CN111884727A - A high-speed photon digital-to-analog conversion method and system based on digital mapping - Google Patents

A high-speed photon digital-to-analog conversion method and system based on digital mapping Download PDF

Info

Publication number
CN111884727A
CN111884727A CN202010679505.0A CN202010679505A CN111884727A CN 111884727 A CN111884727 A CN 111884727A CN 202010679505 A CN202010679505 A CN 202010679505A CN 111884727 A CN111884727 A CN 111884727A
Authority
CN
China
Prior art keywords
digital
optical
signal
mach
mapper
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202010679505.0A
Other languages
Chinese (zh)
Other versions
CN111884727B (en
Inventor
杨淑娜
胡晓云
池灏
杨波
曾然
李齐良
欧军
翟彦蓉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing Mengxiong Digital Technology Co ltd
Original Assignee
Hangzhou Dianzi University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hangzhou Dianzi University filed Critical Hangzhou Dianzi University
Priority to CN202010679505.0A priority Critical patent/CN111884727B/en
Publication of CN111884727A publication Critical patent/CN111884727A/en
Application granted granted Critical
Publication of CN111884727B publication Critical patent/CN111884727B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/50Transmitters
    • H04B10/516Details of coding or modulation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0201Add-and-drop multiplexing
    • H04J14/0202Arrangements therefor

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)
  • Optical Communication System (AREA)

Abstract

本发明公开了一种基于数字映射的高速光子数模转换方法及系统。其系统包括宽谱光源、波分解复用器、N个光衰减器、N个数字映射器、N个马赫‑曾德尔调制器、波分复用器、光电检测器以及低通滤波器,该系统利用宽谱光源提供连续光载波,将“降频”后的数字信号通过马赫‑曾德尔调制器调制到不同频率的光载波上,调制信号接入波分复用器实现不同权重位数字信号的加权叠加,后由光电检测器进行光电转换并接入低通滤波器进行平滑处理,从而实现数字信号到模拟信号的转换。该方案利用数字映射的方式,对待转换的数字信号预先进行降频处理,从而利用现有转换设备实现系统转换速率和系统带宽的倍增,同时该系统结构简单,易于操作和集成化。

Figure 202010679505

The invention discloses a high-speed photon digital-to-analog conversion method and system based on digital mapping. Its system includes a broadband light source, a wavelength division multiplexer, N optical attenuators, N digital mappers, N Mach-Zehnder modulators, a wavelength division multiplexer, a photodetector, and a low-pass filter. The system uses a broad-spectrum light source to provide a continuous optical carrier, modulates the "down-converted" digital signal to an optical carrier of different frequencies through a Mach-Zehnder modulator, and the modulated signal is connected to a wavelength division multiplexer to realize digital signals with different weights After the weighted superposition of the photoelectric detector, the photoelectric conversion is performed by the photoelectric detector and the low-pass filter is connected for smoothing, so as to realize the conversion of digital signal to analog signal. The scheme uses digital mapping to perform down-frequency processing on the digital signal to be converted in advance, so as to use the existing conversion equipment to double the system conversion rate and system bandwidth. At the same time, the system has a simple structure and is easy to operate and integrate.

Figure 202010679505

Description

一种基于数字映射的高速光子数模转换方法及系统A high-speed photon digital-to-analog conversion method and system based on digital mapping

技术领域technical field

本发明属于光通信的信号处理技术领域,具体涉及一种基于数字映射的高速光子数模转换方法及系统。The invention belongs to the technical field of signal processing of optical communication, and in particular relates to a high-speed photon digital-to-analog conversion method and system based on digital mapping.

背景技术Background technique

数模转换器(Digital-to-analog Converter,DAC)是数字世界和模拟世界之间不可替代的桥梁。近年来在现代雷达、无线通信等领域中,数模转换器作为实现数字信号到模拟信号转换的关键器件,其性能的优劣直接影响整个信号处理系统的速率、带宽和精度。随着雷达和通信技术的发展,高速、高精度的数模转换器产生和恢复的超宽带高频信号有助于提高通信系统性能。然而,传统的电子DAC由于射频延迟、时间抖动和电磁干扰等电子固有限制,只能在能量效率和带宽之间权衡,无法同时提高转化速率与转化精度,无法满足现有信号处理系统大带宽、高精度的需求。随着光学技术的发展,利用光子技术突破传统方案时钟抖动、电磁干扰的瓶颈从而实现高速、高精度的数模转换器引起许多研究者注意,充分发挥光子技术高速采样时钟、大带宽和无电磁干扰的优势实现数字信号到模拟信号的转换,提升通信系统性能是极具发展前景的方法。Digital-to-analog Converter (DAC) is an irreplaceable bridge between the digital world and the analog world. In recent years, in the fields of modern radar and wireless communication, the digital-to-analog converter is a key device to realize the conversion of digital signal to analog signal, and its performance directly affects the rate, bandwidth and accuracy of the entire signal processing system. With the development of radar and communication technology, ultra-wideband high-frequency signals generated and recovered by high-speed, high-precision digital-to-analog converters help to improve the performance of communication systems. However, due to inherent electronic limitations such as radio frequency delay, time jitter, and electromagnetic interference, traditional electronic DACs can only trade off between energy efficiency and bandwidth, and cannot improve conversion rate and conversion accuracy at the same time. high precision requirements. With the development of optical technology, the use of photonic technology to break through the bottleneck of clock jitter and electromagnetic interference in traditional solutions to achieve high-speed and high-precision digital-to-analog converters has attracted the attention of many researchers. The advantage of interference is to realize the conversion of digital signals to analog signals, and it is a very promising method to improve the performance of communication systems.

现有的光学数模转换方案根据数字信号的输入类型分为串行和并行两类。2001年,日本NTT公司提出一种基于加权延时的光学数模转换方案,是最早的光学串行输入数模方案,多路相同的串行数字信号经过光衰减施加上相应比特权重后,每个通道对应延时一个比特周期后通过干涉仪叠加,采用光判决门提取对应数字信号转换形成的模拟信号。但该方案最大的缺点就是要精准控制每路信号的相位才能实现同波长叠加,并且需要高速光判决门提取信号才能实现数字信号到模拟信号的转换。清华大学于2008年提出基于多波长加权脉冲序列的光子数模转换方案,该方案利用色散光纤使加权多波长脉冲串在时域上色散分离并分别调制串行数字信号的不同加权位,调制后的信号经过色散补偿光纤实现调制信号在时域上的加权叠加,利用光电检测器实现光电转换和低通滤波后得到对应的模拟信号。该方案对脉冲周期、光纤色散量等有精确要求,并且转换精度受限于多波长脉冲的重复周期。光子串行数模转换方案能够对串行数字信号进行直接的处理转换,系统结构简单,但转换速率相较于能够同时对多个比特位数字信号进行转换的并行方案较低。IPITEK在2003年提出并行转换方案,该方案利用并行电光调制器阵列实现对数字信号的并行处理,后通过光电检测器阵列实现调制信号的非相干叠加。该方案具有转换速率高,易集成的优点,但调制器响应速度和消光比、光电检测器带宽等都会成为系统性能的限制因素。2007年清华大学在IPITEK并行方案基础上采用了宽谱光源来降低非相干叠加过程中的干涉噪声。2005年大阪大学提出一种基于非线性光环镜(Nonlinear Optical Loop Mirror,NOLM)的光子数模转换方案,利用NOLM反射谱和透射谱控制脉冲输出方向和幅度大小来实现不同比特权重信号的加权叠加得到相应的模拟信号输出。该方案利用NOLM非线性原理系统响应速度快,但是想要实现N比特转换精度需要2N-1个NOLM,系统结构复杂。2014年中科院还提出了基于微环谐振器的光子数模转换方案,用高低电压控制微环谐振器谐振波长的移动来实现数字信号的调制。该方案使用多个微环谐振器实现并行数模转换,微环谐振器具有超小型尺寸和低功耗的优势,降低系统复杂度并且便于系统集成,但是微环谐振器的转换速率不高,导致整个系统的转换速率受到限制。因此,如何利用简单有效的方法来简化系统结构并且提升系统性能仍然是一个值得关注的问题。Existing optical digital-to-analog conversion schemes are classified into two categories: serial and parallel according to the input type of digital signals. In 2001, Japan's NTT company proposed an optical digital-to-analog conversion scheme based on weighted delay, which is the earliest optical serial input digital-to-analog scheme. Each channel is delayed by one bit period and then superimposed by an interferometer, and an optical decision gate is used to extract the analog signal formed by the corresponding digital signal conversion. However, the biggest disadvantage of this scheme is that the phase of each signal must be precisely controlled to achieve the same wavelength superposition, and a high-speed optical decision gate is required to extract the signal to realize the conversion of digital signal to analog signal. Tsinghua University proposed a photon digital-to-analog conversion scheme based on multi-wavelength weighted pulse sequences in 2008. The scheme uses dispersive fibers to disperse the weighted multi-wavelength pulse trains in the time domain and modulate the different weighted bits of the serial digital signal respectively. The signal of the dispersion compensation fiber realizes the weighted superposition of the modulated signal in the time domain, and the photoelectric detector is used to realize the photoelectric conversion and low-pass filtering to obtain the corresponding analog signal. This scheme has precise requirements on pulse period, fiber dispersion amount, etc., and the conversion accuracy is limited by the repetition period of multi-wavelength pulses. The photonic serial digital-to-analog conversion scheme can directly process and convert serial digital signals, and the system structure is simple, but the conversion rate is lower than that of the parallel scheme that can convert multiple bit digital signals at the same time. IPITEK proposed a parallel conversion scheme in 2003, which uses parallel electro-optic modulator arrays to realize parallel processing of digital signals, and then realizes incoherent superposition of modulated signals through photodetector arrays. This scheme has the advantages of high conversion rate and easy integration, but the response speed of the modulator, the extinction ratio, and the bandwidth of the photodetector will all become the limiting factors of the system performance. In 2007, Tsinghua University adopted a broad-spectrum light source based on the IPITEK parallel scheme to reduce interference noise in the process of incoherent superposition. In 2005, Osaka University proposed a photon digital-to-analog conversion scheme based on Nonlinear Optical Loop Mirror (NOLM), which uses NOLM reflection spectrum and transmission spectrum to control the pulse output direction and amplitude to achieve weighted superposition of signals with different bit weights. Get the corresponding analog signal output. The scheme utilizes the nonlinear principle of NOLM and the system has a fast response speed, but 2N-1 NOLMs are required to achieve N-bit conversion accuracy, and the system structure is complex. In 2014, the Chinese Academy of Sciences also proposed a photonic digital-to-analog conversion scheme based on a micro-ring resonator, which uses high and low voltages to control the shift of the resonant wavelength of the micro-ring resonator to achieve digital signal modulation. This scheme uses multiple micro-ring resonators to realize parallel digital-to-analog conversion. Micro-ring resonators have the advantages of ultra-small size and low power consumption, reducing system complexity and facilitating system integration, but the conversion rate of micro-ring resonators is not high. This results in a limited slew rate for the entire system. Therefore, how to use simple and effective methods to simplify the system structure and improve the system performance is still a problem worthy of attention.

发明内容SUMMARY OF THE INVENTION

本发明的目的是针对现有光子数模转换技术的缺陷,提供一种基于数字映射的高速光子数模转换方法及系统,对数字信号进行降频处理,解决了光子数模转换系统转换速率受限于现有设备的问题,极大地提高了光子数模转换系统的转换速率,同时系统简单易于实现。The purpose of the present invention is to provide a high-speed photon digital-to-analog conversion method and system based on digital mapping in view of the defects of the existing photon digital-to-analog conversion technology. Limited to the problems of existing equipment, the conversion rate of the photonic digital-to-analog conversion system is greatly improved, and the system is simple and easy to implement.

为了实现以上目的,本发明采用以下技术方案:In order to achieve the above purpose, the present invention adopts the following technical solutions:

一种基于数字映射的高速光子数模转换方法,包括步骤:A high-speed photon digital-to-analog conversion method based on digital mapping, comprising the steps of:

S1、宽谱光源产生连续光载波,所述连续光载波经过波分解复用器后分成N路不同波长的并行光载波,所述N路光载波分别并行经过与每一路光载波相对应的光衰减器后继续分别进入与光衰减器相对应的马赫-曾德尔调制器;S1. The broadband light source generates a continuous optical carrier, which is divided into N parallel optical carriers with different wavelengths after passing through the wavelength division multiplexer, and the N optical carriers pass through the optical carriers corresponding to each optical carrier in parallel respectively. After the attenuator, it continues to enter the Mach-Zehnder modulator corresponding to the optical attenuator;

S2、N个数字映射器均对输入其自身的数字信号进行降频处理,并输出两路数字信号,每个数字映射器输出的两路数字信号进入与每个数字映射器相对应的马赫-曾德尔调制器;S2. The N digital mappers all perform down-conversion processing on the digital signals input to themselves, and output two digital signals. The two digital signals output by each digital mapper enter the Mach- Zehnder modulator;

S3、N个马赫-曾德尔调制器均将进入其自身的两路数字信号调制到进入其自身的光载波上,并输出一路光调制信号,N路光调制信号进入波分复用器;S3. Each of the N Mach-Zehnder modulators modulates the two channels of digital signals entering into its own onto the optical carrier entering its own, and outputs one optical modulation signal, and the N optical modulation signals enter the wavelength division multiplexer;

S4、波分复用器将N路不同权重的光调制信号进行加权叠加并输出一路复用光信号,所述复用光信号进入光电检测器转换为电信号后进入低通滤波器进行平滑处理并得到模拟信号。S4. The wavelength division multiplexer weights and superimposes N channels of optical modulation signals with different weights and outputs one channel of multiplexed optical signals. The multiplexed optical signals enter the photoelectric detector and are converted into electrical signals and then enter the low-pass filter for smoothing processing and get an analog signal.

进一步地,步骤S1中,N路光载波分别经过与每一路光载波相对应的光衰减器后功率比为:Further, in step S1, the power ratio of N optical carriers after passing through the optical attenuators corresponding to each optical carrier is:

Figure BDA0002585322200000031
Figure BDA0002585322200000031

其中

Figure BDA0002585322200000041
表示光载波经过第i个光衰减器后的功率,i=1,2,3,......,N。in
Figure BDA0002585322200000041
Indicates the power of the optical carrier after passing through the i-th optical attenuator, i=1, 2, 3,...,N.

进一步地,N个数字映射器的输入数字信号D1,D2,...,DN分别对应为待转换数字信号经串并转换后的LSB,NLSB,...,MSB数据串,其中LSB为最低有效比特位,NLSB为最接近LSB的有效比特位,MSB为最高有效比特位。Further, the input digital signals D 1 , D2 , . . . , D N of the N digital mappers correspond to LSB, NLSB, . is the least significant bit, NLSB is the most significant bit closest to the LSB, and MSB is the most significant bit.

进一步地,每个数字映射器输出的两路数字信号Si1、Si2(i=1,2,...,N)满足:Further, the two digital signals S i1 and S i2 (i=1, 2, . . . , N) output by each digital mapper satisfy:

Figure BDA0002585322200000042
Figure BDA0002585322200000042

Figure BDA0002585322200000043
Figure BDA0002585322200000043

其中Si1表示第i个数字映射器输出的第一路数字信号,Si2表示第i个数字映射器输出的第二路数字信号;Wherein S i1 represents the first digital signal output by the ith digital mapper, and S i2 represents the second digital signal output by the ith digital mapper;

m=1,2,...,n/2,n为数字映射器的输入数字信号的长度,Vs为数字映射器输出降频信号的幅度。m=1, 2, . . . , n/2, n is the length of the input digital signal of the digital mapper, and V s is the amplitude of the down-converted signal output by the digital mapper.

进一步地,每个数字映射器输出的数字信号峰值均为VπFurther, the peak value of the digital signal output by each digital mapper is V π .

进一步地,所述步骤S3中,每个马赫-曾德尔调制器输出的调制信号的初始相位为π。Further, in the step S3, the initial phase of the modulation signal output by each Mach-Zehnder modulator is π.

进一步地,所述每个马赫-曾德尔调制器输出的调制信号的初始相位由直流电源提供偏置电压进行控制,偏置电压大小等于VπFurther, the initial phase of the modulation signal output by each Mach-Zehnder modulator is controlled by the bias voltage provided by the DC power supply, and the magnitude of the bias voltage is equal to V π .

进一步地,所述S3步骤中,每个马赫-曾德尔调制器输出的光调制信号强度Ii(i=1,2,...,N)的表达式为:Further, in the step S3, the expression of the optical modulation signal intensity I i (i=1, 2, . . . , N) output by each Mach-Zehnder modulator is:

Figure BDA0002585322200000051
Figure BDA0002585322200000051

其中,α=πVs/Vπ代表调制深度,T代表数字映射器输出信号的比特周期。Among them, α=πV s /V π represents the modulation depth, and T represents the bit period of the digital mapper output signal.

本发明还公开了一种基于数字映射的高速光子数模转换系统,包括宽谱光源、波分解复用器、N个光衰减器、N个数字映射器、N个马赫-曾德尔调制器、波分复用器、光电检测器以及低通滤波器;The invention also discloses a high-speed photon digital-to-analog conversion system based on digital mapping, which includes a wide-spectrum light source, a wave decomposition multiplexer, N optical attenuators, N digital mappers, N Mach-Zehnder modulators, wavelength division multiplexers, photodetectors, and low-pass filters;

宽谱光源,用于产生连续光载波;Broad-spectrum light source for generating continuous optical carriers;

波分解复用器,用于将连续光载波分成N路不同波长的并行光载波;Wavelength division multiplexer, used to divide the continuous optical carrier into N parallel optical carriers of different wavelengths;

光衰减器,用于对与其相对应的并行光载波的光功率进行衰减;an optical attenuator, used to attenuate the optical power of its corresponding parallel optical carrier;

数字映射器,用于对输入其自身的数字信号进行降频处理,并输出两路数字信号;The digital mapper is used to down-convert the input digital signal and output two digital signals;

马赫-曾德尔调制器,用于将与其相对应的两路数字信号调制到与其相对应的经过光衰减器衰减的光载波上,并输出一路光调制信号;The Mach-Zehnder modulator is used to modulate the corresponding two digital signals to the corresponding optical carrier attenuated by the optical attenuator, and output one optical modulation signal;

波分复用器,用于将N个马赫-曾德尔调制器输出的N路不同权重的光调制信号进行加权叠加并输出一路复用光信号;The wavelength division multiplexer is used to weighted and superimpose N channels of optical modulation signals with different weights output by the N Mach-Zehnder modulators and output one channel of multiplexed optical signals;

光电检测器,用于将复用光信号转换为电信号;a photodetector for converting the multiplexed optical signal into an electrical signal;

低通滤波器,用于将电信号进行平滑处理并得到模拟信号。A low-pass filter, used to smooth the electrical signal and obtain an analog signal.

本发明的优点在于:和传统的光子数模转换方案相比,该方案对数字信号进行降频处理,解决了光子数模转换系统速率受限于现有设备的问题,极大地提高了光子数模转换系统的转换速率,同时系统简单易于实现。The advantages of the present invention are: compared with the traditional photon digital-to-analog conversion scheme, the scheme performs down-frequency processing on the digital signal, solves the problem that the speed of the photon digital-to-analog conversion system is limited by the existing equipment, and greatly improves the number of photons. The conversion rate of the analog conversion system, while the system is simple and easy to implement.

附图说明Description of drawings

为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。In order to explain the embodiments of the present invention or the technical solutions in the prior art more clearly, the following briefly introduces the accompanying drawings that need to be used in the description of the embodiments or the prior art. Obviously, the accompanying drawings in the following description are only These are some embodiments of the present invention. For those of ordinary skill in the art, other drawings can also be obtained according to these drawings without creative efforts.

图1为一种基于数字映射的高速光子数模转换方法的流程图;1 is a flowchart of a high-speed photon digital-to-analog conversion method based on digital mapping;

图2为一种基于数字映射的高速光子数模转换系统的结构示意图;2 is a schematic structural diagram of a high-speed photon digital-to-analog conversion system based on digital mapping;

图3为数字映射器原理图;Figure 3 is a schematic diagram of a digital mapper;

图4为数字映射器输入信号和输出信号对比图;FIG. 4 is a comparison diagram of the input signal and the output signal of the digital mapper;

图中的编码分别为:1.宽谱光源;2.波分解复用器;3.第一光衰减器;4.第二光衰减器;5.第三光衰减器;6.第一马赫-曾德尔调制器;7.第二马赫-曾德尔调制器;8.第三马赫-曾德尔调制器;9.第一数字映射器;10.第二数字映射器;11.第三数字映射器;12.波分复用器;13.光电检测器;14.低通滤波器。The codes in the figure are: 1. Broad-spectrum light source; 2. WDM; 3. First optical attenuator; 4. Second optical attenuator; 5. Third optical attenuator; 6. First Mach - Zehnder modulator; 7. Second Mach-Zehnder modulator; 8. Third Mach-Zehnder modulator; 9. First digital mapper; 10. Second digital mapper; 11. Third digital mapper 12. Wavelength division multiplexer; 13. Photodetector; 14. Low-pass filter.

具体实施方式Detailed ways

以下通过特定的具体实施例说明本发明的实施方式,本领域技术人员可由本说明书所揭露的内容轻易地了解本发明的其他优点与功效。本发明还可以通过另外不同的具体实施方式加以实施或应用,本说明书中的各项细节也可以基于不同观点与应用,在没有背离本发明的精神下进行各种修饰或改变。需说明的是,在不冲突的情况下,以下实施例及实施例中的特征可以相互组合。The embodiments of the present invention are described below through specific specific examples, and those skilled in the art can easily understand other advantages and effects of the present invention from the contents disclosed in this specification. The present invention can also be implemented or applied through other different specific embodiments, and various details in this specification can also be modified or changed based on different viewpoints and applications without departing from the spirit of the present invention. It should be noted that the following embodiments and features in the embodiments may be combined with each other under the condition of no conflict.

本发明的目的是针对现有技术的限制,提供了一种基于数字映射的高速光子数模转换方法及系统,以下实施例均以3-bit光子数模转换为例。The purpose of the present invention is to provide a high-speed photon digital-to-analog conversion method and system based on digital mapping in view of the limitations of the prior art. The following embodiments all take 3-bit photon digital-to-analog conversion as an example.

实施例一:Example 1:

参照图1、图2、图3,图4,提供一种基于数字映射的高速光子数模转换方法,包括步骤:Referring to Figure 1, Figure 2, Figure 3, Figure 4, a high-speed photon digital-to-analog conversion method based on digital mapping is provided, comprising the steps:

S1、宽谱光源1产生连续光载波,所述连续光载波经过波分解复用器2后分成三路不同波长的并行光载波,所述三路光载波分别并行经过与每一路光载波相对应的光衰减器后继续分别进入与光衰减器相对应的马赫-曾德尔调制器;S1. The broadband light source 1 generates a continuous optical carrier, which is divided into three parallel optical carriers with different wavelengths after passing through the wavelength division multiplexer 2, and the three optical carriers pass in parallel and correspond to each optical carrier. After the optical attenuator, it continues to enter the Mach-Zehnder modulator corresponding to the optical attenuator;

S2、三个数字映射器均对输入其自身的数字信号进行降频处理,并输出两路数字信号,每个数字映射器输出的两路数字信号进入与每个数字映射器相对应的马赫-曾德尔调制器;S2. Each of the three digital mappers down-converts the input digital signal and outputs two digital signals. The two digital signals output by each digital mapper enter the Mach- Zehnder modulator;

S3、三个马赫-曾德尔调制器均将进入其自身的两路数字信号调制到进入其自身的光载波上,并输出一路光调制信号,三路光调制信号进入波分复用器12;S3. Each of the three Mach-Zehnder modulators modulates the two channels of digital signals entering into their own onto the optical carrier entering their own, and outputs one channel of optical modulation signals, and the three channels of optical modulation signals enter the wavelength division multiplexer 12;

S4、波分复用器12将三路不同权重的光调制信号进行加权叠加并输出一路复用光信号,所述复用光信号进入光电检测器13转换为电信号后进入低通滤波器14进行平滑处理并得到模拟信号。S4. The wavelength division multiplexer 12 weights and superimposes three optical modulation signals with different weights and outputs one multiplexed optical signal. The multiplexed optical signal enters the photodetector 13 and is converted into an electrical signal and then enters the low-pass filter 14. Smoothing and getting an analog signal.

在步骤S1中,宽谱光源1产生连续光载波,所述光载波经过波分解复用器2后分成三路不同波长的并行光载波,所述光载波并行经过第一光衰减器3、第二光衰减器4、第三光衰减器5后分别进入第一马赫-曾德尔调制器6、第二马赫-曾德尔调制器7和第三马赫-曾德尔调制器8。In step S1, the broad-spectrum light source 1 generates a continuous optical carrier, which is divided into three parallel optical carriers with different wavelengths after passing through the wavelength division multiplexer 2, and the optical carrier passes through the first optical attenuator 3, the first optical attenuator 3, the second optical carrier in parallel The second optical attenuator 4 and the third optical attenuator 5 respectively enter the first Mach-Zehnder modulator 6 , the second Mach-Zehnder modulator 7 and the third Mach-Zehnder modulator 8 .

宽谱光源1产生的连续光载波经过波分解复用器2后分成三路不同波长的并行光载波经过第一光衰减器3、第二光衰减器4、第三光衰减器5后功率比表示为:

Figure BDA0002585322200000071
The continuous optical carrier generated by the broadband light source 1 is divided into three parallel optical carriers with different wavelengths after passing through the wavelength division multiplexer 2. After passing through the first optical attenuator 3, the second optical attenuator 4, and the third optical attenuator 5, the power ratio is Expressed as:
Figure BDA0002585322200000071

在步骤S2中,第一数字映射器9、第二数字映射器10、第三数字映射器11分别产生两路数字信号,所述产生的数字信号进入对应的第一马赫-曾德尔调制器6、第二马赫-曾德尔调制器7、第三马赫-曾德尔调制器8。In step S2, the first digital mapper 9, the second digital mapper 10, and the third digital mapper 11 respectively generate two digital signals, and the generated digital signals enter the corresponding first Mach-Zehnder modulator 6 , the second Mach-Zehnder modulator 7, the third Mach-Zehnder modulator 8.

第一数字映射器9、第二数字映射器10、第三数字映射器11的输入数字信号D1、D2、D3分别对应为待转换数字信号经串并转换后的LSB、NLSB、MSB数据串,其中LSB为最低有效比特位,NLSB为最接近LSB的有效比特位,MSB为最高有效比特位,输出数字信号满足:The input digital signals D 1 , D 2 , and D 3 of the first digital mapper 9 , the second digital mapper 10 , and the third digital mapper 11 correspond to the LSB, NLSB, and MSB of the serial-to-parallel converted digital signal, respectively. Data string, where LSB is the least significant bit, NLSB is the effective bit closest to LSB, MSB is the most significant bit, and the output digital signal satisfies:

Figure BDA0002585322200000081
Figure BDA0002585322200000081

Figure BDA0002585322200000082
Figure BDA0002585322200000082

其中,其中Si1表示第i个数字映射器输出的第一路数字信号,Si2表示第i个数字映射器输出的第二路数字信号,i=1,2,3;m=1,2,...,n/2,n为数字映射器的输入数字信号的长度,Vs为数字映射器输出降频信号的幅度;第一数字映射器9、第二数字映射器10、第三数字映射器11输出数字信号峰值为Vπ;第一马赫-曾德尔调制器6、第二马赫-曾德尔调制器7、第三马赫-曾德尔调制器8由直流电源提供大小为Vπ的偏置电压;三路调制信号的初始相位为π。Among them, S i1 represents the first digital signal output by the ith digital mapper, S i2 represents the second digital signal output by the ith digital mapper, i=1, 2, 3; m=1, 2 , . The peak value of the digital signal output by the digital mapper 11 is V π ; the first Mach-Zehnder modulator 6, the second Mach-Zehnder modulator 7, and the third Mach-Zehnder modulator 8 are provided by the DC power supply with a magnitude of V π . Bias voltage; the initial phase of the three-way modulation signal is π.

在步骤S3中,第一马赫-曾德尔调制器6、第二马赫-曾德尔调制器7和第三马赫-曾德尔调制器8输出三路光调制信号进入波分复用器12。In step S3 , the first Mach-Zehnder modulator 6 , the second Mach-Zehnder modulator 7 and the third Mach-Zehnder modulator 8 output three optical modulation signals into the wavelength division multiplexer 12 .

第一马赫-曾德尔调制器6、第二马赫-曾德尔调制器7、第三马赫-曾德尔调制器8输出的光调制信号强度Ii(i=1,2,3)的表达式为:The expression of the optical modulation signal intensity I i (i=1, 2, 3) output by the first Mach-Zehnder modulator 6, the second Mach-Zehnder modulator 7, and the third Mach-Zehnder modulator 8 is: :

Figure BDA0002585322200000083
Figure BDA0002585322200000083

其中,

Figure BDA0002585322200000084
代表光载波经过第i个光衰减器之后的功率,α=πVs/Vπ代表调制深度,T代表数字映射器输出信号的比特周期。in,
Figure BDA0002585322200000084
represents the power of the optical carrier after passing through the i-th optical attenuator, α=πV s /V π represents the modulation depth, and T represents the bit period of the output signal of the digital mapper.

在步骤S4中,波分复用器12输出复用光信号,所述复用光信号经过光电检测器13转换为电信号,电信号输入到低通滤波器14中进行平滑处理,实现数字信号到模拟信号的转换。In step S4, the wavelength division multiplexer 12 outputs a multiplexed optical signal, the multiplexed optical signal is converted into an electrical signal by the photodetector 13, and the electrical signal is input to the low-pass filter 14 for smoothing processing to realize a digital signal Conversion to analog signal.

实施例二:Embodiment 2:

参照图2、图3、图4,提供一种基于数字映射的高速光子数模转换系统,包括:宽谱光源1、波分解复用器2、第一光衰减器3、第二光衰减器4、第三光衰减器5、第一马赫-曾德尔调制器6、第二马赫-曾德尔调制器7、第三马赫-曾德尔调制器8、第一数字映射器9、第二数字映射器10、第三数字映射器11、波分复用器12、光电检测器13、低通滤波器14;2, 3, and 4, a high-speed photon digital-to-analog conversion system based on digital mapping is provided, including: a broad-spectrum light source 1, a wavelength division multiplexer 2, a first optical attenuator 3, and a second optical attenuator 4. The third optical attenuator 5, the first Mach-Zehnder modulator 6, the second Mach-Zehnder modulator 7, the third Mach-Zehnder modulator 8, the first digital mapper 9, the second digital mapper 10, a third digital mapper 11, a wavelength division multiplexer 12, a photodetector 13, and a low-pass filter 14;

宽谱光源1与第一光衰减器3、第二光衰减器4、第三光衰减器5通过波分解复用器2连接;第一光衰减器3、第二光衰减器4、第三光衰减器5分别连入第一马赫-曾德尔调制器6、第二马赫-曾德尔调制器7、第三马赫-曾德尔调制器8。The broad-spectrum light source 1 is connected to the first optical attenuator 3, the second optical attenuator 4, and the third optical attenuator 5 through the WDM 2; the first optical attenuator 3, the second optical attenuator 4, the third optical attenuator The optical attenuators 5 are respectively connected to the first Mach-Zehnder modulator 6 , the second Mach-Zehnder modulator 7 and the third Mach-Zehnder modulator 8 .

第一数字映射器9、第二数字映射器10、第三数字映射器11分别连接第一马赫-曾德尔调制器6、第二马赫-曾德尔调制器7、第三马赫-曾德尔调制器8。The first digital mapper 9, the second digital mapper 10, and the third digital mapper 11 are respectively connected to the first Mach-Zehnder modulator 6, the second Mach-Zehnder modulator 7, and the third Mach-Zehnder modulator 8.

第一马赫-曾德尔调制器6、第二马赫-曾德尔调制器7、第三马赫-曾德尔调制器8与波分复用器12相连。The first Mach-Zehnder modulator 6 , the second Mach-Zehnder modulator 7 , and the third Mach-Zehnder modulator 8 are connected to the wavelength division multiplexer 12 .

波分复用器12与低通滤波器14通过光电检测器13连接。The wavelength division multiplexer 12 and the low-pass filter 14 are connected through the photodetector 13 .

宽谱光源1,用于产生连续光载波;Broad-spectrum light source 1, used to generate continuous optical carrier;

波分解复用器2,用于将连续光载波分成三路不同波长的并行光载波;Wavelength demultiplexer 2, used to divide the continuous optical carrier into three parallel optical carriers of different wavelengths;

光衰减器,用于对与其相对应的并行光载波的光功率进行衰减;an optical attenuator, used to attenuate the optical power of its corresponding parallel optical carrier;

数字映射器,用于对输入其自身的数字信号进行降频处理,并输出两路数字信号;The digital mapper is used to down-convert the input digital signal and output two digital signals;

马赫-曾德尔调制器,用于将与其相对应的两路数字信号调制到与其相对应的经过光衰减器衰减的光载波上,并输出一路光调制信号;The Mach-Zehnder modulator is used to modulate the corresponding two digital signals to the corresponding optical carrier attenuated by the optical attenuator, and output one optical modulation signal;

波分复用器12,用于将三个马赫-曾德尔调制器输出的三路不同权重的光调制信号进行加权叠加并输出一路复用光信号;The wavelength division multiplexer 12 is used for weighted superposition of three optical modulation signals with different weights output by the three Mach-Zehnder modulators and outputting a multiplexed optical signal;

光电检测器13,用于将复用光信号转换为电信号;a photodetector 13 for converting the multiplexed optical signal into an electrical signal;

低通滤波器14,用于将电信号进行平滑处理并得到模拟信号。The low-pass filter 14 is used for smoothing the electrical signal and obtaining an analog signal.

数字映射器(Digital-to-digital Converter,DDC)输入数字信号为待转换数字信号经串并转换后得到的具有相同比特权重的数据,用D表示,经过数字映射器后输出数字信号满足以下映射关系:The input digital signal of the digital mapper (Digital-to-digital Converter, DDC) is the data with the same bit weight obtained after the serial-to-parallel conversion of the digital signal to be converted, which is represented by D. After the digital mapper, the output digital signal satisfies the following mapping relation:

Figure BDA0002585322200000101
Figure BDA0002585322200000101

Figure BDA0002585322200000102
Figure BDA0002585322200000102

其中,m=1,2,...,n/2,n为数字映射器的输入数字信号D的长度。待转换数字信号经串并转换后得到LSB、NLSB、MSB数据串,分别输入到三个数字映射器中。以其中一个数字映射器为例,假设数字映射器的输入信号D为1011011001,经过数字映射器后输出满足映射关系的两个低频信号S1、S2分别为10111、11010。数字映射器输出信号频率为输入信号频率的一半,有效实现数字信号的降频并保留了输出信号与输入信号间的关联性,在保证数字信号到模拟信号的成功转换下实现系统转换速率和系统带宽的倍增。Wherein, m=1,2,...,n/2, and n is the length of the input digital signal D of the digital mapper. The LSB, NLSB, MSB data strings are obtained after the serial-to-parallel conversion of the digital signal to be converted, which are respectively input to the three digital mappers. Taking one of the digital mappers as an example, assuming that the input signal D of the digital mapper is 1011011001, after passing through the digital mapper, two low-frequency signals S 1 and S 2 that satisfy the mapping relationship are output as 10111 and 11010, respectively. The frequency of the output signal of the digital mapper is half of the frequency of the input signal, which effectively realizes the frequency reduction of the digital signal and preserves the correlation between the output signal and the input signal. Double the bandwidth.

上述实施例提出的一种基于数字映射的高速光子数模转换方法及系统,通过数字映射的方法,解决光子数模转换系统转换速率受限于现有设备的问题,与传统光子数模转换系统相比,该方案利用数字映射的方式,对待转换的数字信号预先进行降频处理,从而利用现有转换设备实现系统转换速率和系统带宽的倍增,同时该系统结构简单,易于操作和集成化。A high-speed photon digital-to-analog conversion method and system based on digital mapping proposed in the above embodiment, through the method of digital mapping, to solve the problem that the conversion rate of the photonic digital-to-analog conversion system is limited by the existing equipment, and the traditional photonic digital-to-analog conversion system. In contrast, this scheme uses digital mapping to perform down-frequency processing on the digital signal to be converted in advance, so that the existing conversion equipment can be used to double the system conversion rate and system bandwidth. At the same time, the system has a simple structure and is easy to operate and integrate.

注意,上述仅为本发明的较佳实施例及所运用技术原理。本领域技术人员会理解,本发明不限于这里所述的特定实施例,对本领域技术人员来说能够进行各种明显的变化、重新调整和替代而不会脱离本发明的保护范围。因此,虽然通过以上实施例对本发明进行了较为详细的说明,但是本发明不仅仅限于以上实施例,在不脱离本发明构思的情况下,还可以包括更多其他等效实施例,而本发明的范围由所附的权利要求范围决定。Note that the above are only preferred embodiments of the present invention and applied technical principles. Those skilled in the art will understand that the present invention is not limited to the specific embodiments described herein, and various obvious changes, readjustments and substitutions can be made by those skilled in the art without departing from the protection scope of the present invention. Therefore, although the present invention has been described in detail through the above embodiments, the present invention is not limited to the above embodiments, and can also include more other equivalent embodiments without departing from the concept of the present invention. The scope is determined by the scope of the appended claims.

Claims (9)

1. A high-speed photon digital-to-analog conversion method based on digital mapping is characterized by comprising the following steps:
s1, generating continuous light carriers by a wide-spectrum light source, dividing the continuous light carriers into N paths of parallel light carriers with different wavelengths after passing through a wavelength division demultiplexer, and continuously and respectively entering Mach-Zehnder modulators corresponding to optical attenuators after the N paths of light carriers respectively pass through the optical attenuators corresponding to each path of light carriers in parallel;
s2, N digital mappers carry out frequency reduction processing on the digital signals input into the N digital mappers and output two paths of digital signals, and the two paths of digital signals output by each digital mapper enter the Mach-Zehnder modulator corresponding to each digital mapper;
s3, the N Mach-Zehnder modulators modulate the two paths of digital signals entering the Mach-Zehnder modulators to optical carriers entering the Mach-Zehnder modulators, and output one path of optical modulation signals, and the N paths of optical modulation signals enter the wavelength division multiplexer;
s4, the wavelength division multiplexer performs weighted superposition on the N paths of optical modulation signals with different weights and outputs a path of multiplexing optical signal, and the multiplexing optical signal enters the photoelectric detector to be converted into an electric signal and then enters the low-pass filter to be smoothed to obtain an analog signal.
2. The method according to claim 1, wherein in step S1, the power ratio of N optical carriers passing through the optical attenuator corresponding to each optical carrier is:
Figure FDA0002585322190000011
wherein
Figure FDA0002585322190000012
The power of the optical carrier after passing through the ith optical attenuator is represented, i is 1,2,3, … …, N.
3. The method of claim 1, wherein in step S2, the input digital signals D of N mappers are inputted1,D2,...,DNThe digital signal to be converted is respectively corresponding to LSB, NLSB and MSB data string after serial-parallel conversion, wherein the LSB is the least significant bit, the NLSB is the significant bit closest to the LSB, and the MSB is the most significant bit.
4. The high-speed photon digital-to-analog conversion method based on digital mapping as claimed in claim 3, wherein two paths of digital signals S outputted by each digital mapperi1、Si2(i ═ 1, 2.., N) satisfies:
Figure FDA0002585322190000021
Figure FDA0002585322190000022
wherein Si1Representing the first digital signal, S, output from the ith digital mapperi2Representing the second path of digital signals output by the ith digital mapper;
n/2, n is the length of the input digital signal of the digital mapper, VsThe amplitude of the down-converted signal is output to the digital mapper.
5. The high-speed photon digital-to-analog conversion method based on digital mapping as claimed in claim 4, wherein the peak value of the digital signal output by each digital mapper is Vπ
6. The method according to claim 5, wherein in step S3, the initial phase of the modulation signal output by each Mach-Zehnder modulator is pi.
7. The digital mapping-based high-speed photon digital-to-analog conversion method according to claim 6, wherein the initial phase of the modulation signal output by each Mach-Zehnder modulator is controlled by a bias voltage provided by a DC power supply, and the magnitude of the bias voltage is equal to Vπ
8. The method according to claim 7, wherein in the step S3, each mach-zehnder modulator outputs an optical modulation signal intensity IiThe expression of (i ═ 1, 2.., N) is:
Figure FDA0002585322190000023
wherein, alpha is pi Vs/VπRepresenting the modulation depth and T representing the bit period of the output signal of the digital mapper.
9. A high-speed photon digital-to-analog conversion system based on digital mapping is characterized by comprising a wide spectrum light source, a wavelength division demultiplexer, N optical attenuators, N digital mappers, N Mach-Zehnder modulators, a wavelength division multiplexer, a photoelectric detector and a low-pass filter;
a broad spectrum light source for generating a continuous optical carrier;
the wavelength division demultiplexer is used for dividing the continuous optical carrier into N paths of parallel optical carriers with different wavelengths;
the optical attenuator is used for attenuating the optical power of the parallel optical carrier wave corresponding to the optical attenuator;
the digital mapper is used for carrying out frequency reduction processing on the digital signal input into the digital mapper and outputting two paths of digital signals;
the Mach-Zehnder modulator is used for modulating the two paths of digital signals corresponding to the Mach-Zehnder modulator onto the corresponding optical carrier attenuated by the optical attenuator and outputting one path of optical modulation signal;
the wavelength division multiplexer is used for performing weighted superposition on the N paths of optical modulation signals with different weights output by the N Mach-Zehnder modulators and outputting a path of multiplexing optical signal;
a photodetector for converting the multiplexed optical signal into an electrical signal;
and the low-pass filter is used for smoothing the electric signal and obtaining an analog signal.
CN202010679505.0A 2020-07-15 2020-07-15 A high-speed photon digital-to-analog conversion method and system based on digital mapping Active CN111884727B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010679505.0A CN111884727B (en) 2020-07-15 2020-07-15 A high-speed photon digital-to-analog conversion method and system based on digital mapping

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010679505.0A CN111884727B (en) 2020-07-15 2020-07-15 A high-speed photon digital-to-analog conversion method and system based on digital mapping

Publications (2)

Publication Number Publication Date
CN111884727A true CN111884727A (en) 2020-11-03
CN111884727B CN111884727B (en) 2021-11-16

Family

ID=73150187

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010679505.0A Active CN111884727B (en) 2020-07-15 2020-07-15 A high-speed photon digital-to-analog conversion method and system based on digital mapping

Country Status (1)

Country Link
CN (1) CN111884727B (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112684650A (en) * 2020-12-29 2021-04-20 杭州电子科技大学 Photon analog-to-digital conversion method and system based on weighted modulation curve
CN113359370A (en) * 2021-06-08 2021-09-07 杭州电子科技大学 Optical digital-to-analog conversion method and device
CN114285485A (en) * 2021-12-29 2022-04-05 杭州电子科技大学 A phase encoding method and system based on a delay line interferometer
CN114355695A (en) * 2021-12-29 2022-04-15 杭州电子科技大学 Arbitrary waveform generation system and method based on parallel dual-drive Mach-Zehnder modulators
CN115459855A (en) * 2022-08-15 2022-12-09 香港理工大学深圳研究院 A digital pulse shaping method and optical fiber communication system based on linear superposition
CN117240368A (en) * 2023-11-16 2023-12-15 鹏城实验室 Optical domain spectrum synthesis system and optical domain spectrum synthesis method

Citations (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101022310A (en) * 2007-02-16 2007-08-22 浙江大学 Light source strength noise suppressing device based on high-speed light attenuator switch and method thereof
CN101237251A (en) * 2008-03-06 2008-08-06 浙江大学 Direct Spread-Orthogonal Frequency Division Multiplexing Modulation and Demodulation Method Applicable to High-speed Mobile Environment
WO2008152642A1 (en) * 2007-06-13 2008-12-18 Ramot At Tel Aviv University Ltd. Linearised optical digital modulator
CN102006078A (en) * 2010-12-20 2011-04-06 复旦大学 Time-interleaved digital to analog converter
US20120214431A1 (en) * 2011-02-18 2012-08-23 Fujitsu Limited Transmitter and power supply control module
CN102932067A (en) * 2012-11-14 2013-02-13 浙江大学 Microwave photon frequency measuring device based on technologies of compressed sampling and time domain broadening and method thereof
CN103947170A (en) * 2011-11-21 2014-07-23 英特尔公司 Wireless device and method for low power and low data rate operation
CN104360199A (en) * 2014-11-21 2015-02-18 国家电网公司 Ultrahigh-frequency-band RFID testing system
CN104904124A (en) * 2012-12-11 2015-09-09 华为技术有限公司 Efficient baseband signal processing system and method
CN106452596A (en) * 2016-10-26 2017-02-22 国网河南省电力公司信息通信公司 A WDM-RoF system
CN107124229A (en) * 2017-03-25 2017-09-01 西安电子科技大学 A kind of any time-delay mechanism of radiofrequency signal and method that frequency displacement is circulated based on microwave photon
CN108259090A (en) * 2018-01-17 2018-07-06 清华大学 A kind of radio frequency random waveform photogenerated method and system based on digital logical operation
CN108390686A (en) * 2018-03-08 2018-08-10 山东大学 Radio observation receiver system and radio wave signal processing method
CN108880695A (en) * 2018-07-19 2018-11-23 浙江大学 Photon continuous time compression set and its method
CN208190659U (en) * 2018-03-22 2018-12-04 珠海爱立德技术服务有限公司 A kind of ultrahigh speed optical fiber microwave information integrated transmission compartment system
CN109150216A (en) * 2017-06-13 2019-01-04 中兴通讯股份有限公司 A kind of dual band receiver and its auto gain control method
CN109639322A (en) * 2019-01-30 2019-04-16 北京慧通微电科技有限公司 Power-line carrier communication system and full-duplex method based on digital-to-analogue joint frequency dividing
CN109828421A (en) * 2019-03-28 2019-05-31 杭州电子科技大学 A kind of photon D conversion method and system based on intensity adjustment and differential encoding
CN109997308A (en) * 2019-02-25 2019-07-09 深圳市汇顶科技股份有限公司 Data converter and related analog-digital converter, digital analog converter and chip
CN110011734A (en) * 2019-04-18 2019-07-12 杭州电子科技大学 CPE compensation method in CO-OFDM system based on pilot frequency and 2D projection histogram
CN110036611A (en) * 2016-11-30 2019-07-19 美光科技公司 The wireless device and system of example comprising Mixed design data and coefficient data
CN110212988A (en) * 2019-06-12 2019-09-06 南京航空航天大学 Microwave photon link dynamic range method for improving and microwave photon link
CN110995270A (en) * 2019-11-20 2020-04-10 清华大学 Sectional type photon digital-to-analog converter and waveform generation method thereof
CN111045275A (en) * 2020-01-06 2020-04-21 杭州电子科技大学 A photonic analog-to-digital conversion system and method based on the principle of hierarchical quantization
CN111208690A (en) * 2020-04-23 2020-05-29 光子算数(北京)科技有限责任公司 Optical digital-to-analog converter, signal processing system and photonic neural network chip

Patent Citations (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101022310A (en) * 2007-02-16 2007-08-22 浙江大学 Light source strength noise suppressing device based on high-speed light attenuator switch and method thereof
US20170294968A1 (en) * 2007-06-13 2017-10-12 Ramot At Tel-Aviv University Ltd. Linearized optical digital-to-analog modulator
WO2008152642A1 (en) * 2007-06-13 2008-12-18 Ramot At Tel Aviv University Ltd. Linearised optical digital modulator
CN101237251A (en) * 2008-03-06 2008-08-06 浙江大学 Direct Spread-Orthogonal Frequency Division Multiplexing Modulation and Demodulation Method Applicable to High-speed Mobile Environment
CN102006078A (en) * 2010-12-20 2011-04-06 复旦大学 Time-interleaved digital to analog converter
US20120214431A1 (en) * 2011-02-18 2012-08-23 Fujitsu Limited Transmitter and power supply control module
CN103947170A (en) * 2011-11-21 2014-07-23 英特尔公司 Wireless device and method for low power and low data rate operation
CN102932067A (en) * 2012-11-14 2013-02-13 浙江大学 Microwave photon frequency measuring device based on technologies of compressed sampling and time domain broadening and method thereof
CN104904124A (en) * 2012-12-11 2015-09-09 华为技术有限公司 Efficient baseband signal processing system and method
CN104360199A (en) * 2014-11-21 2015-02-18 国家电网公司 Ultrahigh-frequency-band RFID testing system
CN106452596A (en) * 2016-10-26 2017-02-22 国网河南省电力公司信息通信公司 A WDM-RoF system
CN110036611A (en) * 2016-11-30 2019-07-19 美光科技公司 The wireless device and system of example comprising Mixed design data and coefficient data
CN107124229A (en) * 2017-03-25 2017-09-01 西安电子科技大学 A kind of any time-delay mechanism of radiofrequency signal and method that frequency displacement is circulated based on microwave photon
CN109150216A (en) * 2017-06-13 2019-01-04 中兴通讯股份有限公司 A kind of dual band receiver and its auto gain control method
CN108259090A (en) * 2018-01-17 2018-07-06 清华大学 A kind of radio frequency random waveform photogenerated method and system based on digital logical operation
CN108390686A (en) * 2018-03-08 2018-08-10 山东大学 Radio observation receiver system and radio wave signal processing method
CN208190659U (en) * 2018-03-22 2018-12-04 珠海爱立德技术服务有限公司 A kind of ultrahigh speed optical fiber microwave information integrated transmission compartment system
CN108880695A (en) * 2018-07-19 2018-11-23 浙江大学 Photon continuous time compression set and its method
CN109639322A (en) * 2019-01-30 2019-04-16 北京慧通微电科技有限公司 Power-line carrier communication system and full-duplex method based on digital-to-analogue joint frequency dividing
CN109997308A (en) * 2019-02-25 2019-07-09 深圳市汇顶科技股份有限公司 Data converter and related analog-digital converter, digital analog converter and chip
CN109828421A (en) * 2019-03-28 2019-05-31 杭州电子科技大学 A kind of photon D conversion method and system based on intensity adjustment and differential encoding
CN110011734A (en) * 2019-04-18 2019-07-12 杭州电子科技大学 CPE compensation method in CO-OFDM system based on pilot frequency and 2D projection histogram
CN110212988A (en) * 2019-06-12 2019-09-06 南京航空航天大学 Microwave photon link dynamic range method for improving and microwave photon link
CN110995270A (en) * 2019-11-20 2020-04-10 清华大学 Sectional type photon digital-to-analog converter and waveform generation method thereof
CN111045275A (en) * 2020-01-06 2020-04-21 杭州电子科技大学 A photonic analog-to-digital conversion system and method based on the principle of hierarchical quantization
CN111208690A (en) * 2020-04-23 2020-05-29 光子算数(北京)科技有限责任公司 Optical digital-to-analog converter, signal processing system and photonic neural network chip

