CN111911298A - 基于最小耗功理论的高海拔两级压气机增压比分配方法 - Google Patents

基于最小耗功理论的高海拔两级压气机增压比分配方法 Download PDF

Info

Publication number
CN111911298A
CN111911298A CN202010584744.8A CN202010584744A CN111911298A CN 111911298 A CN111911298 A CN 111911298A CN 202010584744 A CN202010584744 A CN 202010584744A CN 111911298 A CN111911298 A CN 111911298A
Authority
CN
China
Prior art keywords
stage
pressure
compressor
stage compressor
power consumption
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202010584744.8A
Other languages
English (en)
Inventor
刘瑞林
张众杰
董素荣
刘伍权
周广猛
杨春浩
丁豪坚
刘刚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Army Military Transportation University
Original Assignee
Army Military Transportation University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Army Military Transportation University filed Critical Army Military Transportation University
Priority to CN202010584744.8A priority Critical patent/CN111911298A/zh
Publication of CN111911298A publication Critical patent/CN111911298A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D23/00Controlling engines characterised by their being supercharged
    • F02D23/02Controlling engines characterised by their being supercharged the engines being of fuel-injection type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B37/00Engines characterised by provision of pumps driven at least for part of the time by exhaust
    • F02B37/013Engines characterised by provision of pumps driven at least for part of the time by exhaust with exhaust-driven pumps arranged in series
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B37/00Engines characterised by provision of pumps driven at least for part of the time by exhaust
    • F02B37/12Control of the pumps
    • F02B37/24Control of the pumps by using pumps or turbines with adjustable guide vanes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0002Controlling intake air
    • F02D41/0007Controlling intake air for control of turbo-charged or super-charged engines
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

本发明提供一种基于最小耗功理论的高海拔两级压气机增压比分配方法,以双VGT二级可调增压系统的二级压气机耗功最小为原则,根据两级压气机效率和进气温度,分配高、低压级压气机增压比分配。双VGT二级可调增压系统包括高压级压气机、低压级压气机以及两级中冷器。本发明提出增压比分配与二级压气机效率和进口温度相适应原则,以两级压气机耗功最小为目标,根据变海拔高、低压气机效率和进口温度不同,确定两级压气机增压比最佳分配比例。

Description

基于最小耗功理论的高海拔两级压气机增压比分配方法
技术领域
本发明涉及发动机技术领域,特别是涉及一种基于最小耗功理论的高海拔两级压气机增压比分配方法。
背景技术
我国是一个高原大国,拥有世界上面积最大的高原地域。青藏高原是世界上最具代表性的高原,平均海拔超过4000m,总面积达240万km2,约占国土面积的1/4。车辆在高原公路(如青藏线、川藏线和滇藏线等)行驶时,具有海拔高、落差大、坡陡、长坡多、工况复杂的特点,进气充量减少致使柴油机燃烧恶化,功率、燃油消耗率、热负荷等各项技术性能劣化明显。据统计,海拔每升高1000m柴油机动力性下降4.0%~13.0%、经济性下降2.7%~12.9%,涡前排温和缸盖温度升高7%~10%。二级可调增压系统具有高压比、宽流量的特点,能够提高柴油机高海拔下的增压压力。特别地,双VGT二级可调增压系统由高、低压级VGT串联组成,能够根据海拔和工况的变化,有效利用排气能量和进行涡轮膨胀比的分配,实时控制增压压力和进气流量,提高不同海拔下柴油机的进气密度,确保缸内空燃比最佳。但变海拔在非匹配点工况,高、低压级压气机效率和进气温度均不相同,如何确定两级压气机增压比分配比例,决定了二级压气机总耗功。因此,本发明申请提出了基于最小耗功理论的高海拔两级压气机增压比分配方法。
发明内容
针对现有变海拔二级压气机增压比分配问题。本发明提出了一种基于最小耗功理论的高海拔两级压气机增压比分配方法。
本发明解决其技术问题是采取以下技术方案实现的:
一种基于最小耗功理论的高海拔两级压气机增压比分配方法,其特征在于:以双VGT二级可调增压系统的二级压气机耗功最小为原则,根据两级压气机效率和进气温度,分配高、低压级压气机增压比分配。
而且,双VGT二级可调增压系统包括高压级压气机、低压级压气机以及两级中冷器,低压级压气机与高压级压气机串联,高压级压气机连接柴油机气缸,高压级压气机的进气管的输入端安装有一级中冷器,高压级压气机的进气管的输出端安装有另一级中冷器,高、低压级压气机等熵效率可调节,两级中冷器调节进气温度。
而且,当高、低压级压气机等熵效率和进气温度不同时,确定两级压气机增压比分配,使得两级压气机耗功最小,
二级压气机耗功WC
WC=WHC+WLC (1)
高、低压级压气机耗功:
Figure BDA0002554245340000021
Figure BDA0002554245340000022
则二级压气机总耗功为:
Figure BDA0002554245340000023
将低压级增压比用高压级增压比来替代:
πLC=πCHC (5)
将(5)式代入(4)式中得到:
Figure BDA0002554245340000024
令方程(6)中
Figure BDA0002554245340000025
得到:
Figure BDA0002554245340000026
Figure BDA0002554245340000027
在低压级中冷出口温度一定条件下,(8)式中T0/T2可以看做一个与海拔有关的常数Ch
Ch=T0/T2 (9)
Figure BDA0002554245340000028
Figure BDA0002554245340000029
本发明的优点和积极效果是:
本发明一种变海拔两级压气机增压比分配方法,提出增压比分配与二级压气机效率和进口温度相适应原则,以两级压气机耗功最小为目标,根据变海拔高、低压气机效率和进口温度不同,确定两级压气机增压比最佳分配比例。
附图说明
图1所示为变海拔双VGT二级增压系统示意图;
图2所示为本发明的二级压气机h-S图气体状态变化过程;
图3所示为本发明的海拔5500m时二级压气机耗功随增压比分配变化规律。
具体实施方式
以下结合附图和具体实施例对本发明作进一步详细说明。应当理解,此处所描述的具体实施例仅用以解释本发明,并不用于限定本发明。
一种基于最小耗功理论的高海拔两级压气机增压比分配方法,以二级压气机耗功最小为原则,根据两级压气机效率和进气温度不同,合理分配高、低压级压气机增压比分配。图1为双VGT二级可调增压系统示意图,包括高压级压气机、低压级压气机以及两级中冷器,低压级压气机与高压级压气机串联,高压级压气机连接柴油机气缸,高压级压气机的进气管的输入端安装有一级中冷器,高压级压气机的进气管的输出端安装有另一级中冷器。高、低压级压气机等熵效率可调节,两级中冷器可调节进气温度。
在非匹配点工况,当高、低压级压气机等熵效率和进气温度不同时,确定两级压气机增压比分配,使得两级压气机耗功最小。
二级压气机耗功WC
WC=WHC+WLC (1)
高、低压级压气机耗功:
Figure BDA0002554245340000031
Figure BDA0002554245340000032
则二级压气机总耗功为:
Figure BDA0002554245340000033
将低压级增压比用高压级增压比来替代:
πLC=πCHC (5)
将(5)式代入(4)式中得到:
Figure BDA0002554245340000034
令方程(6)中
Figure BDA0002554245340000041
得到:
Figure BDA0002554245340000042
Figure BDA0002554245340000043
在低压级中冷出口温度一定条件下,(8)式中T0/T2可以看做一个与海拔有关的常数Ch
Ch=T0/T2 (9)
Figure BDA0002554245340000044
Figure BDA0002554245340000045
据此,提出变海拔柴油机二级压气机最小耗功理论:“增压比分配与二级压气机效率和进口温度相适应原则”。
如图2所示,本发明的二级压气机h-S图气体状态变化过程。其中0~1为低压级压气机压缩过程,1~2为低压级中冷过程,2~3为高压级压气机压缩过程。若不采用级间中冷,0~3*为二级压缩过程,级间中冷能够明显降低二级压气机熵增,减少二级压气机耗功。
如表1所示,本发明的变海拔变增压比1kg二级压气机最佳增压比分配和压气机驱动功关系。从图中可以看出,在0m、3500m和5500m海拔下,二级压气机最小耗功对应序号分别为5组、11组和17组。
表1变海拔变增压比1kg二级压气机最佳增压比分配和压气机驱动功关系
Figure BDA0002554245340000046
Figure BDA0002554245340000051
如图3所示,本发明的海拔5500m时二级压气机耗功随增压比分配变化规律。以海拔5500m压缩1kg空气为例,低压级压气机进口温度T0=265K,高压级进口温度T2分别假设为300K和320K,总增压比πc=5,设计的高、低压级压气机效率三种情况,分析增压比分配与二级压气机耗功之间的关系。
①ηHC=70%;ηLC=70%;
②ηHC=68%;ηLC=72%;
③ηHC=72%;ηLC=68%;
如图3所示,随增压比之比增加,二级压气机耗功先增大后减小。相比T2=320K,当低压级中冷出口温度T2=300K,二级压气机耗功明显减小。这是因为级间中冷通过进气温度降低,提高了高压级压气空气密度,使得高压级压缩技术功减少。当
T2=320K时,随着低压级压气机效率降低,高压级压气机效率增大,二级压气机耗功增大,这是因为高压级压气机进气温度始终大于低压级压气机进气温度,为了使得二级压气机耗功最小,应尽量提高低压级压气机效率。并用随着低压级效率降低和高压级效率增加,二级压气机最小耗功对应的增压比之比增大。
综上所述,本发明创造的实施方式,仅为本发明创造实施方式的一部分,但发明创造的保护范围并不局限于此,任何熟悉本技术领域的技术人员在发明创造揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明创造的保护范围应以所属权利要求的保护范围为准。

Claims (3)

1.一种基于最小耗功理论的高海拔两级压气机增压比分配方法,其特征在于:以双VGT二级可调增压系统的二级压气机耗功最小为原则,根据两级压气机效率和进气温度,分配高、低压级压气机增压比分配。
2.根据权利要求1所述的基于最小耗功理论的高海拔两级压气机增压比分配方法,其特征在于:双VGT二级可调增压系统包括高压级压气机、低压级压气机以及两级中冷器,低压级压气机与高压级压气机串联,高压级压气机连接柴油机气缸,高压级压气机的进气管的输入端安装有一级中冷器,高压级压气机的进气管的输出端安装有另一级中冷器,高、低压级压气机等熵效率可调节,两级中冷器调节进气温度。
3.根据权利要求1所述的基于最小耗功理论的高海拔两级压气机增压比分配方法,其特征在于:当高、低压级压气机等熵效率和进气温度不同时,确定两级压气机增压比分配,使得两级压气机耗功最小,
二级压气机耗功WC
WC=WHC+WLC (1)
高、低压级压气机耗功:
Figure FDA0002554245330000011
Figure FDA0002554245330000012
则二级压气机总耗功为:
Figure FDA0002554245330000013
将低压级增压比用高压级增压比来替代:
πLC=πCHC (5)
将(5)式代入(4)式中得到:
Figure FDA0002554245330000014
令方程(6)中
Figure FDA0002554245330000015
得到:
Figure FDA0002554245330000016
Figure FDA0002554245330000021
在低压级中冷出口温度一定条件下,(8)式中T0/T2可以看做一个与海拔有关的常数Ch
Ch=T0/T2 (9)
Figure FDA0002554245330000022
Figure FDA0002554245330000023
CN202010584744.8A 2020-06-24 2020-06-24 基于最小耗功理论的高海拔两级压气机增压比分配方法 Pending CN111911298A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010584744.8A CN111911298A (zh) 2020-06-24 2020-06-24 基于最小耗功理论的高海拔两级压气机增压比分配方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010584744.8A CN111911298A (zh) 2020-06-24 2020-06-24 基于最小耗功理论的高海拔两级压气机增压比分配方法

Publications (1)

Publication Number Publication Date
CN111911298A true CN111911298A (zh) 2020-11-10

Family

ID=73226593

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010584744.8A Pending CN111911298A (zh) 2020-06-24 2020-06-24 基于最小耗功理论的高海拔两级压气机增压比分配方法

Country Status (1)

Country Link
CN (1) CN111911298A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113482764A (zh) * 2021-07-30 2021-10-08 广西玉柴机器股份有限公司 一种可控增压器增压压力故障诊断的方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113482764A (zh) * 2021-07-30 2021-10-08 广西玉柴机器股份有限公司 一种可控增压器增压压力故障诊断的方法
CN113482764B (zh) * 2021-07-30 2022-05-20 广西玉柴机器股份有限公司 一种可控增压器增压压力故障诊断的方法

Similar Documents

Publication Publication Date Title
CN102278193B (zh) 一种内燃机辅助增压系统
CN103362636A (zh) 一种车用柴油机高原二级可调增压系统及控制方法
CN112081679A (zh) 变海拔柴油机二级可调增压系统与共轨燃油系统优化匹配方法
EP3680466B1 (en) Structural arrangement in a low-temperature turbocompressor for an internal combustion engine
JP2996971B1 (ja) ミラ―サイクルエンジン
US6158217A (en) Low operating-temperature supercharged engines
CN111911298A (zh) 基于最小耗功理论的高海拔两级压气机增压比分配方法
CN113738518A (zh) 基于两级增压能量差异化的变海拔柴油机功率恢复方法
Zhang et al. Theoretical and experimental investigation of the pressure ratio distribution and the regulation strategy of a two-stage turbocharging system for various altitudes operation
EP1420151B1 (en) Supercharging apparatus for an engine
CN111911297A (zh) 变海拔二级压气机与柴油机的匹配方法
CN206309471U (zh) 一种发动机的二级增压装置
CN111911299A (zh) 二级可调增压系统变膨胀比排气能量分配控制方法
EP0215754A1 (en) An arrangement for supercharging a multi-cylinder internal combustion engine
WO2019105078A1 (zh) 柴油机变海拔自适应系统及其控制方法
CN101349191A (zh) 一种内燃机增压系统
CN205349510U (zh) 多阶段可调相继增压柴油机增压结构
CN215170349U (zh) 一种超增压式五冲程发动机的分流排气系统
Zhang et al. Optimization Matching Method of Two-Stage Turbocharging System Under Variable Expansion Ratio at High Altitudes
CN114738109B (zh) 一种两级涡轮增压内燃机关键参数的匹配方法
CN106837521A (zh) 降低增压内燃机进气温度的涡轮再冷系统
Yao et al. Research of the High Altitude Control Strategy of the Piston Aero-Engine Using Two-Stage Turbocharger Coupled with Single Supercharging System
CN203476517U (zh) 一种车用柴油机高原二级可调增压系统
CN215213678U (zh) 一种增压系统及其串联式两级涡轮增压结构
CA3116795C (en) Exhaust gas recirculation system and engine

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination