CN111884610B - 耐电气过应力的微波放大器 - Google Patents

耐电气过应力的微波放大器 Download PDF

Info

Publication number
CN111884610B
CN111884610B CN202010364079.1A CN202010364079A CN111884610B CN 111884610 B CN111884610 B CN 111884610B CN 202010364079 A CN202010364079 A CN 202010364079A CN 111884610 B CN111884610 B CN 111884610B
Authority
CN
China
Prior art keywords
fet
inductor
electrically connected
balun
gate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202010364079.1A
Other languages
English (en)
Other versions
CN111884610A (zh
Inventor
S·帕萨萨拉希
J·A·萨尔塞多
M·昌卡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Analog Devices International ULC
Original Assignee
Analog Devices International ULC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Analog Devices International ULC filed Critical Analog Devices International ULC
Publication of CN111884610A publication Critical patent/CN111884610A/zh
Application granted granted Critical
Publication of CN111884610B publication Critical patent/CN111884610B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/778Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface
    • H01L29/7782Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface with confinement of carriers by at least two heterojunctions, e.g. DHHEMT, quantum well HEMT, DHMODFET
    • H01L29/7783Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface with confinement of carriers by at least two heterojunctions, e.g. DHHEMT, quantum well HEMT, DHMODFET using III-V semiconductor material
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/20Power amplifiers, e.g. Class B amplifiers, Class C amplifiers
    • H03F3/24Power amplifiers, e.g. Class B amplifiers, Class C amplifiers of transmitter output stages
    • H03F3/245Power amplifiers, e.g. Class B amplifiers, Class C amplifiers of transmitter output stages with semiconductor devices only
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/0203Particular design considerations for integrated circuits
    • H01L27/0248Particular design considerations for integrated circuits for electrical or thermal protection, e.g. electrostatic discharge [ESD] protection
    • H01L27/0251Particular design considerations for integrated circuits for electrical or thermal protection, e.g. electrostatic discharge [ESD] protection for MOS devices
    • H01L27/0266Particular design considerations for integrated circuits for electrical or thermal protection, e.g. electrostatic discharge [ESD] protection for MOS devices using field effect transistors as protective elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/0203Particular design considerations for integrated circuits
    • H01L27/0248Particular design considerations for integrated circuits for electrical or thermal protection, e.g. electrostatic discharge [ESD] protection
    • H01L27/0251Particular design considerations for integrated circuits for electrical or thermal protection, e.g. electrostatic discharge [ESD] protection for MOS devices
    • H01L27/0288Particular design considerations for integrated circuits for electrical or thermal protection, e.g. electrostatic discharge [ESD] protection for MOS devices using passive elements as protective elements, e.g. resistors, capacitors, inductors, spark-gaps
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/06Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration
    • H01L27/0611Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration integrated circuits having a two-dimensional layout of components without a common active region
    • H01L27/0617Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration integrated circuits having a two-dimensional layout of components without a common active region comprising components of the field-effect type
    • H01L27/0629Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration integrated circuits having a two-dimensional layout of components without a common active region comprising components of the field-effect type in combination with diodes, or resistors, or capacitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/20Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L29/2003Nitride compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/20Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L29/201Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds including two or more compounds, e.g. alloys
    • H01L29/205Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds including two or more compounds, e.g. alloys in different semiconductor regions, e.g. heterojunctions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/778Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface
    • H01L29/7786Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface with direct single heterostructure, i.e. with wide bandgap layer formed on top of active layer, e.g. direct single heterostructure MIS-like HEMT
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/86Types of semiconductor device ; Multistep manufacturing processes therefor controllable only by variation of the electric current supplied, or only the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched
    • H01L29/861Diodes
    • H01L29/872Schottky diodes
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/02Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation
    • H03F1/0205Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation in transistor amplifiers
    • H03F1/0211Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation in transistor amplifiers with control of the supply voltage or current
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/52Circuit arrangements for protecting such amplifiers
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/52Circuit arrangements for protecting such amplifiers
    • H03F1/523Circuit arrangements for protecting such amplifiers for amplifiers using field-effect devices
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/189High-frequency amplifiers, e.g. radio frequency amplifiers
    • H03F3/19High-frequency amplifiers, e.g. radio frequency amplifiers with semiconductor devices only
    • H03F3/195High-frequency amplifiers, e.g. radio frequency amplifiers with semiconductor devices only in integrated circuits
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/45Differential amplifiers
    • H03F3/45071Differential amplifiers with semiconductor devices only
    • H03F3/45076Differential amplifiers with semiconductor devices only characterised by the way of implementation of the active amplifying circuit in the differential amplifier
    • H03F3/45179Differential amplifiers with semiconductor devices only characterised by the way of implementation of the active amplifying circuit in the differential amplifier using MOSFET transistors as the active amplifying circuit
    • H03F3/45183Long tailed pairs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/8252Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using III-V technology
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/06Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration
    • H01L27/0605Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration integrated circuits made of compound material, e.g. AIIIBV
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/06Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration
    • H01L27/07Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration the components having an active region in common
    • H01L27/0705Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration the components having an active region in common comprising components of the field effect type
    • H01L27/0727Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration the components having an active region in common comprising components of the field effect type in combination with diodes, or capacitors or resistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/08Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/0843Source or drain regions of field-effect devices
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2200/00Indexing scheme relating to amplifiers
    • H03F2200/06A balun, i.e. balanced to or from unbalanced converter, being present at the input of an amplifier
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2200/00Indexing scheme relating to amplifiers
    • H03F2200/294Indexing scheme relating to amplifiers the amplifier being a low noise amplifier [LNA]
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2200/00Indexing scheme relating to amplifiers
    • H03F2200/426Indexing scheme relating to amplifiers the amplifier comprising circuitry for protection against overload
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2200/00Indexing scheme relating to amplifiers
    • H03F2200/451Indexing scheme relating to amplifiers the amplifier being a radio frequency amplifier
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2203/00Indexing scheme relating to amplifiers with only discharge tubes or only semiconductor devices as amplifying elements covered by H03F3/00
    • H03F2203/45Indexing scheme relating to differential amplifiers
    • H03F2203/45386Indexing scheme relating to differential amplifiers the AAC comprising one or more coils in the source circuit
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2203/00Indexing scheme relating to amplifiers with only discharge tubes or only semiconductor devices as amplifying elements covered by H03F3/00
    • H03F2203/45Indexing scheme relating to differential amplifiers
    • H03F2203/45481Indexing scheme relating to differential amplifiers the CSC comprising only a direct connection to the supply voltage, no other components being present
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2203/00Indexing scheme relating to amplifiers with only discharge tubes or only semiconductor devices as amplifying elements covered by H03F3/00
    • H03F2203/45Indexing scheme relating to differential amplifiers
    • H03F2203/45621Indexing scheme relating to differential amplifiers the IC comprising a transformer for phase splitting the input signal

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Ceramic Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Semiconductor Integrated Circuits (AREA)
  • Amplifiers (AREA)

Abstract

提供耐电气过应力的微波放大器。在某些实施方案中,单片微波集成电路(MMIC)包括:接收射频(RF)信号的信号板;接地垫;巴伦,包括接收所述RF信号的初级部分和输出差分RF信号的次级部分;放大所述差分RF信号的放大器;和多个去耦元件,其中一些电连接在初级部分和接地垫之间,其他的则在次级部分电连接到多个放大器的节点,并且可操作以保护放大器免受电气过应力的影响。此类电气过应力事件可以包括静电放电(ESD)事件,例如场感应的带电设备模型(FICDM)事件,以及其他类型的过应力情况。

Description

耐电气过应力的微波放大器
相关申请的交叉引用
本申请要求于2019年5月3日提交的标题为“耐电气过应力的微波放大器”的美国临时专利申请No.62/843,152的优先权,其全部内容通过引用合并于此。
技术领域
本发明的实施方案涉及微波和毫米波集成电路电子系统,尤其涉及具有电气过应力保护的低噪声放大器接口。
背景技术
某些电子系统可能会暴露于电气过应力事件中,或者承受电压持续快速变化且功率较高的短时电信号。电气过应力事件包括,例如,由于物体或人向电子系统突然释放电荷而引起的电气过应力(EOS)和静电放电(ESD)。
电气过应力事件会在IC的相对较小的区域中产生过压状况和高水平的功耗,从而损坏或破坏集成电路(IC)。高功耗会提高IC温度,并可能导致许多问题,例如氧化穿通、结损坏、金属损坏和表面电荷积聚。
发明内容
提供耐电气过应力的微波放大器。在某些实施方案中,单片微波集成电路(MMIC)包括:接收射频(RF)信号的信号板;接地垫;巴伦,包括接收所述RF信号的初级部分和输出差分RF信号的次级部分;放大所述差分RF信号的放大器;和多个去耦元件,其中一些电连接在初级部分和接地垫之间,其他的则在次级部分电连接到多个放大器的节点,并且可操作以保护放大器免受电气过应力的影响。此类电气过应力事件可以包括静电放电(ESD)事件,例如场感应的带电设备模型(FICDM)事件,以及其他类型的过应力情况。例如,保护电感器可作为巴伦初级部分的并联电感器,并在短时过应力事件中起到降低过应力的作用。
在一方面,提供具有集成电气过应力保护的单片微波集成电路(MMIC)。MMIC包括:信号板,被配置为接收射频(RF)信号;第一接地垫;巴伦,包括被配置为接收所述RF信号的初级部分和被配置为输出差分RF信号的次级部分;放大器,被配置为放大所述差分RF信号;和第一保护电感器,电连接在所述初级部分和所述第一接地垫之间,并且可操作以保护所述放大器免受电气过应力的影响。
在另一方面,提供一种MMIC中的电气过应力保护方法。该方法包括:在信号板处接收RF信号;在巴伦的初级部分处接收RF信号,并从所述巴伦的次级部分输出差分RF信号;使用放大器放大所述差分RF信号;和使用连接在所述巴伦的初级部分和接地垫之间的第一保护电感器来保护所述放大器免受电气过应力的影响。
在另一方面,提供半导体管芯。半导体管芯包括:多个垫,包括被配置为接收RF信号的信号板和接地垫。半导体管芯还包括巴伦,包括被配置为接收所述RF信号的初级部分和被配置为输出差分RF信号的次级部分,一对配置为接收所述差分RF信号的场效应晶体管(FET),所述一对FET包括第一FET和第二FET;和多个输入电感器,包括电连接在所述巴伦的次级部分的第一端和第一FET的栅极之间的第一输入电感器、以及电连接在所述巴伦的次级部分的第二端和第二FET的栅极之间的第二输入电感器。
在另一方面,提供具有集成电气过应力保护的MMIC。MMIC包括:RF信号板,被配置为接收RF信号;和RF电路,耦合到所述RF信号板并包括晶体管布局,该晶体管布局包括输入FET、以及连接在所述输入FET的栅极和源极之间的嵌入式保护器件。
附图说明
图1是根据一个实施例的汽车雷达系统的示意图。
图2是根据一个实施例的芯片接口的示意图。
图3是根据一个实施例的毫米波放大器的示意图。
图4是根据另一实施例的毫米波放大器的示意图。
图5是用于毫米波放大器的偏置电源模块的一个实施例的示意图。
图6是根据另一实施例的毫米波放大器的示意图。
图7是根据另一实施例的毫米波放大器的示意图。
图8是根据另一实施例的毫米波放大器的示意图。
图9A是根据另一实施例的毫米波放大器的示意图。
图9B是根据另一实施例的毫米波放大器的示意图。
图9C是根据另一实施例的毫米波放大器的示意图。
图9D是根据另一实施例的毫米波放大器的示意图。
图10是根据一个实施例的电感器和巴伦布局的示意图。
图11是仿真结果的一个例子的曲线图,示出了在有和没有栅源钳位的情况下实现的毫米波放大器的比较。
图12是仿真结果的一个示例的曲线图,其示出了比较在具有和不具有耦合到巴伦的初级部分的保护电感器的情况下实现的毫米波放大器的比较。
图13是仿真结果的一个示例的曲线图,示出了比较在具有和不具有耦合到巴伦的初级和次级部分的保护电感器的情况下实现的毫米波放大器的比较。
图14是仿真结果的一个示例的图,其示出了比较在具有和不具有耦合至巴伦的初级和次级部分的栅极-源极钳位和保护电感器的情况下实现的毫米波放大器的比较。
图15是仿真结果的另一示例的曲线图,其示出了在具有和不具有耦合至巴伦的初级部分的保护电感器的情况下实现的毫米波放大器的比较。
图16是仿真结果的另一示例的曲线图,示出了比较在具有和不具有耦合到巴伦的初级和次级部分的保护电感器的情况下实现的毫米波放大器的比较。
图17是仿真结果的另一示例的曲线图,示出了比较具有和不具有耦合至巴伦的初级和次级部分的栅极-源极钳位和保护电感器的毫米波放大器的比较。
图18A是耦合到接口网络并由保护元件保护的化合物半导体高电子移动晶体管(HEMT)的一个实施例的示意图。
图18B是用于HEMT的肖特基栅极二极管结构的电压对电流特性的一个示例的图。
图19是HEMT的一个实施例的横截面。
图20是HEMT的另一实施例的横截面。
具体实施方式
实施例的以下详细描述呈现了本发明的特定实施例的各种描述。然而,本发明可以以多种不同的方式实施。在该描述中,参考附图,其中相似的参考标号可以指示相同或功能相似的元件。将理解的是,附图中示出的元件不必按比例绘制。而且,将理解的是,某些实施例可以包括比附图中示出的更多的元素和/或附图中示出的元素的子集。此外,一些实施例可以结合来自两个或更多个附图的特征的任何合适的组合。
某些电子系统包括过应力保护电路,以保护电路或组件免受电气过应力事件的影响。为了帮助确保电子系统可靠,制造商可以在定义的压力条件下测试该电子系统,该压力条件可以由各种组织(例如联合电子设备工程委员会(JEDEC)、国际电工委员会(IEC)、以及汽车工程理事会(AEC))制定的标准来描述。这些标准可以涵盖各种各样的电气过应力事件,包括电气过应力(EOS)和/或静电放电(ESD)。
图1是根据一个实施例的汽车雷达系统的示意图。图1的汽车雷达系统示出了放大器接口的应用的一个示例,该放大器接口经受电气过应力条件并且受到本文的电气过应力保护方案的保护。
例如,汽车雷达系统可以包括根据本文的教导实现的低噪声放大器(LNA),并用于放大从车辆雷达系统天线接收到的射频(RF)信号和/或放大代表车辆激光雷达系统接收到的光的信号。LNA的示例性车辆应用包括但不限于停车辅助、碰撞警告、交叉交通警报、盲点检测、自适应巡航控制、自动驾驶和/或紧急制动/避免碰撞。
尽管图1示出了毫米波放大器的一个示例应用,但是本文的教导可应用于广泛的应用。在另一个示例中,毫米波放大器被结合到相控阵天线系统中,例如在移动通信和/或军事和国防系统中使用的那些系统。
尽管本文的某些实施例适合于提供对毫米波的放大,但是其他频率范围也是可能的。例如,此处的教导适用于在很宽的频率范围内工作的RF通信系统,不仅包括100MHz至7GHz之间的RF信号,而且还适用于更高的频率,例如X波段(大约7GHz至12GHz),Ku频段(约12GHz至18GHz),K频段(约18GHz至27GHz),Ka频段(约27GHz至40GHz),V频段(约40GHz至75GHz)和/或W波段(大约75GHz至110GHz)。因此,本文的教导可应用于包括微波通信系统的多种RF通信系统。
放大器放大的RF信号可以与各种通信标准相关联,包括但不限于全球移动通信系统(GSM)、GSM演进的增强数据速率(EDGE)、码分多址(CDMA)、宽带CDMA(W-CDMA)、3G、长期演进(LTE)、4G和/或5G,以及其他专有和非专有通信标准。
微波放大器的电气过应力保护
图2是根据一个实施例的芯片接口60的示意图。芯片接口60包括各种焊盘(在本文中也称为引脚)以及半导体管芯或芯片的各种电路。图2的芯片接口60示出了可以根据本公开的一个或多个特征来实现的芯片接口的一个实施例。芯片接口60对应于诸如单片微波或毫米波集成电路(MMIC)的半导体管芯的输入/输出(I/O)接口。
在所示的实施例中,芯片接口60包括各种引脚或板,包括输入信号板1,输出信号板2,RF信号板3,用于第一功率域的第一高功率板5(VDD1),用于第二电源域的第二高功率板6(VDD2),用于第一电源域的第一低功率或接地垫7(VSS1),用于第二电源域的第二低功率板8(VSS2),以及ESD功率低焊盘9(ESDVSS)。尽管示出了焊盘的一个示例,但是芯片接口可以包括多种类型的焊盘,包括但不限于输入和/或输出(IO)焊盘、电源焊盘和/或接地垫。尽管示出了特定数量的垫,但是可以包括更多或更少的垫和/或可以使用垫的不同布置。
在所示的实施例中,芯片接口60还包括第一核心电路31(可以是数字,模拟或混合信号)和第二核心电路32,第二核心电路32级联地电连接在输入信号板1和输出信号板2之间。
芯片接口60还包括用于输入信号板1的初级正向过压保护电路11,用于输入信号板1的初级反向过压保护电路12,用于输入信号板1的次级正向过压保护电路13,用于输入信号板1的反向过应力保护电路14,VDD1与VSS1之间的第一电源钳位15,VDD1与ESDVSS之间的第二电源钳位16,VDD2与ESDVSS之间的第三电源钳位17,VDD2与VSS2之间的第四电源钳位18,用于输出信号板2的初级正向保护电路19,用于输出信号板2的初级反向保护电路20,微波放大器21,保护电感器22,偏置电源模块或电路23,VSS1至ESDVSS之间的第一对反并联二极管,VSS2和ESDVSS之间的第二对反并联二极管36,连接在第二核心电路32和VSS2的输入之间的栅极接地FET 37,以及巴伦50。
此外,示出了各种电阻器,包括到第一核心电路131的输入电阻器Rin1,到第二核心电路32的输入电阻器Rin2,以及与用于在整个芯片接口60中路由电源的金属化电阻相关联的各种电阻器。
图2的芯片接口60示出了可以根据本公开的一个或多个特征来实现的芯片接口的一个实施例。尽管示出了用于芯片接口的电路的一个示例,但是芯片接口可以包括多种类型和/或数量的电路。因此,其他实施方式是可能的。
芯片接口60的一部分包括用于放大RF信号的焊盘和电路。例如,芯片接口60包括RF信号板3,接地垫8(在此示例中为VSS2),电源垫6(在此示例中为VDD2),巴伦50,微波放大器21,保护电感器22和偏置电源模块23。
巴伦50包括:初级部分51,其从RF信号板3接收RF信号;以及次级部分52,其将差分RF信号提供给微波放大器21以进行放大。巴伦50的初级部分51和次级部分52被磁耦合。
如图2所示,偏置电源模块23从电源垫6接收电源电压,并以稳压电源电压和/或一个或多个受控偏置电流为微波放大器21供电。微波放大器21还从接地垫8接收接地电压。
保护电感器22电连接在巴伦50的初级部分51和接地垫8之间,并且用于保护微波放大器21免受电气过应力。附加地或替代地,微波放大器21可以利用本文公开的任何保护结构来实现。在某些实施方式中,微波放大器21是毫米波放大器。
图3是根据一个实施例的毫米波放大器150的示意图。毫米波放大器150包括巴伦125,一对输入电感器126,放大电路127,一对源电感器128,第一交叉耦合电容器131和第二交叉耦合电容器132。
尽管毫米波放大器150示出了具有防止电气过应力的保护的放大器的一个实施例,但是本文的教导适用于以多种方式实现的放大器。此外,本文的教导还可应用于处理来自巴伦的差分RF信号的其他类型的RF电路。
如图3所示,巴伦125包括初级部分135,初级部分135从RF信号板101接收RF信号。初级部分135电连接在RF信号板101和由接地垫提供的接地电压之间(图3中未示出)。巴伦125还包括次级部分136,次级部分136输出差分RF信号,该差分RF信号通过一对输入电感器126提供给放大电路127。
在所示的实施例中,放大电路127包括第一放大场效应晶体管(FET)141和第二放大FET 142。另外,输入电感器126包括第一输入电感器137和第二输入电感器138。图3中,第一放大FET 141的栅极通过第一输入电感器137电连接到巴伦125的次级部分136的第一端,而第二放大FET142的栅极通过第二输入电感器138电连接到巴伦125的次级部分136的第二端。
包括第一输入电感器137和第二输入电感器138有助于保护第一放大FET 141和第二放大FET 142不受损坏。例如,第一输入电感器137和第二输入电感器138可用于阻止或阻止高频电流到达FET的栅极并引起电压累积。
第一放大FET 141和第二放大FET 142可以以多种方式实现,例如使用金属氧化物半导体晶体管(MOS),FinFET晶体管和/或化合物半导体晶体管,例如高电子迁移率晶体管(HEMT)。因此,本文的教导可适用于广泛的处理技术,包括但不限于硅工艺(例如,绝缘体上硅或SOI)和化合物半导体工艺(例如,氮化镓或GaN)。尽管示出了具有n型晶体管的示例,但是本文的教导也适用于具有p型晶体管或p型和n型晶体管的组合的放大器。此外,尽管示出了具有FET的示例,但是本文的教导也适用于用双极晶体管或FET和双极晶体管的组合实现的放大器。此外,本文的教导还可应用于处理来自巴伦的差分RF信号的其他类型的RF电路。
第一放大FET 141和第二放大FET 142可以具有任何合适的几何形状,例如该技术的最小沟道长度(以在微波频率下提供增强的性能)以及基于噪声系数(NF)约束选择的宽度。FET布局可以包括使用金属化彼此电连接的多指器件。在一个示例中,每个放大FET包括64个320nm宽度的指状物,以实现整个器件的18μm的宽度。但是,其他实施方式也是可能的。
如图3所示,一对源极电感器128包括电连接在第一放大FET 141的源极和接地电压之间的第一源极电感器143和电连接在第二放大FET 142的源极和接地电压之间的第二源极电感器144。
第一放大FET 141和第二放大FET 142的源极的接地电压可以与巴伦125的初级部分135的接地电压相同或不同。
在一个示例中,共同接地垫将接地电压提供给巴伦125的初级部分135以及第一放大FET 141和第二放大FET 142的源极。
在第二示例中,第一接地垫向巴伦125的初级部分135提供第一接地电压,而第二接地垫向第一放大FET 141和第二放大FET 142的源极提供第二接地电压。在某些实施方式中,第一接地垫和第二接地垫使用去耦电路(诸如去耦电感器和/或反并联二极管)在芯片上连接。因此,本文的教导可应用于包括多个接地域的芯片接口,所述多个接地域在芯片上或芯片外耦合以实现期望的隔离量。
第一交叉耦合电容器131电连接在第一放大FET 141的栅极和第二放大FET 142的漏极之间。另外,第二交叉耦合电容器132电连接在第二放大FET 142的栅极和第一放大FET141的漏极之间。在某些实施方式中,交叉耦合电容器被实现为金属氧化物金属(MOM)电容器。交叉耦合电容器可以具有任何合适的电容,例如5fF至25fF范围内的电容。
在该示例中,毫米波放大器150在第一放大FET 141和第二放大FET142的漏极之间提供差分RF信号。在某些实施方式中,还通过第一放大FET 141和第二放大FET 142的漏极向毫米波放大器150提供功率。例如,毫米波放大器150还可以包括第一扼流电感器,电连接在第一放大FET 141的漏极和偏置电源模块提供的稳压电源电压之间,以及第二扼流电感器,电连接在第二放大FET 142的漏极和稳压电源电压之间。
图4是根据另一实施例的毫米波放大器160的示意图。毫米波放大器160包括巴伦125、第一交叉耦合电容器131、第二交叉耦合电容器132、第一输入电感器137、第二输入电感器138、第一放大FET 141、第二放大FET 142、第一源电感器143、第二源电感器144和保护电感器151(在本文中也称为第一保护电感器或电感器L1)。
除了毫米波放大器160进一步包括保护电感器151之外,图4的毫米波放大器160类似于图3的毫米波放大器150。
包括保护电感器151有助于防止RF信号板101处的电气过应力事件。这种电气过应力事件不仅包括ESD事件,而且包括其他类型的过载,例如场感应的充电设备模型(FICDM)事件。例如,保护电感器151用作巴伦125的初级部分135的并联电感器,并用于在短时过应力事件期间减小过应力。
在某些实施方式中,保护电感器151电连接到巴伦125的初级部分135的中心抽头。
保护电感器151可以具有任何合适的电感,例如,至少150pH的电感。在某些实施方式中,保护电感器151具有基于10GHz下的ESD事件性能选择的最大电感。
图5是用于毫米波放大器的偏置电源模块200的一个实施例的示意图。例如,偏置电源模块200示出了图2的偏置电源模块23的一个实施例。尽管图5示出了偏置电源模块的一个实施例,但是本文的教导可应用于以其他方式实现的偏置电源模块。
在所示的实施例中,偏置电源模块200包括第一p型场效应晶体管(PFET)181、第二PFET 182、第三PFET 183、第四PFET 184、第五PFET185、第一放大器187、第二放大器188、第三放大器189、第一偏置电阻器191、第二偏置电阻器192以及包括第一分压器电阻器195和第二分压器电阻器196的分压器194。
在图5中,毫米波放大器被表示为跨导增益元件,示意性地描绘为n型场效应晶体管(NFET)171。然而,毫米波放大器可以以任何合适的方式实现。尽管描述了偏置电源模块的一个实施例,但是毫米波放大器可以以多种方式接收功率。
在所示的实施例中,偏置电源模块200从电源垫(图5中未示出)接收电源电压VDD(例如0.9V)。偏置电源模块200还接收参考电压VREF(例如0.7V),该参考电压可以是带隙电压。此外,偏置电源模块200还接收参考电流Iref。参考电压VREF和参考电流Iref可以在芯片上、芯片外或其组合中产生。
如图5所示,偏置电源模块200包括第一控制环路,该第一控制环路将稳压电源电压(在该示例中,对应于Vdrain)设置为基本等于基准电压VREF。另外,偏置电源模块200包括第二控制环路,该第二控制环路可操作为控制通过跨导增益元件171的电流基本等于参考电流(Iref)。当用于偏置毫米波放大器时,偏置电源模块200紧密地控制毫米波放大器(示意性地表示为NFET 171)的供应电压和电流。
在一些实施例中,NFET 171对应于图3、4和6-9D的第一放大FET 141或第二放大FET 142之一。在某些实施例中,电源偏置块200的所示电路被复制以为差分毫米波放大器的输入晶体管对的每个晶体管提供稳定的电压和受控的偏置电流。例如,所描绘的电路的第一实例可用于偏置图3、图4和图6-9D的第一放大FET 141(其中NFET 171的第一实例对应于第一放大FET 141),而所描绘的电路的第二实例可用于偏置图3、4和6-9D的第二放大FET142(其中NFET 171的第二实例对应于第二放大FET142)。
在所示的实施例中,电源偏置块200还产生测试电流I测试,可以对其进行处理以验证所描绘的偏置电流控制环路的准确性。
图6是根据另一实施例的毫米波放大器250的示意图。毫米波放大器250包括巴伦125、第一交叉耦合电容器131、第二交叉耦合电容器132、第一输入电感器137、第二输入电感器138、第一放大FET 141、第二放大FET 142、第一源电感器143、第二源电感器144、第一保护电感器151(在此也称为电感器L1)、第二保护电感器152(在此也称为电感器L2)、电容器241、电阻器242、电压源243。
除了毫米波放大器250还包括第二保护电感器152、电容器241、电阻器242和电压源243之外,图6的毫米波放大器250类似于图4的毫米波放大器160。
如图6所示,第二保护电感器152电连接到巴伦125的次级部分136。在某些实施方式中,第二保护电感器152连接到次级部分136的中心抽头。第二保护电感器152可以具有任何合适的电感值,例如,至少150pH的电感。
第二保护电感器152在巴伦125的次级部分136与来自接地垫的接地电压之间与电容器241串联电连接。
在某些实施方式中,第一保护电感器151和/或第二保护电感器152可通过金属化选项连接到巴伦125。因此,第一保护电感器151和/或第二保护电感器152可以经由金属可编程以提供期望的额外钳位。
如图6所示,电压源242与电容器241并联电连接,并且可操作以控制到第一放大FET 141和第二放大FET 142的DC输入电压。在某些实施方式中,电压源242的电压电平由电源控制块的控制环路控制,从而提供对通过放大器250的偏置电流的控制。
图7是根据另一实施例的毫米波放大器270的示意图。毫米波放大器270包括巴伦125、第一交叉耦合电容器131、第二交叉耦合电容器132、第一输入电感器137、第二输入电感器138、第一放大FET 141、第二放大FET 142、第一源极电感器143、第二源极电感器144、保护电感器151、第一钳位FET 261、第二钳位FET 262、共栅电阻器263和去耦电感器265。
图7的毫米波放大器270类似于图4的毫米波放大器160,除了毫米波放大器270还包括第一钳位FET 261、第二钳位FET 262、共栅电阻器263和去耦电感器265。另外,示出的实施例使用多个接地域(在该示例中,与第一接地垫102和第二接地垫103相关联)来操作,所述多个接地域使用去耦电路(在该示例中,对应于去耦电感器265)彼此去耦。
第一钳位FET 261电连接在第一放大FET 141的栅极和源极之间,而第二钳位FET262电连接在第二放大FET 142的栅极和源极之间。另外,公共电阻器263包括电连接到第一接地垫102的第一端和电连接到第一钳位FET 261的栅极和第二钳位FET 262的栅极的第二端。但是,其他实施方式也是可能的。例如,低噪声放大器配置可以包括直接连接到接口的不同数量的FET,在这种情况下,可以应用相同的概念。
第一钳位FET 261和第二钳位FET 262用作用于毫米波放大器270的放大FET的off-FET(例如,off-NMOS)嵌入式保护。例如,钳位FET可用于提供自FICDM保护。
在某些实施方式中,使用共享的多指布局来实现放大FET和相应的钳位FET。例如,布局的指状部的第一部分可以用于实现放大FET(例如,第一放大FET 141),而布局的指状部的第二部分可以用来实现钳位FET(例如,第一钳位FET 261)。
在另一个实施例中,输入有源器件可以使用GaAs或GaN HEMT器件实现用于高功率高频微波和毫米波应用,因为这些类型的技术在高频操作和噪声性能方面具有优势。在这样的实施方式中,栅极端子在一个方向或施加的电压极性上用作正向肖特基二极管,而在相反的方向上对负过应力引起的损坏敏感。为了解决这个限制,针对GaAs和/或GaN高电子迁移率晶体管(HEMT)器件例如图19或20的横截面的情况,实施了上述实现(例如,可以对应于诸如CMOS工艺的硅工艺中的实现)。
图8是根据另一实施例的毫米波放大器290的示意图。毫米波放大器290包括巴伦125、第一交叉耦合电容器131、第二交叉耦合电容器132、第一输入电感器137、第二输入电感器138、第一放大FET 141、第二放大FET 142、第一源极电感器143、第二源极电感器144、第一钳位FET 261、第二钳位FET 262、第一共栅电阻器263、去耦电感器265、第三钳位FET281、第四钳位FET 282、第二共栅电阻器283和电压源284。
图8的毫米波放大器290类似于图7的毫米波放大器270,除了毫米波放大器290省略了保护电感器151,并且还包括第三钳位FET 281、第四钳位FET 282、第二共栅电阻器FET282和电压源284。
在示出的实施例中,第三钳位FET 281电连接在第一放大FET 141的栅极与钳位节点之间,并且第四钳位FET 282电连接在第二放大FET 142的栅极与钳位节点之间。在该示例中,钳位节点连接到电压源284。另外,第二公共电阻器283包括电连接到钳位节点的第一端和电连接到第三钳位FET 281的栅极和第四钳位FET 282的栅极的第二端。
如图8所示,第一和第二钳位FET 261、262具有第一器件极性(在此示例中为n型),而第三和第四钳位FET 281、282具有第二器件极性(在此示例中为p型)。例如,钳位FET可以实现为第一对NMOS断开钳位和第二对PMOS断开钳位。
图9A是根据另一实施例的毫米波放大器410的示意图。毫米波放大器410包括巴伦125、第一输入电感器137、第二输入电感器138、第一放大FET 141、第二放大FET 142、第一源极电感器143、第二源极电感器144、第一共源共栅FET 401、第二共源共栅FET 402和共源共栅偏置电压源403。
本文的教导适用于多种类型的放大器,包括但不限于共源放大器、共发射极放大器、FET共源共栅放大器和/或双极共源共栅放大器。尽管以一对共源共栅晶体管示出,但是可以包括另外的共源共栅晶体管对。
图9B是根据另一实施例的毫米波放大器420的示意图。毫米波放大器420包括巴伦125、第一输入电感器137、第二输入电感器138、第一放大FET 141、第二放大FET 142、第一源电感器143、第二源电感器144、第一共源共栅FET 401、第二共源共栅FET 402、共源共栅偏置电压源403、保护电感器151和去耦电感器265。
除了毫米波放大器420进一步包括保护电感器151和去耦电感器265之外,图9B的毫米波放大器420类似于图9A的毫米波放大器410。
图9C是根据另一实施例的毫米波放大器430的示意图。毫米波放大器430包括巴伦125、第一输入电感器137、第二输入电感器138、第一放大FET 141、第二放大FET 142、第一源电感器143、第二源电感器144、第一共源共栅FET 401、第二共源共栅FET 402、共源共栅偏置电压源403、去耦电感器265、第一钳位FET 261、第二钳位FET 262和共栅电阻器263。
图9C的毫米波放大器430类似于图9B的毫米波放大器420,除了毫米波放大器430省略了保护电感器151并且还包括第一钳位FET 261、第二钳位FET 262以及共栅电阻器263。
图9D是根据另一实施例的毫米波放大器440的示意图。毫米波放大器440包括巴伦125、第一输入电感器137、第二输入电感器138、第一放大FET 141、第二放大FET 142、第一源极电感器143、第二源极电感器144、第一共源共栅FET 401、第二共源共栅FET 402、共源共栅偏置电压源403、去耦电感器265、第一钳位FET 261、第二钳位FET 262、共栅电阻器263和保护电感器151。
除了毫米波放大器440还包括保护电感器151以外,图9D的毫米波放大器440类似于图9C的毫米波放大器430。
图10是根据一个实施例的电感器和巴伦布局的示意图。电感器和巴伦布局包括巴伦531,位于位置534处的用于输入晶体管的一对源极电感器532,以及用于在位置534处保护该对输入晶体管的栅极的一对输入电感器533。尽管描述了金属化布局的一个实施例,本文的教导适用于以多种方式实现的巴伦和电感器。
图11是仿真结果的一个例子的曲线图,示出了在有和没有栅源钳位的情况下实现的毫米波放大器的比较。该图描述了两种情况下输入晶体管栅极电压与时间的关系。
图12是仿真结果的一个示例的曲线图,其示出了比较在具有和不具有耦合到巴伦的初级部分的保护电感器的情况下实现的毫米波放大器的比较。如图12所示,模拟的应力事件为5Amps。
图13是仿真结果的一个示例的曲线图,示出了比较在具有和不具有耦合到巴伦的初级和次级部分的保护电感器的情况下实现的毫米波放大器的比较。如图13所示,模拟的压力事件为5Amps。
图14是仿真结果的一个示例的图,其示出了比较在具有和不具有耦合至巴伦的初级和次级部分的栅极-源极钳位和保护电感器的情况下实现的毫米波放大器的比较。如图14所示,模拟的应力事件为5Amps。
图15是仿真结果的另一示例的曲线图,其示出了在具有和不具有耦合至巴伦的初级部分的保护电感器的情况下实现的毫米波放大器的比较。
图16是仿真结果的另一示例的曲线图,示出了比较在具有和不具有耦合到巴伦的初级和次级部分的保护电感器的情况下实现的毫米波放大器的比较。
图17是仿真结果的另一示例的曲线图,示出了比较具有和不具有耦合至巴伦的初级和次级部分的栅极-源极钳位和保护电感器的毫米波放大器的比较。
尽管图11-17展示了模拟结果的各种示例,但其他模拟结果也是可能的,包括取决于实现、应用和/或处理技术的结果。
图18A是耦合到接口网络并由保护元件保护的化合物半导体HEMT的一个实施例的示意图。在某些实现中,是增强模式HEMT(E-HEMT),当RF端口相对于地面发生负极性过应力时,该模式可能会失败。例如,HEMT的金属栅极和通道之间的界面可以用作肖特基二极管,该肖特基二极管在相反的方向受力而失效。
在此类应用中,RFIN端口可能仅需要在一个方向或一个极性上进行保护,例如,防止RF端口相对于地(GND)产生负极性过应力。此外,核心HEMT栅极-源极二极管可以处理正极性过应力。
图18B是HEMT的肖特基栅极二极管结构(例如图18的HEMT)的电压与电流特性的一个示例图。与高级CMOS相比,因为受保护的核心肖特基结可以具有较大的击穿电压(BV),例如15V或更高,因此设计余量通常更大。尽管图18B示出了二极管反向特性的示例,但其他结果也是可能的。
图19是具有集成保护的HEMT 600的一个实施例的横截面。HEMT采用III-V复合半导体技术(在此示例中为GaAs)制造。尽管示出了具有GaAs的示例,但是本文的教导可应用于其他处理技术,例如硅和GaN。
为了提供低电容过应力保护,可以在栅极和源极之间明确添加ESD保护组件(例如,参见具有栅极-源极保护的图18A的E-HEMT)。
附加地或可替代地,可以在多条纹布局内利用附加的栅极/漏极条来保护肖特基栅极。
例如,在所示的实施例中,HEMT 600被制造在未掺杂的GaAs衬底601上。另外,InGaAs沟道层602(包括二维电子气或2DEG区域)被形成在未掺杂的GaAs衬底601上。然后,在InGaAs沟道层602之上形成AlGaAs间隔层603,并且在AlGaAs间隔层603之上形成NAlGaAs层。
HEMT 600包括第一栅极区域611a,第二栅极区域611b,位于第一栅极区域611a和第二栅极区域611b之间的漏极区域613。栅极区域由金属形成,并且与金属-半导体界面和相应的肖特基二极管相关。HEMT 600还包括第一源极区612a和第二源极区612b,第一栅极区611a位于第一源极区612a和漏极区613之间,第二栅极区611b位于漏极区613和第二源极区612b之间。
为了保护HEMT 600,已经包括附加的晶体管指以提供与HEMT 600和保护HEMT共享的与保护栅区615、保护漏区617和源极区612b相关的保护HEMT。如图19所示,保护性HEMT的栅极以金属(后端金属化)连接到HEMT 600的源极,而保护性HEMT的漏极连接到HEMT 600的源极。
以这种方式实现HEMT 600可以在HEMT 600的栅极和源极之间提供一个集成的肖特基二极管。
图20是HEMT 700的另一实施例的横截面。如图20所示,在HEMT700的栅极和源极之间可以包括嵌入式保护区域和/或元件701。
尽管描绘了特定的层和材料,但是其他实施方式也是可能的。在一个示例中,省略了Si衬底,从而有利于使用碳化硅(SiC)衬底。
应用
采用上述方案的设备可以被实现为各种电子设备。电子设备的示例可以包括但不限于消费类电子产品、消费类电子产品的一部分、电子测试设备、通信基础设施应用程序等。此外,电子设备可以包括未完成的产品,包括用于通信、工业、医疗、汽车、雷达和航空航天应用的未完成产品。
结论
前述描述可以将元件或特征称为“连接”或“耦合”在一起。如本文所用,除非另有明确说明,否则“连接”是指一个元件/特征直接或间接地连接至另一元件/特征,并且不一定是机械地连接。同样地,除非另有明确说明,否则“耦合”是指一个元件/特征直接或间接地耦合至另一元件/特征,而不必机械地耦合。因此,尽管在附图中示出的各种示意图描绘了元件和组件的示例布置,但是在实际的实施例中可以存在附加的中间元件、设备、特征或组件(假设所描绘的电路的功能没有受到不利影响)。
尽管已经描述了某些实施例,但是这些实施例仅以示例的方式给出,并且不意图限制本公开的范围。实际上,本文描述的新颖的装置、方法和系统可以以各种其他形式来体现。此外,在不脱离本公开的精神的情况下,可以对本文描述的方法和系统的形式进行各种省略、替换和改变。例如,虽然以给定的布置呈现了公开的实施例,但是替代实施例可以执行具有不同组件和/或电路拓扑的类似功能,并且可以删除、移动、添加、细分、组合和/或修改某些元件。这些元素中的每一个都可以以各种不同的方式实现。可以将上述各种实施例的元件和动作的任何适当组合进行组合以提供其他实施例。因此,本发明的范围仅通过参考所附权利要求来限定。
尽管此处提出的权利要求以单一依赖项格式在美国专利商标局(USPTO)提出,但应理解,任何权利要求都可能依赖于之前相同类型的任何权利要求,除非明显在技术上不可行。

Claims (20)

1.具有集成电气过应力保护的单片微波集成电路MMIC,该MMIC包括:
信号板,被配置为接收射频信号;
第一接地垫;
巴伦,包括被配置为接收所述射频信号的初级部分和被配置为输出差分射频信号的次级部分;
放大器,被配置为放大所述差分射频信号;和
第一保护电感器,电连接在所述初级部分和所述第一接地垫之间,并且能够操作以保护所述放大器免受电气过应力的影响。
2.权利要求1所述的MMIC,其中所述第一保护电感器电连接到所述初级部分的中间抽头。
3.权利要求1所述的MMIC,还包括电连接到所述巴伦的次级部分的第二保护电感器。
4.权利要求3所述的MMIC,还包括电容器和与所述电容器并联电连接并能够操作以控制向所述放大器的直流输入电压的电压源,其中所述第二保护电感器和所述电容器串联电连接在所述巴伦的次级部分和所述第一接地垫之间。
5.权利要求3所述的MMIC,其中所述第二保护电感器电连接到所述次级部分的抽头。
6.权利要求1所述的MMIC,其中所述巴伦的初级部分电连接在所述信号板和所述第一接地垫之间。
7.权利要求1所述的MMIC,还包括第二接地垫,其中所述巴伦的初级部分电连接在所述信号板和所述第二接地垫之间。
8.权利要求7所述的MMIC,还包括电连接在所述第一接地垫和所述第二接地垫之间的去耦电感器。
9.权利要求1所述的MMIC,其中所述放大器包括:第一放大场效应晶体管FET,其栅极电连接到所述次级部分的第一端;以及第二放大场效应晶体管FET,其栅极电连接到所述次级部分的第二端。
10.权利要求9所述的MMIC,还包括在所述第一放大FET的栅极和所述次级部分的第一端之间的第一输入电感器,以及在所述第二放大FET的栅极和所述次级部分的第二端之间的第二输入电感器。
11.权利要求9所述的MMIC,还包括在所述第一放大FET的源极与所述第一接地垫之间的第一去耦电感器,以及在所述第二放大FET的源极与所述第一接地垫之间的第二去耦电感器。
12.权利要求9所述的MMIC,还包括跨所述第一放大FET的栅极和源极电连接的第一钳位FET,以及跨所述第二放大FET的栅极和源极电连接的第二钳位FET。
13.权利要求12所述的MMIC,还包括共栅电阻器,该共栅电阻器包括电连接到所述第一接地垫的一端,以及电连接到所述第一钳位FET的栅极和所述第二钳位FET的栅极的第二端。
14.权利要求12所述的MMIC,还包括电连接在所述第一放大FET的栅极和钳位节点之间的第三钳位FET,和电连接在所述第二放大FET的栅极和所述钳位节点之间的第四钳位FET,其中所述第三和第四钳位FET具有与第一和第二钳位FET相反的器件极性。
15.权利要求12所述的MMIC,还包括多指晶体管布局,其中使用所述多指晶体管布局的指的第一部分来实现所述第一放大FET,并且使用所述多指晶体管布局的指的第二部分来实现所述第一钳位FET。
16.权利要求1所述的MMIC,还包括配置为产生用于向所述放大器供电的稳压电源电压的偏置电源模块,其中所述偏置电源模块包括:第一控制环路,所述第一控制环路被配置为基于参考电压来设置该稳压电源电压,以及第二控制环路,所述第二控制环路能够操作以基于参考电流控制通过所述放大器的电流。
17.一种单片微波集成电路中的电气过应力保护方法,该方法包括:
在信号板处接收射频信号;
在巴伦的初级部分处接收所述射频信号,并从所述巴伦的次级部分输出差分射频信号;
使用放大器放大所述差分射频信号;和
使用连接在所述巴伦的初级部分和接地垫之间的第一保护电感器来保护所述放大器免受电气过应力的影响。
18.权利要求17所述的方法,还包括使用连接到所述巴伦的次级部分的第二保护电感器来保护所述放大器免受电气过应力的影响。
19.半导体管芯,包括:
多个垫,包括接地垫和被配置为接收射频信号的信号板;
巴伦,包括被配置为接收所述射频信号的初级部分和被配置为输出差分射频信号的次级部分;
配置为接收所述差分射频信号的一对场效应晶体管FET,所述一对FET包括第一FET和第二FET;和
多个输入电感器,包括电连接在所述巴伦的次级部分的第一端和第一FET的栅极之间的第一输入电感器,以及电连接在所述巴伦的次级部分的第二端和第二FET的栅极之间的第二输入电感器;以及
第一保护电感器,电连接在所述初级部分和所述接地垫之间,并且能够操作以保护该对FET免受电气过应力的影响。
20.权利要求19所述的半导体管芯,其中所述第一保护电感器电连接到所述初级部分的中间抽头。
CN202010364079.1A 2019-05-03 2020-04-30 耐电气过应力的微波放大器 Active CN111884610B (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US201962843152P 2019-05-03 2019-05-03
US62/843,152 2019-05-03
US16/840,097 2020-04-03
US16/840,097 US11469717B2 (en) 2019-05-03 2020-04-03 Microwave amplifiers tolerant to electrical overstress

Publications (2)

Publication Number Publication Date
CN111884610A CN111884610A (zh) 2020-11-03
CN111884610B true CN111884610B (zh) 2024-08-09

Family

ID=73016339

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010364079.1A Active CN111884610B (zh) 2019-05-03 2020-04-30 耐电气过应力的微波放大器

Country Status (2)

Country Link
US (1) US11469717B2 (zh)
CN (1) CN111884610B (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11271566B2 (en) * 2018-12-14 2022-03-08 Integrated Device Technology, Inc. Digital logic compatible inputs in compound semiconductor circuits
DE102020111863A1 (de) 2019-05-03 2020-11-05 Analog Devices International Unlimited Company Gegen elektrische Überlastung tolerante Mikrowellenverstärker
US11569224B2 (en) * 2020-12-14 2023-01-31 Vanguard International Semiconductor Corporation Semiconductor device and operation circuit
US11646576B2 (en) 2021-09-08 2023-05-09 Analog Devices International Unlimited Company Electrical overstress protection of microelectromechanical systems

Family Cites Families (73)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3914757A (en) * 1972-03-01 1975-10-21 Sangamo Electric Co Remote meter reading system using electric power lines
US5477188A (en) 1994-07-14 1995-12-19 Eni Linear RF power amplifier
US6525609B1 (en) 1998-11-12 2003-02-25 Broadcom Corporation Large gain range, high linearity, low noise MOS VGA
US6684065B2 (en) 1999-12-20 2004-01-27 Broadcom Corporation Variable gain amplifier for low voltage applications
US6693339B1 (en) 2003-03-14 2004-02-17 Motorola, Inc. Semiconductor component and method of manufacturing same
US6933546B2 (en) 2003-03-17 2005-08-23 Freescale Semiconductor, Inc. Semiconductor component
US6985002B2 (en) 2003-06-05 2006-01-10 Texas Instruments Incorporated System and method for input/output induced latch up detection
US7202114B2 (en) 2004-01-13 2007-04-10 Intersil Americas Inc. On-chip structure for electrostatic discharge (ESD) protection
US7285828B2 (en) 2005-01-12 2007-10-23 Intersail Americas Inc. Electrostatic discharge protection device for digital circuits and for applications with input/output bipolar voltage much higher than the core circuit power supply
US7368786B2 (en) 2005-03-11 2008-05-06 Freescale Semiconductor, Inc. Process insensitive ESD protection device
US7566914B2 (en) 2005-07-07 2009-07-28 Intersil Americas Inc. Devices with adjustable dual-polarity trigger- and holding-voltage/current for high level of electrostatic discharge protection in sub-micron mixed signal CMOS/BiCMOS integrated circuits
US7498664B2 (en) 2005-12-14 2009-03-03 Lsi Corporation Semiconductor package having increased resistance to electrostatic discharge
US20070296055A1 (en) 2006-06-23 2007-12-27 Albert Kuo Huei Yen Rf integrated circuit with esd protection and esd protection apparatus thereof
US8519432B2 (en) 2007-03-27 2013-08-27 Analog Devices, Inc. Semiconductor switch
EP1983572A1 (en) 2007-04-19 2008-10-22 Interuniversitair Microelektronica Centrum Vzw Transformer based ESD protection
US7795994B2 (en) * 2007-06-26 2010-09-14 Current Technologies, Llc Power line coupling device and method
US7868387B2 (en) 2008-06-13 2011-01-11 Analog Devices, Inc. Low leakage protection device
US8213142B2 (en) 2008-10-29 2012-07-03 Qualcomm, Incorporated Amplifier with improved ESD protection circuitry
US8222698B2 (en) 2009-06-29 2012-07-17 Analog Devices, Inc. Bond pad with integrated transient over-voltage protection
US8044457B2 (en) 2009-06-29 2011-10-25 Analog Devices, Inc. Transient over-voltage clamp
TWI400995B (zh) 2010-01-27 2013-07-01 Univ Nat Taiwan 帶通濾波式靜電放電防護電路
TWI404348B (zh) 2010-05-14 2013-08-01 Issc Technologies Corp 無線通訊收發機
US8432651B2 (en) 2010-06-09 2013-04-30 Analog Devices, Inc. Apparatus and method for electronic systems reliability
US8368116B2 (en) 2010-06-09 2013-02-05 Analog Devices, Inc. Apparatus and method for protecting electronic circuits
US8665571B2 (en) 2011-05-18 2014-03-04 Analog Devices, Inc. Apparatus and method for integrated circuit protection
US8629727B2 (en) 2010-12-23 2014-01-14 Marvell Internatonal Ltd. Techniques on input transformer to push the OP1dB higher in power amplifier design
US20120176708A1 (en) 2011-01-06 2012-07-12 Taiwan Semiconductor Manufacturing Company, Ltd. Esd protection devices and methods for forming esd protection devices
US8564065B2 (en) 2011-06-03 2013-10-22 Analog Devices, Inc. Circuit architecture for metal oxide semiconductor (MOS) output driver electrical overstress self-protection
US8576005B2 (en) * 2011-07-05 2013-11-05 Mediatek Inc. Transceiver and integrated circuit
US8680620B2 (en) 2011-08-04 2014-03-25 Analog Devices, Inc. Bi-directional blocking voltage protection devices and methods of forming the same
US8441104B1 (en) 2011-11-16 2013-05-14 Analog Devices, Inc. Electrical overstress protection using through-silicon-via (TSV)
US8947841B2 (en) 2012-02-13 2015-02-03 Analog Devices, Inc. Protection systems for integrated circuits and methods of forming the same
US8829570B2 (en) 2012-03-09 2014-09-09 Analog Devices, Inc. Switching device for heterojunction integrated circuits and methods of forming the same
US8946822B2 (en) 2012-03-19 2015-02-03 Analog Devices, Inc. Apparatus and method for protection of precision mixed-signal electronic circuits
US8610251B1 (en) 2012-06-01 2013-12-17 Analog Devices, Inc. Low voltage protection devices for precision transceivers and methods of forming the same
US8637899B2 (en) 2012-06-08 2014-01-28 Analog Devices, Inc. Method and apparatus for protection and high voltage isolation of low voltage communication interface terminals
US9088256B2 (en) 2012-08-08 2015-07-21 Analog Devices, Inc. Apparatus and methods for amplifier fault protection
US9076807B2 (en) 2012-09-11 2015-07-07 Analog Devices, Inc. Overvoltage protection for multi-chip module and system-in-package
US8796729B2 (en) 2012-11-20 2014-08-05 Analog Devices, Inc. Junction-isolated blocking voltage devices with integrated protection structures and methods of forming the same
US9123540B2 (en) 2013-01-30 2015-09-01 Analog Devices, Inc. Apparatus for high speed signal processing interface
US9006781B2 (en) 2012-12-19 2015-04-14 Analog Devices, Inc. Devices for monolithic data conversion interface protection and methods of forming the same
US8860080B2 (en) 2012-12-19 2014-10-14 Analog Devices, Inc. Interface protection device with integrated supply clamp and method of forming the same
US9275991B2 (en) 2013-02-13 2016-03-01 Analog Devices, Inc. Apparatus for transceiver signal isolation and voltage clamp
US9147677B2 (en) 2013-05-16 2015-09-29 Analog Devices Global Dual-tub junction-isolated voltage clamp devices for protecting low voltage circuitry connected between high voltage interface pins and methods of forming the same
US9171832B2 (en) 2013-05-24 2015-10-27 Analog Devices, Inc. Analog switch with high bipolar blocking voltage in low voltage CMOS process
US9293912B2 (en) 2013-09-11 2016-03-22 Analog Devices, Inc. High voltage tolerant supply clamp
US9866196B2 (en) * 2013-11-13 2018-01-09 Skyworks Solutions, Inc. Quasi-differential RF power amplifier with high level of harmonics rejection
US9438033B2 (en) 2013-11-19 2016-09-06 Analog Devices, Inc. Apparatus and method for protecting RF and microwave integrated circuits
US9634482B2 (en) 2014-07-18 2017-04-25 Analog Devices, Inc. Apparatus and methods for transient overstress protection with active feedback
US9478608B2 (en) 2014-11-18 2016-10-25 Analog Devices, Inc. Apparatus and methods for transceiver interface overvoltage clamping
US10068894B2 (en) 2015-01-12 2018-09-04 Analog Devices, Inc. Low leakage bidirectional clamps and methods of forming the same
US9929142B2 (en) 2015-03-04 2018-03-27 Analog Devices, Inc. Apparatus and methods for overvoltage switches with active leakage current compensation
US9871373B2 (en) 2015-03-27 2018-01-16 Analog Devices Global Electrical overstress recording and/or harvesting
US10557881B2 (en) 2015-03-27 2020-02-11 Analog Devices Global Electrical overstress reporting
US9673187B2 (en) 2015-04-07 2017-06-06 Analog Devices, Inc. High speed interface protection apparatus
US9831666B2 (en) 2015-05-15 2017-11-28 Analog Devices, Inc. Apparatus and methods for electrostatic discharge protection of radio frequency interfaces
US20170092637A1 (en) * 2015-09-30 2017-03-30 Infineon Technologies Ag Semiconductor ESD Protection Device and Method
US10158029B2 (en) 2016-02-23 2018-12-18 Analog Devices, Inc. Apparatus and methods for robust overstress protection in compound semiconductor circuit applications
US10199369B2 (en) 2016-03-04 2019-02-05 Analog Devices, Inc. Apparatus and methods for actively-controlled transient overstress protection with false condition shutdown
US9831233B2 (en) 2016-04-29 2017-11-28 Analog Devices Global Apparatuses for communication systems transceiver interfaces
US10566409B2 (en) * 2016-05-10 2020-02-18 Dumitru Nicolae LESENCO Integrated quantized inductor and fabrication method thereof
US10177566B2 (en) 2016-06-21 2019-01-08 Analog Devices, Inc. Apparatus and methods for actively-controlled trigger and latch release thyristor
US10734806B2 (en) 2016-07-21 2020-08-04 Analog Devices, Inc. High voltage clamps with transient activation and activation release control
US10529518B2 (en) 2016-09-19 2020-01-07 Analog Devices Global Protection schemes for MEMS switch devices
US10861845B2 (en) * 2016-12-06 2020-12-08 Analog Devices, Inc. Active interface resistance modulation switch
TWI800014B (zh) * 2016-12-29 2023-04-21 美商天工方案公司 前端系統及相關裝置、積體電路、模組及方法
US10319714B2 (en) 2017-01-24 2019-06-11 Analog Devices, Inc. Drain-extended metal-oxide-semiconductor bipolar switch for electrical overstress protection
US10404059B2 (en) 2017-02-09 2019-09-03 Analog Devices, Inc. Distributed switches to suppress transient electrical overstress-induced latch-up
US10249609B2 (en) 2017-08-10 2019-04-02 Analog Devices, Inc. Apparatuses for communication systems transceiver interfaces
US10608431B2 (en) 2017-10-26 2020-03-31 Analog Devices, Inc. Silicon controlled rectifier dynamic triggering and shutdown via control signal amplification
US10581423B1 (en) 2018-08-17 2020-03-03 Analog Devices Global Unlimited Company Fault tolerant low leakage switch
US10700056B2 (en) 2018-09-07 2020-06-30 Analog Devices, Inc. Apparatus for automotive and communication systems transceiver interfaces
US11387648B2 (en) 2019-01-10 2022-07-12 Analog Devices International Unlimited Company Electrical overstress protection with low leakage current for high voltage tolerant high speed interfaces

Also Published As

Publication number Publication date
US11469717B2 (en) 2022-10-11
US20200350875A1 (en) 2020-11-05
CN111884610A (zh) 2020-11-03

Similar Documents

Publication Publication Date Title
CN111884610B (zh) 耐电气过应力的微波放大器
US6665159B2 (en) Semiconductor integrated circuit device
Margomenos et al. GaN technology for E, W and G-band applications
US20060226905A1 (en) Stacked RF power amplifier
Micovic et al. GaN MMIC technology for microwave and millimeter-wave applications
Leblanc et al. 6W Ka band power amplifier and 1.2 dB NF X-band amplifier using a 100nm GaN/Si process
CN105281689A (zh) 包括异质结双极晶体管(hbt)及互补金属氧化物半导体(cmos)装置的混合功率放大器
WO2018179088A1 (ja) 電流再利用型電界効果トランジスタ増幅器
US11606067B2 (en) Dual voltage switched branch LNA architecture
US20080285195A1 (en) Integrated circuit with protection against electrostatic damage
US12068721B2 (en) Monolithic microwave integrated circuits tolerant to electrical overstress
US20080290951A1 (en) Semiconductor device
JP2006114618A (ja) 高周波集積回路
CN110476353B (zh) 二极管线性化电路
EP2582042A1 (en) A low-noise amplifier circuit
Choi et al. A dual band CMOS power amplifier for an S/X band high resolution radar system
US11296655B2 (en) Power amplifier biasing network providing gain expansion
US20040080881A1 (en) Integrated circuit with electrostatic discharge protection
US10778159B2 (en) Power amplifier and compound semiconductor device
US10156864B2 (en) Integrated circuit with an amplifier MOSFET
Kobayashi et al. Monolithic regulated self-biased HEMT MMIC's
Wakejima et al. C-band GaAs FET power amplifiers with 70-W output power and 50% PAE for satellite communication use
US9093966B1 (en) ESD protection circuit for cascode amplifiers
US20230402975A1 (en) System, method, circuit, and device for millimeter-wave multi-stage amplifier with inductive coupling
US11309852B2 (en) Power amplifier and compound semiconductor device

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant