A1 (zh) 一种功率半导体模块的新型封装结构
CN212848395U (zh) 一种功率模块
CN111106098B (zh) 一种低寄生电感布局的功率模块
US20210407875A1 (en) Semiconductor device
CN113497014B (zh) 一种多芯片并联的功率模块的封装结构及封装方法
CN114914235A (zh) 多芯片并联非对称碳化硅模块的封装结构及封装方法
CN114093856A (zh) 一种多芯片并联的半桥型mosfet模块
CN220233181U (zh) 一种功率模块
CN113517244A (zh) 一种功率半导体模块的新型封装结构
CN114121909A (zh) 一种多芯片并联的高温功率模块的封装结构及封装方法
CN115985899A (zh) 一种功率半导体模块的封装结构及封装方法
CN110349943B (zh) 一种高压igbt半桥模块
CN114664810A (zh) 一种基于旁路铜柱散热的宽禁带功率半导体模块
CN113035787B (zh) 一种逆导型功率半导体模块封装结构及其封装方法
CN210516724U (zh) 一种功率半导体模块和功率半导体器件
CN209389026U (zh) 一种三相逆变igbt模块
CN214705921U (zh) 一种低寄生电感的半桥功率模块dbc布局结构
CN220155541U (zh) 一种多芯片串联的igbt模块封装结构
CN215680684U (zh) 一种高集成高可靠igbt功率模块

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant