CN111881619A - 基于matlab工具箱的bp神经网络实现管件冲蚀缺陷的预测方法 - Google Patents
基于matlab工具箱的bp神经网络实现管件冲蚀缺陷的预测方法 Download PDFInfo
- Publication number
- CN111881619A CN111881619A CN202010669371.4A CN202010669371A CN111881619A CN 111881619 A CN111881619 A CN 111881619A CN 202010669371 A CN202010669371 A CN 202010669371A CN 111881619 A CN111881619 A CN 111881619A
- Authority
- CN
- China
- Prior art keywords
- pipe
- neural network
- pipe fitting
- erosion
- model
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 230000003628 erosive effect Effects 0.000 title claims abstract description 61
- 238000000034 method Methods 0.000 title claims abstract description 42
- 238000013528 artificial neural network Methods 0.000 title claims abstract description 34
- 230000007547 defect Effects 0.000 title claims abstract description 22
- 238000012549 training Methods 0.000 claims abstract description 28
- 238000003062 neural network model Methods 0.000 claims abstract description 6
- 238000013461 design Methods 0.000 claims description 8
- 238000010276 construction Methods 0.000 claims description 6
- 239000004576 sand Substances 0.000 claims description 5
- 239000007788 liquid Substances 0.000 claims description 4
- 239000002253 acid Substances 0.000 claims description 3
- 238000004364 calculation method Methods 0.000 claims description 3
- 238000012360 testing method Methods 0.000 claims description 2
- 230000020477 pH reduction Effects 0.000 claims 1
- 238000003466 welding Methods 0.000 claims 1
- 238000007689 inspection Methods 0.000 abstract description 6
- 230000007797 corrosion Effects 0.000 abstract 1
- 238000005260 corrosion Methods 0.000 abstract 1
- 230000001186 cumulative effect Effects 0.000 description 4
- 238000011156 evaluation Methods 0.000 description 3
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 210000002569 neuron Anatomy 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F30/00—Computer-aided design [CAD]
- G06F30/20—Design optimisation, verification or simulation
- G06F30/27—Design optimisation, verification or simulation using machine learning, e.g. artificial intelligence, neural networks, support vector machines [SVM] or training a model
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F30/00—Computer-aided design [CAD]
- G06F30/10—Geometric CAD
- G06F30/17—Mechanical parametric or variational design
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/08—Learning methods
- G06N3/084—Backpropagation, e.g. using gradient descent
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F2113/00—Details relating to the application field
- G06F2113/14—Pipes
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F2119/00—Details relating to the type or aim of the analysis or the optimisation
- G06F2119/04—Ageing analysis or optimisation against ageing
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- Geometry (AREA)
- General Physics & Mathematics (AREA)
- Evolutionary Computation (AREA)
- General Engineering & Computer Science (AREA)
- Software Systems (AREA)
- Artificial Intelligence (AREA)
- Computer Hardware Design (AREA)
- Health & Medical Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Mathematical Optimization (AREA)
- Life Sciences & Earth Sciences (AREA)
- Mathematical Analysis (AREA)
- Biomedical Technology (AREA)
- Biophysics (AREA)
- Computational Linguistics (AREA)
- Data Mining & Analysis (AREA)
- Pure & Applied Mathematics (AREA)
- Molecular Biology (AREA)
- Computing Systems (AREA)
- Mathematical Physics (AREA)
- Computational Mathematics (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Medical Informatics (AREA)
- Management, Administration, Business Operations System, And Electronic Commerce (AREA)
Abstract
Description
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010669371.4A CN111881619A (zh) | 2020-07-13 | 2020-07-13 | 基于matlab工具箱的bp神经网络实现管件冲蚀缺陷的预测方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010669371.4A CN111881619A (zh) | 2020-07-13 | 2020-07-13 | 基于matlab工具箱的bp神经网络实现管件冲蚀缺陷的预测方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
CN111881619A true CN111881619A (zh) | 2020-11-03 |
Family
ID=73151447
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202010669371.4A Pending CN111881619A (zh) | 2020-07-13 | 2020-07-13 | 基于matlab工具箱的bp神经网络实现管件冲蚀缺陷的预测方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN111881619A (zh) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112580264A (zh) * | 2020-12-25 | 2021-03-30 | 中国人民解放军国防科技大学 | 基于bp神经网络算法的损伤点尺寸分布预测方法及系统 |
CN116305949A (zh) * | 2023-03-21 | 2023-06-23 | 河海大学 | 一种基于表单程序实现供水管线破坏与服役寿命预测方法 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08178172A (ja) * | 1994-12-27 | 1996-07-12 | Toshiba Corp | 機器及び配管装置類のエロージョン・コロージョンによる減肉計算及び評価法 |
CN103455682A (zh) * | 2013-09-12 | 2013-12-18 | 西南石油大学 | 一种预测高温高压井腐蚀套管剩余寿命的方法 |
CN104063588A (zh) * | 2014-06-12 | 2014-09-24 | 东北大学 | 基于多源数据融合的管道腐蚀缺陷尺寸的预测系统及方法 |
CN109596709A (zh) * | 2018-12-19 | 2019-04-09 | 张磊 | 一种固定式压力容器的检测方法 |
CN110705176A (zh) * | 2019-09-02 | 2020-01-17 | 北京市燃气集团有限责任公司 | 燃气管道剩余寿命预测方法和装置 |
CN111339718A (zh) * | 2020-03-03 | 2020-06-26 | 中联煤层气有限责任公司 | 一种管件冲蚀速率计算方法、装置及服务器 |
-
2020
- 2020-07-13 CN CN202010669371.4A patent/CN111881619A/zh active Pending
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08178172A (ja) * | 1994-12-27 | 1996-07-12 | Toshiba Corp | 機器及び配管装置類のエロージョン・コロージョンによる減肉計算及び評価法 |
CN103455682A (zh) * | 2013-09-12 | 2013-12-18 | 西南石油大学 | 一种预测高温高压井腐蚀套管剩余寿命的方法 |
CN104063588A (zh) * | 2014-06-12 | 2014-09-24 | 东北大学 | 基于多源数据融合的管道腐蚀缺陷尺寸的预测系统及方法 |
CN109596709A (zh) * | 2018-12-19 | 2019-04-09 | 张磊 | 一种固定式压力容器的检测方法 |
CN110705176A (zh) * | 2019-09-02 | 2020-01-17 | 北京市燃气集团有限责任公司 | 燃气管道剩余寿命预测方法和装置 |
CN111339718A (zh) * | 2020-03-03 | 2020-06-26 | 中联煤层气有限责任公司 | 一种管件冲蚀速率计算方法、装置及服务器 |
Non-Patent Citations (2)
Title |
---|
王威;陈国民;陈琦;鲁瑜;: "海底管道腐蚀速率预测及计算分析", 海洋石油, no. 01 * |
苏欣;杨君;袁宗明;胡安鑫;: "腐蚀管道的可靠性评价", 石油工程建设, no. 06 * |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112580264A (zh) * | 2020-12-25 | 2021-03-30 | 中国人民解放军国防科技大学 | 基于bp神经网络算法的损伤点尺寸分布预测方法及系统 |
CN116305949A (zh) * | 2023-03-21 | 2023-06-23 | 河海大学 | 一种基于表单程序实现供水管线破坏与服役寿命预测方法 |
CN116305949B (zh) * | 2023-03-21 | 2024-01-30 | 河海大学 | 一种基于表单程序实现供水管线破坏与服役寿命预测方法 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN113239504B (zh) | 一种基于优化神经网络的管道腐蚀缺陷预测方法 | |
CN111881619A (zh) | 基于matlab工具箱的bp神经网络实现管件冲蚀缺陷的预测方法 | |
CN111950099A (zh) | 设备材料力学性能测试方法、系统、介质、计算机设备 | |
Chin et al. | Failure pressure prediction of pipeline with single corrosion defect using artificial neural network | |
CN106125714A (zh) | 结合bp神经网络与二参数威布尔分布的故障率预测方法 | |
KR102008962B1 (ko) | 상수도시설의 최적 자산관리시스템 | |
CN112417632B (zh) | 一种城镇燃气管网的仿真计算方法及系统 | |
CN108537376B (zh) | 基于rs-pso-grnn的埋地油气管道土壤腐蚀预测方法 | |
CN110705176A (zh) | 燃气管道剩余寿命预测方法和装置 | |
CN110702782A (zh) | 一种用于石油管道的无损检测系统及其检测方法 | |
Khalajestani et al. | Predicting the limit pressure capacity of pipe elbows containing single defects | |
CN105975678A (zh) | 一种基于参数化模型的油气管道剩余强度预测方法 | |
CN109886506B (zh) | 一种供水管网爆管风险分析方法 | |
CN101226606B (zh) | 管筒形零件机械扩径工艺参数的优化方法 | |
CN110766248B (zh) | 基于shel和区间直觉模糊评价的车间人因可靠性评估方法 | |
CN118094147B (zh) | 基于变分模态分解和双向长短期网络的管道泄漏定位方法 | |
Parvizsedghy et al. | Deterioration assessment models for water pipelines | |
CN112131766B (zh) | 一种油井管特殊螺纹过盈量优化设计方法 | |
CN117472789A (zh) | 基于集成学习的软件缺陷预测模型构建方法和装置 | |
CN114880928A (zh) | 一种基于神经网络模型定位供水管网堵塞的方法和系统 | |
CN104572455B (zh) | 一种基于马尔科夫链的构件化软件可靠性评估方法 | |
CN112347583A (zh) | 一种增压站含双缺陷弯管极限内压的计算方法 | |
Jibreen et al. | Investigation of Factors Affecting Remaining Useful Life of Prestressed Concrete Cylinder Pipes | |
CN102609602A (zh) | 多消防流量测试工况约束下给水管网管道粗糙度校核方法 | |
CN118798031A (zh) | 一种海底管道剩余强度预测方法、设备及存储介质 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
CB02 | Change of applicant information | ||
CB02 | Change of applicant information |
Country or region after: China Address after: Room 1-7, 12 / F, building 1, No. 1268, middle section of Tianfu Avenue, high tech Zone, Chengdu, Sichuan 610041 Applicant after: Sichuan Zhongke Lutong Technology Co.,Ltd. Address before: Room 1-7, 12 / F, building 1, No. 1268, middle section of Tianfu Avenue, high tech Zone, Chengdu, Sichuan 610041 Applicant before: Chengdu Nautilus Big Data Technology Co.,Ltd. Country or region before: China |
|
RJ01 | Rejection of invention patent application after publication | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20201103 |