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
SHUNA YANG,HAO CHI,BO YANG,RAN ZENG,JUN OU,YANRONG ZHAI,QILIANG: "Photonic Digitization With Differential Encoding Based on Orthogonal Vector Superposition", 《IEEE PHOTONICS JOURNAL》 *
YOSSEF EHRLICHMAN, OFER AMRANI, SHLOMO RUSCHIN: "Photonic digital-to-analog conversion and digitally driven integrated optics modulator", 《2011 IEEE INTERNATIONAL CONFERENCE ON MICROWAVES, COMMUNICATIONS, ANTENNAS AND ELECTRONIC SYSTEMS 》 *
杨国伟,叶玮胜,毕美华,滕旭阳,曾然,胡淼: "基于二维投影直方图导频辅助的相干光正交频分复用系统公共相位误差噪声补偿算法", 《光学学报》 *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112684650A (en) * 2020-12-29 2021-04-20 杭州电子科技大学 Photon analog-to-digital conversion method and system based on weighted modulation curve
CN113359370A (en) * 2021-06-08 2021-09-07 杭州电子科技大学 Optical digital-to-analog conversion method and device
CN114285485A (en) * 2021-12-29 2022-04-05 杭州电子科技大学 A phase encoding method and system based on a delay line interferometer
CN114355695A (en) * 2021-12-29 2022-04-15 杭州电子科技大学 Arbitrary waveform generation system and method based on parallel dual-drive Mach-Zehnder modulators
CN114285485B (en) * 2021-12-29 2023-05-23 杭州电子科技大学 Phase encoding method and system based on delay line interferometer
CN115459855A (en) * 2022-08-15 2022-12-09 香港理工大学深圳研究院 A digital pulse shaping method and optical fiber communication system based on linear superposition
CN115459855B (en) * 2022-08-15 2023-10-03 香港理工大学深圳研究院 Digital pulse shaping method based on linear superposition and optical fiber communication system
CN117240368A (en) * 2023-11-16 2023-12-15 鹏城实验室 Optical domain spectrum synthesis system and optical domain spectrum synthesis method
CN117240368B (en) * 2023-11-16 2024-02-20 鹏城实验室 Optical domain spectrum synthesis system and optical domain spectrum synthesis method

Also Published As

Publication number Publication date
CN111884727B (en) 2021-11-16

Similar Documents

Publication Publication Date Title
CN111884727B (en) A high-speed photon digital-to-analog conversion method and system based on digital mapping
CN106647102A (en) Ultra high-speed digital-to-analogue conversion method and device based on optical time domain compression
CN106444215A (en) Optical Analog-to-Digital Converter with Configurable Frequency Response
CN102799045A (en) All-optical analog-to-digital conversion structure based on double-drive M-Z type modulator and realization method
Zhang et al. Simplified 2-bit photonic digital-to-analog conversion unit based on polarization multiplexing
Gao et al. Experimental demonstration of arbitrary waveform generation by a 4-bit photonic digital-to-analog converter
CN113238428B (en) High-speed photon digital-to-analog conversion method based on dual-drive electro-optical modulator array
CN108880695B (en) Photon continuous time compression device and method thereof
WO2011145280A1 (en) Optical intensity-to-phase converter, mach-zehnder optical interferometer, optical a/d converter, and method for configuring optical intensity-to-phase converter
CN110995270B (en) Segmented photon digital-to-analog converter and waveform generation method thereof
CN113359370B (en) Optical digital-to-analog conversion method and device
Yu et al. Low in-band spurious arbitrary waveform generator based on a 1-bit time-wavelength interleaved photonic digital-to-analog conversion
CN113219760B (en) Digital-to-analog conversion method and system based on spectrum shaping
CN112684650B (en) A photonic analog-to-digital conversion method and system based on weighted modulation curve
CN114301535B (en) Method and system for generating optical arbitrary waveform of multiple weighted continuous lights
CN104333421A (en) Triangular pulse signal generation device based on all-optical integrator
Zhang et al. Optical assisted digital-to-analog conversion using dispersion-based wavelength multiplexing
CN114137777B (en) Photon digital-to-analog conversion system based on pulse processing
Zhu et al. A photonic analog-to-digital converter with multiplied sampling rate using a fiber ring
Chen et al. Differentially encoded photonic analog-to-digital conversion based on phase modulation and interferometric demodulation
Luo et al. Modified low-bandwidth sub-Nyquist sampling receiving scheme in an IM/DD OFDM system enabled by improved optical shaping
CN114355695A (en) Arbitrary waveform generation system and method based on parallel dual-drive Mach-Zehnder modulators
CN106814517A (en) D conversion method and device based on photon duplicate cache auxiliary
CN112152726A (en) Phase quantization photonic digital-to-analog converter and waveform generation method based thereon
Lyu et al. All-optical digital-to-analog conversion based on time-domain pulse spectrum encoding

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right

Effective date of registration: 20230506

Address after: 509 Kangrui Times Square, Keyuan Business Building, 39 Huarong Road, Gaofeng Community, Dalang Street, Longhua District, Shenzhen, Guangdong Province, 518000

Patentee after: Shenzhen lizhuan Technology Transfer Center Co.,Ltd.

Address before: 310018 no.1158, No.2 street, Baiyang street, Hangzhou Economic and Technological Development Zone, Zhejiang Province

Patentee before: HANGZHOU DIANZI University

TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20241230

Address after: Room 1210, 12th Floor, Building 10, Courtyard 1, Tianxing Street, Fangshan District, Beijing, 102400

Patentee after: Beijing Mengxiong Digital Technology Co.,Ltd.

Country or region after: China

Address before: 509 Kangrui Times Square, Keyuan Business Building, 39 Huarong Road, Gaofeng Community, Dalang Street, Longhua District, Shenzhen, Guangdong Province, 518000

Patentee before: Shenzhen lizhuan Technology Transfer Center Co.,Ltd.

Country or region before: China

TR01 Transfer of patent right