CN112684650B - A photonic analog-to-digital conversion method and system based on weighted modulation curve - Google Patents

A photonic analog-to-digital conversion method and system based on weighted modulation curve Download PDF

Info

Publication number
CN112684650B
CN112684650B CN202011600799.XA CN202011600799A CN112684650B CN 112684650 B CN112684650 B CN 112684650B CN 202011600799 A CN202011600799 A CN 202011600799A CN 112684650 B CN112684650 B CN 112684650B
Authority
CN
China
Prior art keywords
mach
zehnder modulator
nth
analog
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202011600799.XA
Other languages
Chinese (zh)
Other versions
CN112684650A (en
Inventor
杨淑娜
胡晓云
池灏
杨波
李齐良
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shaanxi Xinhui Engineering Technology Co ltd
Original Assignee
Hangzhou Dianzi University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hangzhou Dianzi University filed Critical Hangzhou Dianzi University
Priority to CN202011600799.XA priority Critical patent/CN112684650B/en
Publication of CN112684650A publication Critical patent/CN112684650A/en
Application granted granted Critical
Publication of CN112684650B publication Critical patent/CN112684650B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)

Abstract

本发明涉及一种基于加权调制曲线的光子模数转换方法及系统,通过将移相光量化技术与加权多波长采样脉冲相结合,利用加权调制曲线实现光子模数转换系统的量化精度提升;该系统利用加权多波长脉冲源产生加权多波长采样光脉冲,将射频模拟信号通过马赫‑曾德尔调制器调制到加权多波长采样光脉冲上。调制信号接入色散元件实现多波长脉冲的时域走离,后由光电探测器进行光电转换并接入比较器进行阈值比较,从而实现模拟信号到数字信号的转换;与传统光子模数转换系统相比,该方案利用加权调制曲线实现对模拟输入信号的均匀量化,从而实现光子模数转换系统的比特精度提高,同时系统结构简单,易于实现。

Figure 202011600799

The invention relates to a photonic analog-to-digital conversion method and system based on a weighted modulation curve. By combining a phase-shifted optical quantization technology with a weighted multi-wavelength sampling pulse, the weighted modulation curve is used to realize the improvement of the quantization accuracy of a photonic analog-to-digital conversion system; The system utilizes a weighted multi-wavelength pulse source to generate weighted multi-wavelength sampling optical pulses, and modulates the RF analog signal onto the weighted multi-wavelength sampling optical pulses through a Mach-Zehnder modulator. The modulated signal is connected to the dispersive element to realize the time-domain walk-off of the multi-wavelength pulse, and then the photodetector performs photoelectric conversion and is connected to the comparator for threshold comparison, so as to realize the conversion of analog signal to digital signal; Compared with this scheme, the weighted modulation curve is used to realize the uniform quantization of the analog input signal, so as to improve the bit precision of the photonic analog-to-digital conversion system. At the same time, the system has a simple structure and is easy to implement.

Figure 202011600799

Description

一种基于加权调制曲线的光子模数转换方法及系统A method and system for photon analog-to-digital conversion based on weighted modulation curve

技术领域technical field

本发明属于光通信的信号处理技术领域,尤其涉及一种基于加权调制曲线的光子模数转换方法及系统。The invention belongs to the technical field of signal processing of optical communication, and in particular relates to a photonic analog-to-digital conversion method and system based on a weighted modulation curve.

背景技术Background technique

模数转换器(Analog-to-digital Converter,ADC)作为模拟世界和数字世界之间的桥梁,ADC在电子产品、精密仪器仪表和航空通信中发挥着至关重要的作用。在过去的十几年里,电子ADC在提高采样率和分辨率方面取得了较大的进步。然而随着雷达系统、实时监控和医学成像等同时要求大带宽和高分辨的应用出现,传统电子ADC的性能达到了极限。由于射频延迟、时间抖动和电磁干扰等电子固有限制,传统电子ADC无法满足现有信号处理系统大带宽、高精度的需求。随着光子器件和技术的发展,光子ADC可以避免传统电子ADC在能量效率和带宽间权衡的缺陷。首先,光子ADC相较传统电子ADC具有低损耗、大带宽和无电磁干扰等优势。其次,由锁模激光器产生的采样光脉冲具有高重复频率和低时间抖动的优质特性,其时钟抖动比电子时钟抖动低两个数量,并且速率可达到100GS/s以上。凭借光子技术优势,光子模数转换技术在提升数字信号处理系统性能方面具有很大的发展前景。Analog-to-digital converter (Analog-to-digital Converter, ADC) as a bridge between the analog world and the digital world, ADC plays a vital role in electronic products, precision instrumentation and aviation communications. Over the past decade, electronic ADCs have made great strides in increasing sampling rates and resolutions. However, with the emergence of applications such as radar systems, real-time surveillance, and medical imaging that require both large bandwidth and high resolution, the performance of traditional electronic ADCs has reached its limits. Due to inherent electronic limitations such as RF delay, time jitter, and electromagnetic interference, traditional electronic ADCs cannot meet the large bandwidth and high precision requirements of existing signal processing systems. With the development of photonic devices and technologies, photonic ADCs can avoid the trade-off between energy efficiency and bandwidth of traditional electronic ADCs. First, photonic ADCs have the advantages of low loss, large bandwidth, and no electromagnetic interference compared to traditional electronic ADCs. Second, the sampled optical pulses generated by the mode-locked laser have the high-quality characteristics of high repetition rate and low time jitter, and their clock jitter is two quantities lower than electronic clock jitter, and the rate can reach more than 100GS/s. With the advantages of photonic technology, photonic analog-to-digital conversion technology has great development prospects in improving the performance of digital signal processing systems.

在1979年,Taylor首次提出一种基于马赫曾德尔调制器(MZM)阵列的光子ADC方案。在方案中,各路调制器的传递函数周期不同,以此来实现对不同输入信号的量化编码。但该方案最大的缺点是调制器的半波电压需要呈2的倍数减小。由于制造工艺的限制,当光通道数超过4时,调制器半波电压小于1V难以实现。为了避免这一问题,Stigwall在2005年提出利用空间MZ干涉结构实现对射频信号的量化编码。该方案空间干涉仪的一臂上的相位调制器调制上模拟信号后与另一臂光信号发生空间干涉,将多个光探测器按照一定的空间位置集成到一个芯片上实现移相光量化。然而Stigwall方案空间光干涉容易受到环境的影响,并且结构复杂,插入损耗较大,技术上实现困难。为提高系统的稳定性能够更好地实现移相光量化,研究者提出一系列编码量化方案,其中包括采用并联MZM方案;采用偏振光干涉的光子量化方案;采用非等臂长的MZM方案;采用一个相位调制器和延迟线干涉仪实现差分编码的量化方案等。移相光量化是通过具有恒定相位差的不同传递函数实现对输入信号的量化编码。然而移相光量化技术N个光通道只能实现2N个量化级,在光通道数量相等的情况下,Taylor方案能够实现2N个量化级的均匀量化。因此系统比特分辨率较低成为移相光量化方案的主要限制。为提升光子模数转换系统的比特精度,2009年提出的一种利用多个比较器实现系统比特精度提升的方案,在该方案中,利用对称数字系统(SNS)在每个调制器后连接多个比较器实现系统比特精度的提升。该方案使用的比较器数量较大,使得系统结构复杂不利于集成。一种基于级联的量化方案在2014年被提出。该方案利用定向耦合器阵列作为第二级量化,对第一级量化的输出功率进行进一步量化,以此增加系统量化级数。然而该方案的定向耦合器阵列需要特殊定制,并且当第二级量化比特分辨率提高时,无法实现均匀量化导致系统量化噪声提高,从而使得系统ENOB严重降低。2018年提出一种利用电路实现探测信号的线性组合的量化方案,该方案利用逻辑电路对探测信号进行线性组合,等效实现通道数增加的效果。然而该方案中对于逻辑电子线路的带宽要求较大,并且系统复杂。2020年提出一种串行的flash量化方案,利用色散元件使得脉冲分离,以此量化输入信号得到数字信号的串行输出,从而简化了系统结构。然而该方案只能工作在小信号调制情况下,需要控制MZM偏置在正交点并且调制深度较小来实现输入模拟信号的线性强度调制。所以,如何使用一种结构简单易于实现的量化方案来提升系统比特精度仍然是一个值得研究的问题。In 1979, Taylor first proposed a photonic ADC scheme based on a Mach-Zehnder modulator (MZM) array. In the scheme, the transfer function period of each modulator is different, so as to realize the quantization coding of different input signals. But the biggest disadvantage of this scheme is that the half-wave voltage of the modulator needs to be reduced by a multiple of 2. Due to the limitation of the manufacturing process, when the number of optical channels exceeds 4, it is difficult to realize the half-wave voltage of the modulator less than 1V. In order to avoid this problem, Stigwall proposed in 2005 to use the spatial MZ interference structure to realize the quantization coding of radio frequency signals. In this scheme, the phase modulator on one arm of the spatial interferometer modulates the analog signal and then spatially interferes with the optical signal of the other arm, and multiple photodetectors are integrated into a chip according to a certain spatial position to realize phase-shifted light quantization. However, the spatial light interference of the Stigwall scheme is easily affected by the environment, and the structure is complex, the insertion loss is large, and the technical implementation is difficult. In order to improve the stability of the system and better realize the phase-shifted optical quantization, the researchers proposed a series of coding quantization schemes, including the parallel MZM scheme; the photon quantization scheme using polarized light interference; the MZM scheme using unequal arm lengths; A quantization scheme for differential coding is implemented using a phase modulator and delay line interferometer. Phase-shifted optical quantization is the quantization and encoding of the input signal through different transfer functions with a constant phase difference. However, in the phase-shifted optical quantization technology, N optical channels can only achieve 2N quantization levels. When the number of optical channels is equal, the Taylor scheme can achieve uniform quantization of 2N quantization levels. Therefore, the low bit resolution of the system becomes the main limitation of the phase-shifted optical quantization scheme. In order to improve the bit accuracy of the photonic analog-to-digital conversion system, a scheme that uses multiple comparators to improve the bit accuracy of the system was proposed in 2009. In this scheme, a symmetric digital system (SNS) is used to connect multiple A comparator realizes the improvement of system bit accuracy. The number of comparators used in this scheme is large, which makes the system structure complex and is not conducive to integration. A cascade-based quantization scheme was proposed in 2014. In this scheme, the directional coupler array is used as the second-stage quantization, and the output power of the first-stage quantization is further quantized, thereby increasing the number of system quantization stages. However, the directional coupler array of this scheme needs special customization, and when the second-stage quantization bit resolution is increased, the inability to achieve uniform quantization leads to an increase in system quantization noise, thereby seriously reducing the system ENOB. In 2018, a quantization scheme using circuits to realize the linear combination of detection signals was proposed. This scheme uses logic circuits to linearly combine detection signals, equivalently to achieve the effect of increasing the number of channels. However, in this scheme, the bandwidth requirement of the logic electronic circuit is relatively large, and the system is complicated. In 2020, a serial flash quantization scheme is proposed, which uses dispersive elements to separate the pulses, thereby quantizing the input signal to obtain the serial output of the digital signal, thereby simplifying the system structure. However, this scheme can only work in the case of small signal modulation, and it is necessary to control the MZM bias at the quadrature point and the modulation depth is small to realize the linear intensity modulation of the input analog signal. Therefore, how to use a quantization scheme with a simple structure and easy implementation to improve the system bit accuracy is still a problem worthy of research.

针对以上问题,故,有必要对其进行改进。In view of the above problems, it is necessary to improve it.

发明内容SUMMARY OF THE INVENTION

本发明针对现有光子模数转换技术的缺陷,提出了一种基于加权调制曲线的光子模数转换方法及系统,通过将移相光量化技术与加权多波长采样脉冲相结合,利用加权调制曲线实现对输入信号的编码量化,极大地提高了光子模数转换系统的比特精度,同时系统结构简单易于实现。Aiming at the defects of the existing photonic analog-to-digital conversion technology, the present invention proposes a photonic analog-to-digital conversion method and system based on a weighted modulation curve. The coding and quantization of the input signal is realized, the bit precision of the photonic analog-to-digital conversion system is greatly improved, and the system structure is simple and easy to implement.

为了达到以上目的,本发明所采用的技术方案是:一种基于加权调制曲线的光子模数转换方法,包括以下步骤:In order to achieve the above purpose, the technical solution adopted in the present invention is: a photon analog-to-digital conversion method based on a weighted modulation curve, comprising the following steps:

S1.由加权多波长脉冲源发出的加权多波长采样光脉冲经过光分束器分成N路并行的多波长采样光脉冲;S1. The weighted multi-wavelength sampling optical pulse sent by the weighted multi-wavelength pulse source is divided into N parallel multi-wavelength sampling optical pulses through the optical beam splitter;

S2.所述N路并行的多波长采样光脉冲分别对第一马赫-曾德尔调制器、第二马赫-曾德尔调制器、第N马赫-曾德尔调制器中的模拟射频信号进行调制,输出N路调制信号;S2. The N parallel multi-wavelength sampling optical pulses modulate the analog radio frequency signals in the first Mach-Zehnder modulator, the second Mach-Zehnder modulator, and the Nth Mach-Zehnder modulator, respectively, and output N-way modulated signal;

S3.所述第一马赫-曾德尔调制器、第二马赫-曾德尔调制器以及第N马赫-曾德尔调制器输出N路光调制信号接入第一色散元件、第二色散元件以及第N色散元件,得到N路时域分离的已调脉冲信号;S3. The first Mach-Zehnder modulator, the second Mach-Zehnder modulator, and the Nth Mach-Zehnder modulator output N optical modulation signals and connect them to the first dispersion element, the second dispersion element, and the Nth dispersion element. Dispersion element to obtain N channels of time-domain separated modulated pulse signals;

S4.所述N路已调信号分别输入到光电转换器中进行光电转换后接入相应的比较器,通过和预先设定好的比较器判决阈值进行比较,当输入电压大于阈值时判决输出为“1”,否则输出为“0”,从而将模拟信号转换为数字信号。S4. The N-channel modulated signals are respectively input into the photoelectric converter for photoelectric conversion and then connected to the corresponding comparator. By comparing with the preset comparator judgment threshold, when the input voltage is greater than the threshold, the judgment output is "1", otherwise the output is "0", thereby converting the analog signal to a digital signal.

作为本发明的一种优选方案,所述加权多波长脉冲源发出的加权多波长采样光脉冲波长总数为M(M≥3),第i个波长的脉冲功率归一化Pi(i=1,2,...,M)表示为:As a preferred solution of the present invention, the total number of wavelengths of the weighted multi-wavelength sampling optical pulses emitted by the weighted multi-wavelength pulse source is M (M≥3), and the pulse power of the i-th wavelength is normalized P i (i=1 ,2,...,M) is expressed as:

Figure BDA0002868768600000031
Figure BDA0002868768600000031

作为本发明的一种优选方案,所述步骤S2中,模拟射频信号是由信号发生器产生并同步输入到第一马赫-曾德尔调制器、第二马赫-曾德尔调制器和第N(N≥3)马赫-曾德尔调制器中,模拟射频信号的峰峰值为Vπ(2NM-M+1)/(2NM)。As a preferred solution of the present invention, in the step S2, the analog radio frequency signal is generated by a signal generator and input to the first Mach-Zehnder modulator, the second Mach-Zehnder modulator and the Nth (Nth) synchronously. ≥3) In the Mach-Zehnder modulator, the peak-to-peak value of the analog RF signal is V π (2NM-M+1)/(2NM).

作为本发明的一种优选方案,所述第一马赫-曾德尔调制器、第二马赫-曾德尔调制器和第N马赫-曾德尔调制器输出的N路调制信号的初始相位

Figure BDA0002868768600000032
的表达式为:As a preferred solution of the present invention, the initial phases of the N modulated signals output by the first Mach-Zehnder modulator, the second Mach-Zehnder modulator and the Nth Mach-Zehnder modulator
Figure BDA0002868768600000032
The expression is:

Figure BDA0002868768600000033
Figure BDA0002868768600000033

作为本发明的一种优选方案,所述第一马赫-曾德尔调制器、第二马赫-曾德尔调制器和第N马赫-曾德尔调制器的N路调制信号的初始相位分别由第一直流电源、第二直流电源和第N直流电源提供偏置电压进行控制,以使N个调制器偏置电压Vbj表达式为:As a preferred solution of the present invention, the initial phases of the N modulated signals of the first Mach-Zehnder modulator, the second Mach-Zehnder modulator and the Nth Mach-Zehnder modulator are respectively determined by the first The current power supply, the second DC power supply and the Nth DC power supply provide bias voltages for control, so that the bias voltage V bj of the N modulators is expressed as:

Figure BDA0002868768600000034
Figure BDA0002868768600000034

作为本发明的一种优选方案,所述步骤S2中,所述第一马赫-曾德尔调制器、第二马赫-曾德尔调制器以及第N马赫-曾德尔调制器输出的光信号强度

Figure BDA0002868768600000035
的表达式为:As a preferred solution of the present invention, in the step S2, the optical signal intensities output by the first Mach-Zehnder modulator, the second Mach-Zehnder modulator and the Nth Mach-Zehnder modulator
Figure BDA0002868768600000035
The expression is:

Figure BDA0002868768600000036
Figure BDA0002868768600000036

其中,

Figure BDA0002868768600000037
代表输入模拟信号引入的相移。in,
Figure BDA0002868768600000037
Represents the phase shift introduced by the input analog signal.

作为本发明的一种优选方案,所述步骤S3中,所述第一色散元件、第二色散元件以及第N色散元件使输入的N路多波长重叠已调脉冲由于群速度色散效应发生走离,多波长脉冲在时域上分离并且与下一周期脉冲不重叠。As a preferred solution of the present invention, in the step S3, the first dispersion element, the second dispersion element and the Nth dispersion element cause the input N multi-wavelength overlapping modulated pulses to walk away due to the group velocity dispersion effect. , the multi-wavelength pulses are separated in the time domain and do not overlap with the next periodic pulse.

作为本发明的一种优选方案,所述步骤S4中,所述比较器阈值设定为输入脉冲最大功率的1/2,对比光电转换后的电信号与比较器阈值,当输入电压大于阈值时判决输出为“1”,否则输出为“0”,从而将模拟信号转换为数字信号。As a preferred solution of the present invention, in the step S4, the threshold of the comparator is set to 1/2 of the maximum power of the input pulse, and the electrical signal after photoelectric conversion is compared with the threshold of the comparator. When the input voltage is greater than the threshold The decision output is "1", otherwise the output is "0", thereby converting the analog signal into a digital signal.

一种基于加权调制曲线的光子模数转换系统,包括加权多波长脉冲源、光分束器、第一马赫-曾德尔调制器、第二马赫-曾德尔调制器、第N马赫-曾德尔调制器、信号发生器、第一直流电源、第二直流电源、第N直流电源、第一色散元件、第二色散元件、第N色散元件、第一光电探测器、第二光电探测器、第N光电探测器、第一比较器、第二比较器和第N比较器;所述加权多波长脉冲源用于发出多波长采样光脉冲,所述信号发生器用于产生模拟射频信号并同步输入到第一马赫-曾德尔调制器、第二马赫-曾德尔调制器和第N马赫-曾德尔调制器中,所述第一直流电源、第二直流电源和第N直流电源分别用于为第一马赫-曾德尔调制器、第二马赫-曾德尔调制器和第N马赫-曾德尔调制器提供偏置电压;所述多波长采样光脉冲经过光分束器分成N路采样脉冲,所述N路采样光脉冲分别进入第一马赫-曾德尔调制器、第二马赫-曾德尔调制器和第N马赫-曾德尔调制器同时对模拟射频信号进行调制,输出N路调制信号;所述N路调制信号分别经过第一色散元件、第二色散元件和第N色散元件后得到时域不重叠的已调脉冲信号,所述时域分离的已调信号分别输入到第一光电探测器、第二光电探测器、第N光电探测器中实现光电转换得到电信号,所述电信号分别输入到第一比较器、第二比较器和第N比较器中与阈值进行比较完成模拟信号到数字信号的转换。A photonic analog-to-digital conversion system based on a weighted modulation curve, comprising a weighted multi-wavelength pulse source, an optical beam splitter, a first Mach-Zehnder modulator, a second Mach-Zehnder modulator, and an Nth Mach-Zehnder modulator device, signal generator, first DC power supply, second DC power supply, Nth DC power supply, first dispersion element, second dispersion element, Nth dispersion element, first photodetector, second photodetector, N photodetectors, first comparators, second comparators and Nth comparators; the weighted multi-wavelength pulse source is used to emit multi-wavelength sampling light pulses, and the signal generator is used to generate analog radio frequency signals and synchronously input them to In the first Mach-Zehnder modulator, the second Mach-Zehnder modulator, and the Nth Mach-Zehnder modulator, the first DC power supply, the second DC power supply, and the Nth DC power supply are respectively used for the A Mach-Zehnder modulator, a second Mach-Zehnder modulator, and an Nth Mach-Zehnder modulator provide bias voltages; the multi-wavelength sampling optical pulse is divided into N sampling pulses through an optical beam splitter, and the N channels of sampled optical pulses respectively enter the first Mach-Zehnder modulator, the second Mach-Zehnder modulator and the Nth Mach-Zehnder modulator to modulate the analog radio frequency signal at the same time, and output N channels of modulated signals; After the modulated signal passes through the first dispersive element, the second dispersive element and the Nth dispersive element, respectively, a modulated pulse signal with non-overlapping time domain is obtained, and the modulated signal separated in the time domain is respectively input to the first photodetector, the second The second photodetector and the Nth photodetector realize photoelectric conversion to obtain electrical signals, and the electrical signals are respectively input to the first comparator, the second comparator and the Nth comparator to compare with the threshold to complete the analog signal to digital signal. conversion.

本发明的有益效果是:与现有技术相比,本发明提出的一种基于加权调制曲线的光子模数转换方法及系统,通过将移相光量化技术与加权多波长采样脉冲相结合,利用加权调制曲线实现对输入信号的编码量化,极大地提高了光子模数转换系统的比特精度,同时系统结构简单易于实现。The beneficial effects of the present invention are: compared with the prior art, a photonic analog-to-digital conversion method and system based on a weighted modulation curve proposed by the present invention, by combining the phase-shifted optical quantization technology with the weighted multi-wavelength sampling pulse, uses The weighted modulation curve realizes the coding and quantization of the input signal, which greatly improves the bit precision of the photonic analog-to-digital conversion system, and the system structure is simple and easy to implement.

附图说明Description of drawings

图1是本发明基于加权调制曲线的光子模数转换系统及方法实施例一的结构示意图;1 is a schematic structural diagram of Embodiment 1 of a photonic analog-to-digital conversion system and method based on a weighted modulation curve of the present invention;

图2是本发明基于加权调制曲线的光子模数转换系统及方法实施例一的调制曲线原理图;2 is a schematic diagram of a modulation curve of the first embodiment of the photonic analog-to-digital conversion system and method based on a weighted modulation curve of the present invention;

图中附图标记:加权多波长脉冲源1,光分束器2,第一马赫-曾德尔调制器3,第二马赫-曾德尔调制器4,第三马赫-曾德尔调制器5,信号发生器6,第一直流电源7,第二直流电源8,第三直流电源9,第一色散元件10,第二色散元件11,第三色散元件12,第一光电探测器13,第二光电探测器14,第三光电探测器15,第一比较器16,第二比较器17,第三比较器18。Reference signs in the figure: weighted multi-wavelength pulse source 1, optical beam splitter 2, first Mach-Zehnder modulator 3, second Mach-Zehnder modulator 4, third Mach-Zehnder modulator 5, signal Generator 6, first DC power source 7, second DC power source 8, third DC power source 9, first dispersive element 10, second dispersive element 11, third dispersive element 12, first photodetector 13, second Photodetector 14 , third photodetector 15 , first comparator 16 , second comparator 17 , third comparator 18 .

具体实施方式Detailed ways

下面将结合附图对本发明的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。The technical solutions of the present invention will be clearly and completely described below with reference to the accompanying drawings. Obviously, the described embodiments are a part of the embodiments of the present invention, but not all of the embodiments. Based on the embodiments of the present invention, all other embodiments obtained by those of ordinary skill in the art without creative efforts shall fall within the protection scope of the present invention.

在本发明的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以具体情况理解上述术语在本发明中的具体含义。In the description of the present invention, it should be noted that the terms "installed", "connected" and "connected" should be understood in a broad sense, unless otherwise expressly specified and limited, for example, it may be a fixed connection or a detachable connection Connection, or integral connection; can be mechanical connection, can also be electrical connection; can be directly connected, can also be indirectly connected through an intermediate medium, can be internal communication between two elements. For those of ordinary skill in the art, the specific meanings of the above terms in the present invention can be understood in specific situations.

实施例一:Example 1:

如图1所示,本发明提出的一种基于加权调制曲线的光子模数转换系统,包括加权多波长脉冲源1、光分束器2、第一马赫-曾德尔调制器3、第二马赫-曾德尔调制器4、第三马赫-曾德尔调制器5、信号发生器6、第一直流电源7、第二直流电源8、第三直流电源9、第一色散元件10、第二色散元件11、第三色散元件12、第一光电探测器13、第二光电探测器14、第三光电探测器15、第一比较器16、第二比较器17和第三比较器18;所述加权多波长脉冲源1用于发出多波长采样光脉冲,所述信号发生器6用于产生模拟射频信号并同步输入到第一马赫-曾德尔调制器3、第二马赫-曾德尔调制器4和第三马赫-曾德尔调制器5中,所述第一直流电源7、第二直流电源8和第三直流电源9分别用于为第一马赫-曾德尔调制器3、第二马赫-曾德尔调制器4和第三马赫-曾德尔调制器5提供偏置电压;所述多波长采样光脉冲经过光分束器2分成三路采样脉冲,所述三路采样光脉冲分别进入第一马赫-曾德尔调制器3、第二马赫-曾德尔调制器4和第三马赫-曾德尔调制器5同时对模拟射频信号进行调制,输出三路调制信号;所述三路调制信号分别经过第一色散元件10、第二色散元件11和第三色散元件12后得到时域不重叠的已调脉冲信号,所述时域分离的已调信号分别输入到第一光电探测器13、第二光电探测器14、第三光电探测器15中实现光电转换得到电信号,所述电信号分别输入到第一比较器16、第二比较器17和第三比较器18中与阈值进行比较完成模拟信号到数字信号的转换。As shown in FIG. 1, a photonic analog-to-digital conversion system based on a weighted modulation curve proposed by the present invention includes a weighted multi-wavelength pulse source 1, an optical beam splitter 2, a first Mach-Zehnder modulator 3, a second Mach -Zehnder modulator 4, third Mach-Zehnder modulator 5, signal generator 6, first DC power supply 7, second DC power supply 8, third DC power supply 9, first dispersive element 10, second dispersion element 11, third dispersive element 12, first photodetector 13, second photodetector 14, third photodetector 15, first comparator 16, second comparator 17, and third comparator 18; the The weighted multi-wavelength pulse source 1 is used for sending out multi-wavelength sampling optical pulses, and the signal generator 6 is used for generating an analog radio frequency signal and synchronously inputting it to the first Mach-Zehnder modulator 3 and the second Mach-Zehnder modulator 4 and the third Mach-Zehnder modulator 5, the first DC power supply 7, the second DC power supply 8 and the third DC power supply 9 are respectively used for the first Mach-Zehnder modulator 3, the second Mach-Zehnder The Zehnder modulator 4 and the third Mach-Zehnder modulator 5 provide bias voltages; the multi-wavelength sampling optical pulses are divided into three sampling pulses by the optical beam splitter 2, and the three sampling optical pulses enter the first sampling pulse respectively. The Mach-Zehnder modulator 3, the second Mach-Zehnder modulator 4 and the third Mach-Zehnder modulator 5 simultaneously modulate the analog radio frequency signal to output three modulated signals; A dispersive element 10, a second dispersive element 11 and a third dispersive element 12 obtain modulated pulse signals with non-overlapping time domains, and the modulated signals separated in time domains are respectively input to the first photodetector 13 and the second photoelectric detector. Photoelectric conversion is achieved in the detector 14 and the third photodetector 15 to obtain electrical signals, which are respectively input to the first comparator 16, the second comparator 17 and the third comparator 18 for comparison with the threshold to complete the analog signal conversion to digital signals.

本发明提出的一种基于加权调制曲线的光子模数转换方法及系统,通过将移相光量化技术与加权多波长采样脉冲相结合,利用加权调制曲线实现对输入信号的编码量化,极大地提高了光子模数转换系统的比特精度,同时系统结构简单易于实现。A photonic analog-to-digital conversion method and system based on a weighted modulation curve proposed by the present invention, by combining the phase-shifted optical quantization technology with the weighted multi-wavelength sampling pulse, the weighted modulation curve is used to realize the coding and quantization of the input signal, which greatly improves the The bit precision of the photonic analog-to-digital conversion system is improved, and the system structure is simple and easy to implement.

具体的,本实例提供一种基于加权调制曲线的光子模数转换方法,具体如下:Specifically, this example provides a photon analog-to-digital conversion method based on a weighted modulation curve, as follows:

如图1所述,以4-bit光子模数转换系统为例。As shown in Figure 1, a 4-bit photonic analog-to-digital conversion system is taken as an example.

S1.由加权多波长脉冲源发出的加权多波长采样光脉冲经过光分束器分成三路并行的多波长采样光脉冲;S1. The weighted multi-wavelength sampling optical pulse sent by the weighted multi-wavelength pulse source is divided into three parallel multi-wavelength sampling optical pulses through the optical beam splitter;

S2.所述三路并行的多波长采样光脉冲分别对第一马赫-曾德尔调制器、第二马赫-曾德尔调制器、第三马赫-曾德尔调制器中的模拟射频信号进行调制,输出三路调制信号;S2. The three parallel multi-wavelength sampling optical pulses modulate the analog radio frequency signals in the first Mach-Zehnder modulator, the second Mach-Zehnder modulator, and the third Mach-Zehnder modulator, respectively, and output Three-way modulation signal;

S3.所述第一马赫-曾德尔调制器、第二马赫-曾德尔调制器以及第三马赫-曾德尔调制器输出三路光调制信号接入第一色散元件、第二色散元件以及第三色散元件,得到三路时域分离的已调脉冲信号;S3. The first Mach-Zehnder modulator, the second Mach-Zehnder modulator and the third Mach-Zehnder modulator output three-way optical modulation signals and connect to the first dispersion element, the second dispersion element and the third Dispersive element to obtain three modulated pulse signals separated in time domain;

S4.所述三路已调信号每路信号分别输入到光电转换器中进行光电转换后接入相应的比较器,通过和预先设定好的比较器判决阈值进行比较,当输入电压大于阈值时判决输出为“1”,否则输出为“0”,从而将模拟信号转换为数字信号。S4. Each signal of the three modulated signals is respectively input into the photoelectric converter for photoelectric conversion and then connected to the corresponding comparator. By comparing with the preset comparator judgment threshold, when the input voltage is greater than the threshold The decision output is "1", otherwise the output is "0", thereby converting the analog signal into a digital signal.

图1所示为一种基于加权调制曲线的光子模数转换方法的结构示意图,包括加权多波长脉冲源1、光分束器2、第一马赫-曾德尔调制器3、第二马赫-曾德尔调制器4、第三马赫-曾德尔调制器5、信号发生器6、第一直流电源7、第二直流电源8、第三直流电源9、第一色散元件10、第二色散元件11、第三色散元件12、第一光电探测器13、第二光电探测器14、第三光电探测器15、第一比较器16、第二比较器17、第三比较器18。Figure 1 shows a schematic structural diagram of a photonic analog-to-digital conversion method based on a weighted modulation curve, including a weighted multi-wavelength pulse source 1, an optical beam splitter 2, a first Mach-Zehnder modulator 3, a second Mach-Zehnder modulator 3, and a second Mach-Zehnder modulator. Del modulator 4, third Mach-Zehnder modulator 5, signal generator 6, first DC power supply 7, second DC power supply 8, third DC power supply 9, first dispersion element 10, second dispersion element 11 , a third dispersive element 12 , a first photodetector 13 , a second photodetector 14 , a third photodetector 15 , a first comparator 16 , a second comparator 17 , and a third comparator 18 .

在步骤S1中,由加权多波长脉冲源发出的加权多波采样光脉冲经过光分束器分成三路并行的多波长采样光脉冲;In step S1, the weighted multi-wavelength sampling optical pulse sent by the weighted multi-wavelength pulse source is divided into three parallel multi-wavelength sampling optical pulses through the optical beam splitter;

加权多波长脉冲源1与第一马赫-曾德尔调制器3、第二马赫-曾德尔调制器4、第三马赫-曾德尔调制器5通过光分束器2相连。The weighted multi-wavelength pulse source 1 is connected with the first Mach-Zehnder modulator 3 , the second Mach-Zehnder modulator 4 , and the third Mach-Zehnder modulator 5 through an optical beam splitter 2 .

加权多波长脉冲源1发出的加权多波长采样光脉冲波长总数为3,第i个波长的脉冲功率归一化Pi(i=1,2,3)表示为:The total number of wavelengths of the weighted multi-wavelength sampling optical pulses emitted by the weighted multi-wavelength pulse source 1 is 3, and the normalized P i (i=1, 2, 3) of the pulse power of the i-th wavelength is expressed as:

Figure BDA0002868768600000061
Figure BDA0002868768600000061

在步骤S2中,所述三路并行的多波长采样光脉冲分别对第一马赫-曾德尔调制器、第二马赫-曾德尔调制器、第三马赫-曾德尔调制器中的模拟射频信号进行调制,输出三路调制信号;In step S2, the three parallel multi-wavelength sampling optical pulses are respectively performed on the analog radio frequency signals in the first Mach-Zehnder modulator, the second Mach-Zehnder modulator, and the third Mach-Zehnder modulator. Modulation, output three-way modulation signal;

信号发生器6与第一马赫-曾德尔调制器3、第二马赫-曾德尔调制器4、第三马赫-曾德尔调制器5相连;第一直流电源7、第二直流电源8和第三直流电源9分别连接第一马赫-曾德尔调制器3、第二马赫-曾德尔调制器4、第三马赫-曾德尔调制器5。The signal generator 6 is connected with the first Mach-Zehnder modulator 3, the second Mach-Zehnder modulator 4, and the third Mach-Zehnder modulator 5; The three DC power sources 9 are respectively connected to the first Mach-Zehnder modulator 3 , the second Mach-Zehnder modulator 4 , and the third Mach-Zehnder modulator 5 .

信号发生器6产生的模拟射频信号同步输入到第一马赫-曾德尔调制器3、第二马赫-曾德尔调制器4和第三马赫-曾德尔调制器5中,,模拟射频信号的峰峰值为8Vπ/9;第一马赫-曾德尔调制器3、第二马赫-曾德尔调制器4和第三马赫-曾德尔调制器5输出的三路调制信号的初始相位

Figure BDA0002868768600000071
的表达式为:The analog radio frequency signal generated by the signal generator 6 is synchronously input into the first Mach-Zehnder modulator 3, the second Mach-Zehnder modulator 4 and the third Mach-Zehnder modulator 5, and the peak-to-peak value of the analog radio frequency signal is is 8V π /9; the initial phase of the three-way modulation signal output by the first Mach-Zehnder modulator 3, the second Mach-Zehnder modulator 4 and the third Mach-Zehnder modulator 5
Figure BDA0002868768600000071
The expression is:

Figure BDA0002868768600000072
Figure BDA0002868768600000072

第一马赫-曾德尔调制器3、第二马赫-曾德尔调制器4和第三马赫-曾德尔调制器5输出的三路调制信号初始相位分别由第一直流电源7、第二直流电源8和第三直流电源9提供偏置电压进行控制,以使三个调制器偏置电压Vbj表达式为:The initial phases of the three modulated signals output by the first Mach-Zehnder modulator 3, the second Mach-Zehnder modulator 4 and the third Mach-Zehnder modulator 5 are respectively supplied by the first DC power supply 7 and the second DC power supply. 8 and the third DC power supply 9 provide bias voltages for control, so that the three modulator bias voltages V bj are expressed as:

Figure BDA0002868768600000073
Figure BDA0002868768600000073

第一马赫-曾德尔调制器3、第二马赫-曾德尔调制器4以及第三马赫-曾德尔调制器5输出的光信号强度

Figure BDA0002868768600000074
的表达式为:The optical signal intensity output by the first Mach-Zehnder modulator 3, the second Mach-Zehnder modulator 4 and the third Mach-Zehnder modulator 5
Figure BDA0002868768600000074
The expression is:

Figure BDA0002868768600000075
Figure BDA0002868768600000075

其中,

Figure BDA0002868768600000076
代表输入模拟信号引入的相移。in,
Figure BDA0002868768600000076
Represents the phase shift introduced by the input analog signal.

在步骤S3中,第一马赫-曾德尔调制器、第二马赫-曾德尔调制器以及第三马赫-曾德尔调制器输出三路光调制信号接入第一色散元件、第二色散元件以及第三色散元件,得到三路时域分离的已调脉冲信号;In step S3, the first Mach-Zehnder modulator, the second Mach-Zehnder modulator, and the third Mach-Zehnder modulator output three-way optical modulation signals, which are connected to the first dispersion element, the second dispersion element, and the third dispersion element. Three dispersive elements to obtain three modulated pulse signals separated in time domain;

第一马赫-曾德尔调制器3、第二马赫-曾德尔调制器4、第三马赫-曾德尔调制器5分别连接第一色散元件10、第二色散元件11以及第三色散元件12。The first Mach-Zehnder modulator 3 , the second Mach-Zehnder modulator 4 , and the third Mach-Zehnder modulator 5 are respectively connected to the first dispersion element 10 , the second dispersion element 11 and the third dispersion element 12 .

第一色散元件10、第二色散元件11以及第三色散元件12使输入的三路多波长重叠已调脉冲由于群速度色散效应发生走离,多波长脉冲在时域上分离并且与下一周期脉冲不重叠。The first dispersive element 10, the second dispersive element 11 and the third dispersive element 12 cause the input three-way multi-wavelength overlapping modulated pulses to walk away due to the group velocity dispersion effect, and the multi-wavelength pulses are separated in the time domain and are separated from the next cycle. The pulses do not overlap.

在步骤S4中,三路已调信号每路信号分别输入到光电转换器中进行光电转换后接入相应的比较器,通过和预先设定好的比较器判决阈值进行比较,当输入电压大于阈值时判决输出为“1”,否则输出为“0”,从而将模拟信号转换为数字信号。In step S4, each signal of the three modulated signals is respectively input into the photoelectric converter for photoelectric conversion and then connected to the corresponding comparator. By comparing with the preset comparator judgment threshold, when the input voltage is greater than the threshold When the judgment output is "1", otherwise the output is "0", thereby converting the analog signal into a digital signal.

第一比较器16、第二比较器17和第三比较器18通过第一光电探测器13、第二光电探测器14和第三光电探测器15与第一色散元件10、第二色散元件11以及第三色散元件12相连。The first comparator 16 , the second comparator 17 and the third comparator 18 communicate with the first dispersive element 10 and the second dispersive element 11 through the first photodetector 13 , the second photodetector 14 and the third photodetector 15 and the third dispersive element 12 is connected.

第一比较器16、第二比较器17和第三比较器18的阈值都设置为输入脉冲最大功率的二分之一,将光电转换后的电信号和比较器阈值进行比较,当输入电压大于阈值时判决输出为“1”,否则输出为“0”,从而将模拟信号转换为数字信号。The thresholds of the first comparator 16, the second comparator 17 and the third comparator 18 are all set to one-half of the maximum power of the input pulse, and the photoelectrically converted electrical signal is compared with the comparator threshold. When the input voltage is greater than When the threshold is determined, the output is "1", otherwise the output is "0", thereby converting the analog signal into a digital signal.

图2为调制曲线原理图。图中表示以波长总数为三的加权多波长脉冲作为采样脉冲,三个马赫曾德尔调制器对应的传递函数曲线以及量化编码结果。其横坐标表示由输入模拟信号引入的相移量,纵坐标表示光信号强度的归一化输出;为了实现均匀量化,加权多波长脉冲的功率比P1:P2:P3为1:0.7451:0.6087,比较器的归一化阈值均设置为0.5。当信号强度大于阈值时,比较器输出“1”;当信号小于阈值时,比较器输出“0”。判决完成后得到模拟信号转换成的数字信号,如图2下方所示。输出总共有16个码字,因此光子ADC系统的比特精度为4bit。即利用波长总数为M的加权多波长脉冲作为采样源,输入到N个调制器中可实现的总量化技术为L=2NM-M+1,光子模数转换系统可实现的比特分辨率为B=log2(2NM-M+1)。Figure 2 is a schematic diagram of the modulation curve. The figure shows the weighted multi-wavelength pulses with a total of three wavelengths as the sampling pulses, the corresponding transfer function curves of the three Mach-Zehnder modulators, and the quantized coding results. The abscissa represents the phase shift introduced by the input analog signal, and the ordinate represents the normalized output of the optical signal intensity; in order to achieve uniform quantization, the power ratio of the weighted multi-wavelength pulses P 1 :P 2 :P 3 is 1:0.7451 : 0.6087, the normalized thresholds of the comparators are all set to 0.5. When the signal strength is greater than the threshold, the comparator outputs "1"; when the signal is less than the threshold, the comparator outputs "0". After the judgment is completed, the digital signal converted from the analog signal is obtained, as shown in the lower part of Figure 2. The output has a total of 16 code words, so the bit accuracy of the photonic ADC system is 4 bits. That is, using weighted multi-wavelength pulses with a total number of M wavelengths as the sampling source, the total quantization technology that can be input into N modulators is L=2NM-M+1, and the achievable bit resolution of the photonic analog-to-digital conversion system is B=log 2 (2NM-M+1).

本实例提出的一种基于加权调制曲线的光子模数转换方法及系统,通过结合移相光量化技术与加权多波长采样脉冲,利用加权调制曲线实现对输入信号的编码量化,极大地提高了光子模数转换系统的比特精度,同时系统结构简单易于实现。A photonic analog-to-digital conversion method and system based on a weighted modulation curve proposed in this example, by combining phase-shifted optical quantization technology and weighted multi-wavelength sampling pulses, the weighted modulation curve is used to realize the encoding and quantization of the input signal, which greatly improves the photonic performance. The bit precision of the analog-to-digital conversion system, and the system structure is simple and easy to implement.

对所公开的实施例的上述说明,使本领域专业技术人员能够实现或使用本发明。对这些实施例的多种修改对本领域的专业技术人员来说将是显而易见的,本文中所定义的一般原理可以在不脱离本发明的精神或范围的情况下,在其它实施例中实现;因此,本发明将不会被限制于本文所示的这些实施例,而是要符合与本文所公开的原理和新颖特点相一致的最宽的范围。The above description of the disclosed embodiments enables any person skilled in the art to make or use the present invention. Various modifications to these embodiments will be readily apparent to those skilled in the art, and the general principles defined herein may be implemented in other embodiments without departing from the spirit or scope of the invention; thus , the present invention is not to be limited to the embodiments shown herein, but is to be accorded the widest scope consistent with the principles and novel features disclosed herein.

尽管本文较多地使用了图中附图标记:加权多波长脉冲源1,光分束器2,第一马赫-曾德尔调制器3,第二马赫-曾德尔调制器4,第三马赫-曾德尔调制器5,信号发生器6,第一直流电源7,第二直流电源8,第三直流电源9,第一色散元件10,第二色散元件11,第三色散元件12,第一光电探测器13,第二光电探测器14,第三光电探测器15,第一比较器16,第二比较器17,第三比较器18等术语,但并不排除使用其它术语的可能性。使用这些术语仅仅是为了更方便地描述和解释本发明的本质;把它们解释成任何一种附加的限制都是与本发明精神相违背的。Although the reference numerals in the figure are used more in this paper: weighted multi-wavelength pulse source 1, optical beam splitter 2, first Mach-Zehnder modulator 3, second Mach-Zehnder modulator 4, third Mach-Zehnder modulator Zehnder modulator 5, signal generator 6, first DC power source 7, second DC power source 8, third DC power source 9, first dispersive element 10, second dispersive element 11, third dispersive element 12, first The terms photodetector 13, second photodetector 14, third photodetector 15, first comparator 16, second comparator 17, third comparator 18, etc., do not exclude the possibility of using other terms. These terms are used only to more conveniently describe and explain the essence of the present invention; it is contrary to the spirit of the present invention to interpret them as any kind of additional limitation.

Claims (9)

1.一种基于加权调制曲线的光子模数转换方法,其特征在于:包括以下步骤:1. a photon analog-to-digital conversion method based on a weighted modulation curve, is characterized in that: comprise the following steps: S1.由加权多波长脉冲源发出的加权多波长采样光脉冲经过光分束器分成N路并行的多波长采样光脉冲;S1. The weighted multi-wavelength sampling optical pulse sent by the weighted multi-wavelength pulse source is divided into N parallel multi-wavelength sampling optical pulses through the optical beam splitter; S2.所述N路并行的多波长采样光脉冲分别对第一马赫-曾德尔调制器、第二马赫-曾德尔调制器、第N马赫-曾德尔调制器中的模拟射频信号进行调制,输出N路调制信号,N≥3;S2. The N parallel multi-wavelength sampling optical pulses modulate the analog radio frequency signals in the first Mach-Zehnder modulator, the second Mach-Zehnder modulator, and the Nth Mach-Zehnder modulator, respectively, and output N modulated signals, N≥3; S3.所述第一马赫-曾德尔调制器、第二马赫-曾德尔调制器以及第N马赫-曾德尔调制器输出N路光调制信号接入第一色散元件、第二色散元件以及第N色散元件,得到N路时域分离的已调脉冲信号;S3. The first Mach-Zehnder modulator, the second Mach-Zehnder modulator, and the Nth Mach-Zehnder modulator output N optical modulation signals and connect them to the first dispersion element, the second dispersion element, and the Nth dispersion element. Dispersion element to obtain N channels of time-domain separated modulated pulse signals; S4.所述N路已调信号分别输入到光电转换器中进行光电转换后接入相应的比较器,通过和预先设定好的比较器判决阈值进行比较,当输入电压大于阈值时判决输出为“1”,否则输出为“0”,从而将模拟信号转换为数字信号。S4. The N-channel modulated signals are respectively input into the photoelectric converter for photoelectric conversion and then connected to the corresponding comparator. By comparing with the preset comparator judgment threshold, when the input voltage is greater than the threshold, the judgment output is "1", otherwise the output is "0", thereby converting the analog signal to a digital signal. 2.根据权利要求1所述的一种基于加权调制曲线的光子模数转换方法,其特征在于:所述加权多波长脉冲源发出的加权多波长采样光脉冲波长总数为M,M≥3,第i个波长的脉冲功率归一化Pi,(i=1,2,...,M),表示为:2. a kind of photon analog-to-digital conversion method based on weighted modulation curve according to claim 1 is characterized in that: the total number of wavelengths of the weighted multi-wavelength sampling optical pulses sent by the weighted multi-wavelength pulse source is M, and M≥3, The pulse power of the i-th wavelength is normalized P i , (i=1,2,...,M), expressed as:
Figure FDA0003512487820000011
Figure FDA0003512487820000011
3.根据权利要求1所述的一种基于加权调制曲线的光子模数转换方法,其特征在于:所述步骤S2中,模拟射频信号是由信号发生器产生并同步输入到第一马赫-曾德尔调制器、第二马赫-曾德尔调制器和第N马赫-曾德尔调制器中,N≥3,模拟射频信号的峰峰值为Vπ(2NM-M+1)/(2NM)。3. a kind of photon analog-to-digital conversion method based on weighted modulation curve according to claim 1, is characterized in that: in described step S2, the analog radio frequency signal is produced by the signal generator and input to the first Mach-Zeng synchronously In the Del modulator, the second Mach-Zehnder modulator and the Nth Mach-Zehnder modulator, N≥3, the peak-to-peak value of the analog radio frequency signal is V π (2NM-M+1)/(2NM). 4.根据权利要求3所述的一种基于加权调制曲线的光子模数转换方法,其特征在于:所述第一马赫-曾德尔调制器、第二马赫-曾德尔调制器和第N马赫-曾德尔调制器输出的N路调制信号的初始相位
Figure FDA0003512487820000012
的表达式为:
4. A photon analog-to-digital conversion method based on a weighted modulation curve according to claim 3, characterized in that: the first Mach-Zehnder modulator, the second Mach-Zehnder modulator and the Nth Mach-Zehnder modulator The initial phase of the N-channel modulated signal output by the Zehnder modulator
Figure FDA0003512487820000012
The expression is:
Figure FDA0003512487820000013
Figure FDA0003512487820000013
5.根据权利要求4所述的一种基于加权调制曲线的光子模数转换方法,其特征在于:所述第一马赫-曾德尔调制器、第二马赫-曾德尔调制器和第N马赫-曾德尔调制器的N路调制信号的初始相位分别由第一直流电源、第二直流电源和第N直流电源提供偏置电压进行控制,以使N个调制器偏置电压Vbj表达式为:5. A photonic analog-to-digital conversion method based on a weighted modulation curve according to claim 4, characterized in that: the first Mach-Zehnder modulator, the second Mach-Zehnder modulator and the Nth Mach-Zehnder modulator The initial phases of the N-channel modulation signals of the Zehnder modulator are controlled by the bias voltages provided by the first DC power supply, the second DC power supply, and the Nth DC power supply, respectively, so that the bias voltages V bj of the N modulators are expressed as :
Figure FDA0003512487820000021
Figure FDA0003512487820000021
6.根据权利要求1所述的一种基于加权调制曲线的光子模数转换方法,其特征在于:所述步骤S2中,所述第一马赫-曾德尔调制器、第二马赫-曾德尔调制器以及第N马赫-曾德尔调制器输出的光信号强度
Figure FDA0003512487820000022
的表达式为:
6 . The photonic analog-to-digital conversion method based on a weighted modulation curve according to claim 1 , wherein: in the step S2 , the first Mach-Zehnder modulator and the second Mach-Zehnder modulation and the optical signal intensity output by the Nth Mach-Zehnder modulator
Figure FDA0003512487820000022
The expression is:
Figure FDA0003512487820000023
Figure FDA0003512487820000023
其中,
Figure FDA0003512487820000024
代表输入模拟信号引入的相移。
in,
Figure FDA0003512487820000024
Represents the phase shift introduced by the input analog signal.
7.根据权利要求1所述的一种基于加权调制曲线的光子模数转换方法,其特征在于:所述步骤S3中,所述第一色散元件、第二色散元件以及第N色散元件使输入的N路多波长重叠已调脉冲由于群速度色散效应发生走离,多波长脉冲在时域上分离并且与下一周期脉冲不重叠。7 . The photonic analog-to-digital conversion method based on a weighted modulation curve according to claim 1 , wherein in the step S3 , the first dispersion element, the second dispersion element and the Nth dispersion element make the input The N-way multi-wavelength overlapping modulated pulses walk away due to the group velocity dispersion effect, and the multi-wavelength pulses are separated in the time domain and do not overlap with the next periodic pulse. 8.根据权利要求1所述的一种基于加权调制曲线的光子模数转换方法,其特征在于:所述步骤S4中,所述比较器判决阈值设定为输入脉冲最大功率的1/2,对比光电转换后的电信号与比较器阈值,当输入电压大于阈值时判决输出为“1”,否则输出为“0”,从而将模拟信号转换为数字信号。8. a kind of photon analog-to-digital conversion method based on weighted modulation curve according to claim 1, is characterized in that: in described step S4, described comparator judgment threshold is set as 1/2 of the maximum power of input pulse, Comparing the electrical signal after photoelectric conversion with the threshold of the comparator, when the input voltage is greater than the threshold, the judgment output is "1", otherwise the output is "0", thereby converting the analog signal into a digital signal. 9.一种基于加权调制曲线的光子模数转换系统,其特征在于,包括加权多波长脉冲源(1)、光分束器(2)、第一马赫-曾德尔调制器(3)、第二马赫-曾德尔调制器(4)、第N马赫-曾德尔调制器(5)、信号发生器(6)、第一直流电源(7)、第二直流电源(8)、第N直流电源(9)、第一色散元件(10)、第二色散元件(11)、第N色散元件(12)、第一光电探测器(13)、第二光电探测器(14)、第N光电探测器(15)、第一比较器(16)、第二比较器(17)和第N比较器(18);所述加权多波长脉冲源(1)用于发出多波长采样光脉冲,所述信号发生器(6)用于产生模拟射频信号并同步输入到第一马赫-曾德尔调制器(3)、第二马赫-曾德尔调制器(4)和第N马赫-曾德尔调制器(5)中,所述第一直流电源(7)、第二直流电源(8)和第N直流电源(9)分别用于为第一马赫-曾德尔调制器(3)、第二马赫-曾德尔调制器(4)和第N马赫-曾德尔调制器(5)提供偏置电压;所述多波长采样光脉冲经过光分束器(2)分成N路采样脉冲,所述N路采样光脉冲分别进入第一马赫-曾德尔调制器(3)、第二马赫-曾德尔调制器(4)和第N马赫-曾德尔调制器(5)同时对模拟射频信号进行调制,输出N路调制信号;所述N路调制信号分别经过第一色散元件(10)、第二色散元件(11)和第N色散元件(12)后得到时域分离的已调脉冲信号,所述时域分离的已调信号分别输入到第一光电探测器(13)、第二光电探测器(14)、第N光电探测器(15)中实现光电转换得到电信号,所述电信号分别输入到第一比较器(16)、第二比较器(17)和第N比较器(18)中与阈值进行比较完成模拟信号到数字信号的转换;N≥3。9. A photonic analog-to-digital conversion system based on a weighted modulation curve, characterized in that it comprises a weighted multi-wavelength pulse source (1), an optical beam splitter (2), a first Mach-Zehnder modulator (3), a first Mach-Zehnder modulator (3), a Two Mach-Zehnder modulators (4), Nth Mach-Zehnder modulators (5), signal generators (6), first DC power supply (7), second DC power supply (8), Nth DC power supply Power supply (9), first dispersion element (10), second dispersion element (11), Nth dispersion element (12), first photodetector (13), second photodetector (14), Nth photoelectric a detector (15), a first comparator (16), a second comparator (17) and an Nth comparator (18); the weighted multi-wavelength pulse source (1) is used for emitting multi-wavelength sampling light pulses, so The signal generator (6) is used to generate an analog radio frequency signal and synchronously input it to the first Mach-Zehnder modulator (3), the second Mach-Zehnder modulator (4) and the Nth Mach-Zehnder modulator ( 5), the first DC power supply (7), the second DC power supply (8), and the Nth DC power supply (9) are respectively used for the first Mach-Zehnder modulator (3), the second Mach-Zehnder modulator (3), and the second Mach-Zehnder modulator (3). The Zehnder modulator (4) and the Nth Mach-Zehnder modulator (5) provide a bias voltage; the multi-wavelength sampling optical pulse is divided into N sampling pulses by the optical beam splitter (2), and the N sampling pulses are divided into N sampling pulses. The optical pulses respectively enter the first Mach-Zehnder modulator (3), the second Mach-Zehnder modulator (4) and the Nth Mach-Zehnder modulator (5) to modulate the analog radio frequency signal at the same time, and output N channels Modulated signal; the N-channel modulated signals respectively pass through the first dispersion element (10), the second dispersion element (11) and the Nth dispersion element (12) to obtain time-domain separated modulated pulse signals, the time-domain separation The modulated signals are respectively input to the first photodetector (13), the second photodetector (14), and the Nth photodetector (15) to achieve photoelectric conversion to obtain electrical signals, which are respectively input to the first photodetector (14) and the Nth photodetector (15). The comparator (16), the second comparator (17) and the Nth comparator (18) compare with the threshold to complete the conversion of the analog signal to the digital signal; N≥3.
CN202011600799.XA 2020-12-29 2020-12-29 A photonic analog-to-digital conversion method and system based on weighted modulation curve Active CN112684650B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011600799.XA CN112684650B (en) 2020-12-29 2020-12-29 A photonic analog-to-digital conversion method and system based on weighted modulation curve

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011600799.XA CN112684650B (en) 2020-12-29 2020-12-29 A photonic analog-to-digital conversion method and system based on weighted modulation curve

Publications (2)

Publication Number Publication Date
CN112684650A CN112684650A (en) 2021-04-20
CN112684650B true CN112684650B (en) 2022-06-10

Family

ID=75454364

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011600799.XA Active CN112684650B (en) 2020-12-29 2020-12-29 A photonic analog-to-digital conversion method and system based on weighted modulation curve

Country Status (1)

Country Link
CN (1) CN112684650B (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113238428B (en) * 2021-04-28 2022-08-23 杭州电子科技大学 High-speed photon digital-to-analog conversion method based on dual-drive electro-optical modulator array
CN114265261B (en) * 2021-12-29 2023-05-12 杭州电子科技大学 High-speed photon analog-to-digital conversion method and system based on pulse processing

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104133336B (en) * 2014-08-12 2018-03-23 中国科学院半导体研究所 Integrated optics digital analog converter on piece based on silica-based nanowire waveguide
CN111884727B (en) * 2020-07-15 2021-11-16 杭州电子科技大学 A high-speed photon digital-to-analog conversion method and system based on digital mapping

Also Published As

Publication number Publication date
CN112684650A (en) 2021-04-20

Similar Documents

Publication Publication Date Title
CN111884727B (en) A high-speed photon digital-to-analog conversion method and system based on digital mapping
CN103942030B (en) True random number generation method and device
CN106990642B (en) Optical analog to digital conversion device based on modulator multichannel demultiplexing
CN105467717B (en) A kind of microwave signal optics D conversion method and device based on time-stretching
CN112684650B (en) A photonic analog-to-digital conversion method and system based on weighted modulation curve
CN109254471B (en) A photonic analog-to-digital conversion method and system with improved bit accuracy
CN105319798B (en) Sample rate presses the optics analog-digital commutator of 2 any power restructural
CN102799045A (en) All-optical analog-to-digital conversion structure based on double-drive M-Z type modulator and realization method
CN106130714A (en) A kind of generating means of broadband light chaotic signal
CN111458953A (en) Optical analog-to-digital conversion architecture based on photon parallel sampling and its realization method
CN110995270B (en) Segmented photon digital-to-analog converter and waveform generation method thereof
CN108259090A (en) A kind of radio frequency random waveform photogenerated method and system based on digital logical operation
US6771201B1 (en) Hybrid photonic analog to digital converter using superconducting electronics
CN113238428B (en) High-speed photon digital-to-analog conversion method based on dual-drive electro-optical modulator array
CN108011282A (en) High speed real-time oscilloscope and its sample quantization method based on optical event stretching
CN111045275A (en) A photonic analog-to-digital conversion system and method based on the principle of hierarchical quantization
CN110784267A (en) All-optical cascade quantization system and method with high quantization resolution
CN101630106A (en) Cascade structural LiNbO3 waveguide electro-optic analog-digital conversion
CN111478729B (en) Method for testing performance of demultiplexing module in optical analog-to-digital conversion system
CN109884839B (en) Photon analog-to-digital conversion system and method based on asymmetric digital coding scheme
Yang et al. A Photonic Digitization Scheme With Enhanced Bit Resolution Based on Hierarchical Quantization
CN110231746A (en) The photon A/D conversion system and method compared based on full light
CN102436113A (en) Optical quantizer for high-speed modulation of nonlinear harmonic characteristics of light emitting device
CN114265261B (en) High-speed photon analog-to-digital conversion method and system based on pulse processing
CN112865794B (en) Phase-shift non-uniform light quantization analog-digital converter and conversion method thereof

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right

Effective date of registration: 20230525

Address after: 509 Kangrui Times Square, Keyuan Business Building, 39 Huarong Road, Gaofeng Community, Dalang Street, Longhua District, Shenzhen, Guangdong Province, 518000

Patentee after: Shenzhen lizhuan Technology Transfer Center Co.,Ltd.

Address before: 310018 no.1158, No.2 street, Baiyang street, Hangzhou Economic and Technological Development Zone, Zhejiang Province

Patentee before: HANGZHOU DIANZI University

TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20240725

Address after: Room 9810, 2nd Floor, Building 4, Free Trade Industrial Park, No. 2168 Zhenghe Fourth Road, Fengdong New City, Xi'an City, Shaanxi Province, 710000

Patentee after: Shaanxi Xinhui Engineering Technology Co.,Ltd.

Country or region after: China

Address before: 509 Kangrui Times Square, Keyuan Business Building, 39 Huarong Road, Gaofeng Community, Dalang Street, Longhua District, Shenzhen, Guangdong Province, 518000

Patentee before: Shenzhen lizhuan Technology Transfer Center Co.,Ltd.

Country or region before: China

TR01 Transfer of patent right