CN111881333A - A Method for Determining the Spatial Center of Gravity of Regional Soil Erosion - Google Patents

A Method for Determining the Spatial Center of Gravity of Regional Soil Erosion Download PDF

Info

Publication number
CN111881333A
CN111881333A CN202010704812.XA CN202010704812A CN111881333A CN 111881333 A CN111881333 A CN 111881333A CN 202010704812 A CN202010704812 A CN 202010704812A CN 111881333 A CN111881333 A CN 111881333A
Authority
CN
China
Prior art keywords
erosion
spatial
soil erosion
intensity
soil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202010704812.XA
Other languages
Chinese (zh)
Inventor
王友胜
刘冰
马海宽
成晨
张晓明
王昭艳
张磊
解刚
殷小琳
赵阳
辛艳
张永娥
邢先双
董明明
杜鹏飞
焦剑
郭乾坤
任正龑
刘卉芳
孟琳
赵莹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China Institute of Water Resources and Hydropower Research
Original Assignee
China Institute of Water Resources and Hydropower Research
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China Institute of Water Resources and Hydropower Research filed Critical China Institute of Water Resources and Hydropower Research
Priority to CN202010704812.XA priority Critical patent/CN111881333A/en
Publication of CN111881333A publication Critical patent/CN111881333A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F16/00Information retrieval; Database structures therefor; File system structures therefor
    • G06F16/90Details of database functions independent of the retrieved data types
    • G06F16/904Browsing; Visualisation therefor
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F16/00Information retrieval; Database structures therefor; File system structures therefor
    • G06F16/20Information retrieval; Database structures therefor; File system structures therefor of structured data, e.g. relational data
    • G06F16/29Geographical information databases

Landscapes

  • Engineering & Computer Science (AREA)
  • Databases & Information Systems (AREA)
  • Theoretical Computer Science (AREA)
  • Data Mining & Analysis (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Remote Sensing (AREA)
  • Pit Excavations, Shoring, Fill Or Stabilisation Of Slopes (AREA)

Abstract

本发明公开了一种区域土壤侵蚀空间重心确定的方法,包括以下步骤:采集测定区域内的土壤侵蚀强度分级空间栅格数据并规范其侵蚀强度代码;将其参考坐标系规范化为地理坐标系;将地理坐标系下的土壤侵蚀强度分级空间栅格数据转化为ASCII格式;按照公式分别计算区域土壤侵蚀空间重心坐标;将计算得到的重心坐标在ArcGIS中转化为shp格式的点文件,并与不同时间段的土壤侵蚀强度分级空间栅格数据底图叠加,作图展示,进行不同时间段区域土壤侵蚀空间重心的比较。本发明可以为快速定量掌握宏观层面、快速掌握侵蚀分布格局提供有效支撑。可以定量的说明区域侵蚀的空间重心迁移,为土壤侵蚀格局变化的掌握提供科学参考。

Figure 202010704812

The invention discloses a method for determining the spatial gravity center of regional soil erosion, comprising the following steps: collecting soil erosion intensity grading spatial grid data in a measurement area and standardizing its erosion intensity code; normalizing its reference coordinate system into a geographic coordinate system; Convert the spatial raster data of soil erosion intensity classification under the geographic coordinate system into ASCII format; calculate the spatial barycentric coordinates of regional soil erosion according to the formula; convert the calculated barycentric coordinates into shp format point files in ArcGIS, and different from the The soil erosion intensity grading spatial raster data basemap of the time period is superimposed and displayed as a graph to compare the spatial gravity center of soil erosion in different time periods. The invention can provide effective support for quickly and quantitatively grasping the macroscopic level and quickly grasping the erosion distribution pattern. It can quantitatively explain the spatial gravity shift of regional erosion, and provide a scientific reference for the mastery of soil erosion pattern changes.

Figure 202010704812

Description

一种区域土壤侵蚀空间重心确定的方法A Method for Determining the Spatial Center of Gravity of Regional Soil Erosion

技术领域technical field

本发明涉及环境保护技术领域,尤其涉及土地保护,具体为一种区域土壤侵蚀空间重心确定的方法,涉及不同侵蚀强度对土壤侵蚀空间重心的影响。The invention relates to the technical field of environmental protection, in particular to land protection, in particular to a method for determining the gravity center of a regional soil erosion space, and relates to the influence of different erosion intensities on the soil erosion space gravity center.

背景技术Background technique

空间重心是综合考虑各个方向作用力的大小后得到的重心点,其移动的方向表现为向作用力大的方向移动,其移动的方向反映了变化格局的方向。其空间位置主要受两大因素影响,即不同方位的地理位置和属性变化。The spatial center of gravity is the center of gravity point obtained after comprehensively considering the magnitude of the force in all directions. The direction of its movement is to move in the direction of the larger force, and the direction of its movement reflects the direction of the change pattern. Its spatial location is mainly affected by two factors, that is, the geographic location and attribute changes in different directions.

土壤侵蚀强度图综合反映了不同侵蚀强度在空间上的分布格局。由于不同侵蚀强度对地球表层环境的影响是有所差异的,主要表现为高级别侵蚀强度土壤流失量多、养分丧失快、地力下降更明显。受地形地貌、土壤类型、地表植被、人为耕作以及降雨等多方面的影响,土壤侵蚀的空间异质性明显,区域之间侵蚀强度差异显著。The soil erosion intensity map comprehensively reflects the spatial distribution pattern of different erosion intensities. Because the impact of different erosion intensities on the earth's surface environment is different, the main manifestations are that high-level erosion intensities have more soil loss, faster nutrient loss, and more obvious decline in soil fertility. Affected by topography, soil type, surface vegetation, anthropogenic cultivation and rainfall, the spatial heterogeneity of soil erosion is obvious, and the erosion intensity varies significantly between regions.

在现有技术中对区域土壤侵蚀空间重心的分析目前仅存在定性的描述,缺少定量的体现。对于土壤侵蚀影响因子的分析中存在降雨侵蚀力重心的计算方法,但由于土壤侵蚀强度与侵蚀力属不同的两类要素,降雨侵蚀力的数值是连续的数值,但对土壤侵蚀强度,由于土壤侵蚀强度的分级中共涉及了6级强度级别,不同强度由于对侵蚀的影响是不一样的,因此,需要在重心计算时将不同强度的影响予以体现,原有计算的公式对区域土壤侵蚀空间重心的计算不再适用,无法满足不同侵蚀强度重心反映的要求。The analysis of the spatial gravity center of regional soil erosion in the prior art currently only has a qualitative description and lacks a quantitative representation. There is a calculation method for the gravity center of rainfall erosive force in the analysis of soil erosion influencing factors, but since soil erosion intensity and erosive force belong to two different types of elements, the numerical value of rainfall erosive force is a continuous value, but for soil erosion intensity, due to soil erosion The classification of erosion intensity involves a total of 6 intensity levels. Different intensities have different effects on erosion. Therefore, the influence of different intensities needs to be reflected in the calculation of the center of gravity. The calculation of , is no longer applicable, and cannot meet the requirements reflected by the center of gravity of different erosion intensities.

发明内容SUMMARY OF THE INVENTION

本发明的目的在于提出一种考虑不同侵蚀强度权重的区域土壤侵蚀空间重心确定方法。The purpose of the present invention is to propose a method for determining the spatial centroid of soil erosion in consideration of different erosion intensity weights.

本发明是通过以下技术方案实现的:The present invention is achieved through the following technical solutions:

一种区域土壤侵蚀空间重心确定的方法,A method for determining the spatial centroid of regional soil erosion,

步骤一:采集测定区域内的土壤侵蚀强度分级空间栅格数据并规范其侵蚀强度代码:各个土壤侵蚀强度级别为:微度侵蚀、轻度侵蚀、中度侵蚀、强烈侵蚀、极强烈侵蚀、剧烈侵蚀,将各个级别对应的侵蚀强度代码分别规范为11、12、13、14、15、16;Step 1: Collect soil erosion intensity classification spatial raster data in the measurement area and standardize its erosion intensity code: each soil erosion intensity level is: slight erosion, mild erosion, moderate erosion, strong erosion, extremely strong erosion, severe erosion Erosion, the erosion intensity codes corresponding to each level are standardized as 11, 12, 13, 14, 15, 16;

步骤二:检查土壤侵蚀强度分级空间栅格数据的参考坐标系,将其规范化为地理坐标系:Step 2: Check the reference coordinate system of the soil erosion intensity graded spatial raster data and normalize it to a geographic coordinate system:

步骤三:将地理坐标系下的土壤侵蚀强度分级空间栅格数据转化为ASCII格式;Step 3: Convert the spatial raster data of soil erosion intensity classification under the geographic coordinate system into ASCII format;

步骤四:测定区域内土壤侵蚀空间重心的计算:按照式(1)和式(2)分别计算区域土壤侵蚀空间重心坐标:包括经度坐标和纬度坐标,Step 4: Calculation of the spatial gravity center of soil erosion in the determination area: Calculate the spatial gravity center coordinates of regional soil erosion according to formula (1) and formula (2) respectively: including longitude coordinates and latitude coordinates,

Figure BDA0002594326490000021
Figure BDA0002594326490000021

其中,权重系数分别为:Among them, the weight coefficients are:

Figure BDA0002594326490000022
Figure BDA0002594326490000022

满足

Figure BDA0002594326490000023
Satisfy
Figure BDA0002594326490000023

式中:

Figure BDA0002594326490000024
表示侵蚀空间重心的经度坐标,单位为°(十进制);ki表示第i个栅格的权重系数;j表示第i个栅格的侵蚀强度代码,j等于11、12、13、14、15、16时,分别表示微度侵蚀、轻度侵蚀、中度侵蚀、强烈侵蚀、极强烈侵蚀、剧烈侵蚀;Ei表示第i个栅格单元中心的经度,单位为°(十进制);n表示栅格的总数;where:
Figure BDA0002594326490000024
Indicates the longitude coordinate of the barycenter of the erosion space, in ° (decimal); ki represents the weight coefficient of the ith grid; j represents the erosion intensity code of the ith grid, and j is equal to 11, 12, 13, 14, 15 , 16, respectively represent slight erosion, mild erosion, moderate erosion, strong erosion, extremely strong erosion, severe erosion; E i represents the longitude of the center of the i-th grid cell, in ° (decimal); n represents the total number of grids;

Figure BDA0002594326490000025
Figure BDA0002594326490000025

式中:

Figure BDA0002594326490000026
表示侵蚀空间重心的纬度坐标,单位为°(十进制),Ni表示第i个栅格单元中心的纬度坐标,单位为°(十进制);ki、n含义同上。where:
Figure BDA0002594326490000026
Indicates the latitude coordinate of the barycenter of the erosion space, the unit is ° (decimal), Ni represents the latitude coordinate of the center of the ith grid cell, the unit is ° (decimal); k i and n have the same meaning as above.

进一步的方案,还包括步骤五:将计算得到的重心坐标在ArcGIS中转化为shp格式的点文件,并与土壤侵蚀强度分级空间栅格数据底图叠加,作图展示。The further scheme also includes step 5: converting the calculated barycentric coordinates into a point file in shp format in ArcGIS, and superimposing it with the base map of soil erosion intensity grading spatial raster data for display.

进一步的,步骤五:将计算得到的重心坐标在ArcGIS中转化为shp格式的点文件,并与不同时间段的土壤侵蚀强度分级空间栅格数据底图叠加,作图展示,进行不同时间段区域土壤侵蚀空间重心的比较。Further, step 5: Convert the calculated barycentric coordinates into a point file in shp format in ArcGIS, and overlay it with the base map of the soil erosion intensity graded spatial raster data in different time periods, and display it as a map for different time periods. Comparison of the spatial centroids of soil erosion.

进一步的,步骤一中所述土壤侵蚀强度分级空间栅格数据为TIFF格式,以不同色块表示不同土壤侵蚀强度级别。Further, the soil erosion intensity grading spatial raster data in step 1 is in TIFF format, and different soil erosion intensity levels are represented by different color blocks.

本发明的有益效果是:The beneficial effects of the present invention are:

可以为快速定量掌握宏观层面、快速掌握侵蚀分布格局提供有效支撑。在一期土壤侵蚀重心的基础上,通过对多期土壤侵蚀空间重心的变化分析,可以定量的说明区域侵蚀的空间重心迁移,为土壤侵蚀格局变化的掌握提供科学参考。It can provide effective support for the rapid quantitative grasp of the macro level and the rapid grasp of the erosion distribution pattern. On the basis of the soil erosion center of gravity in the first period, through the analysis of the change of the spatial gravity center of soil erosion in multiple periods, the spatial gravity center migration of regional erosion can be quantitatively explained, which provides a scientific reference for the mastery of soil erosion pattern changes.

附图说明Description of drawings

图1为ASCII格式文件示意;Figure 1 is a schematic diagram of an ASCII format file;

图2为2010年区域土壤侵蚀重心示意图(底图为2010年土壤侵蚀强度分布图,星号表示重心位置);Figure 2 is a schematic diagram of the center of gravity of regional soil erosion in 2010 (the bottom image is the distribution map of soil erosion intensity in 2010, and the asterisk indicates the location of the center of gravity);

图3为2010-2020年区域土壤侵蚀空间重心变化图示(底图为2020年土壤侵蚀强度分布图,星号表示重心位置)。Figure 3 shows the change of the spatial center of gravity of regional soil erosion from 2010 to 2020 (the bottom image is the distribution map of soil erosion intensity in 2020, and the asterisk indicates the location of the center of gravity).

具体实施方式Detailed ways

本发明所涉及的区域土壤侵蚀空间重心确定的方法,其具体实施方式结合案例说明具体操作步骤:The method for determining the center of gravity of the regional soil erosion space involved in the present invention, the specific implementation of which is combined with a case to illustrate the specific operation steps:

步骤一:采集测定区域内的土壤侵蚀强度分级空间栅格数据并规范其强度代码:各个土壤侵蚀强度级别为:微度侵蚀、轻度侵蚀、中度侵蚀、强烈侵蚀、极强烈侵蚀、剧烈侵蚀,将各个级别对应的强度代码分别规范为11、12、13、14、15、16;对于存在代码不规范的,将其规范为11-16的六级代码。Step 1: Collect spatial raster data of soil erosion intensity in the measurement area and standardize its intensity code: Each soil erosion intensity level is: slight erosion, mild erosion, moderate erosion, strong erosion, extremely strong erosion, severe erosion , the strength codes corresponding to each level are standardized as 11, 12, 13, 14, 15, and 16; for those with irregular codes, they are standardized as six-level codes of 11-16.

步骤二:检查土壤侵蚀强度分级空间栅格数据的参考坐标系,若其坐标系为投影坐标系或坐标系缺失,将其规范化为地理坐标系(Geographic Coordinate Systems)。Step 2: Check the reference coordinate system of the soil erosion intensity grading spatial raster data. If the coordinate system is a projected coordinate system or the coordinate system is missing, normalize it to a geographic coordinate system (Geographic Coordinate Systems).

步骤三:将地理坐标系下tiff格式的土壤侵蚀强度空间栅格数据转化为ASCII格式;转化后的ASCII格式见图1。Step 3: Convert the spatial raster data of soil erosion intensity in tiff format under the geographic coordinate system into ASCII format; the converted ASCII format is shown in Figure 1.

步骤四:测定区域内土壤侵蚀空间重心的计算:根据头文件中的起始点坐标和栅格文件的栅格大小,按照式(1)和式(2)分别计算土壤侵蚀的空间重心(经度和纬度)。头文件中的xllcorner和yllcorner表示栅格文件左下角的坐标,cellsize表示栅格大小(°)。Step 4: Calculation of the spatial gravity center of soil erosion in the measurement area: According to the coordinates of the starting point in the header file and the grid size of the grid file, calculate the spatial gravity center of soil erosion (longitude and latitude). The xllcorner and yllcorner in the header file represent the coordinates of the lower left corner of the grid file, and cellsize represents the grid size (°).

Figure BDA0002594326490000041
Figure BDA0002594326490000041

其中,权重系数分别为:Among them, the weight coefficients are:

Figure BDA0002594326490000042
Figure BDA0002594326490000042

满足

Figure BDA0002594326490000043
Satisfy
Figure BDA0002594326490000043

式中:

Figure BDA0002594326490000044
表示侵蚀空间重心的经度坐标,单位为°(十进制);ki表示第i个栅格的权重系数;j表示第i个栅格的侵蚀强度代码,j等于11、12、13、14、15、16时,分别表示微度侵蚀、轻度侵蚀、中度侵蚀、强烈侵蚀、极强烈侵蚀、剧烈侵蚀;Ei表示第i个栅格单元中心的经度,单位为°(十进制);n表示总栅格数。where:
Figure BDA0002594326490000044
Indicates the longitude coordinate of the barycenter of the erosion space, in ° (decimal); ki represents the weight coefficient of the ith grid; j represents the erosion intensity code of the ith grid, and j is equal to 11, 12, 13, 14, 15 , 16, respectively represent slight erosion, mild erosion, moderate erosion, strong erosion, extremely strong erosion, severe erosion; E i represents the longitude of the center of the i-th grid cell, in ° (decimal); n represents The total number of rasters.

Figure BDA0002594326490000045
Figure BDA0002594326490000045

式中:

Figure BDA0002594326490000046
表示侵蚀空间重心的纬度坐标,单位为°(十进制),Ni表示第i个栅格单元中心的纬度坐标,单位为°(十进制);n、ki含义同上。where:
Figure BDA0002594326490000046
Indicates the latitude coordinate of the barycenter of the erosion space, in ° (decimal), and N i represents the latitude coordinate of the center of the i-th grid cell, in ° (in decimal); the meanings of n and ki are the same as above.

第五,将计算得到的重心坐标(经度E和纬度N)在ArcGIS中转化为shp格式的点文件,并与不同土壤侵蚀强度的底图叠加,作图展示(图2、图3)。Fifth, the calculated barycentric coordinates (longitude E and latitude N) are converted into point files in shp format in ArcGIS, and superimposed with the basemaps of different soil erosion intensities for display (Figure 2, Figure 3).

2010年的重心计算结果:E=113.5992°N=41.6614°Calculation result of center of gravity in 2010: E=113.5992°N=41.6614°

2020年的重心计算结果:E=117.4354°N=40.8273°The calculation result of the center of gravity in 2020: E=117.4354°N=40.8273°

从重心的数据可以看出,2010-2020年土壤侵蚀强度的空间重心向东南迁移,向东迁移3.8362°(117.4354°-113.5992°),向南迁移0.8341°(41.6614°-40.8273°)。From the data of the center of gravity, it can be seen that the spatial center of gravity of soil erosion intensity from 2010 to 2020 moved to the southeast, 3.8362° (117.4354°-113.5992°) to the east, and 0.8341° (41.6614°-40.8273°) to the south.

构建可以反映区域不同土壤侵蚀空间重心的方法,可以实现对区域土壤侵蚀空间重心位置的定量分析,进一步对不同年份空间重心位置迁移变化的分析,可以更好的区域土壤侵蚀强度的在空间上的变化方向,更好的掌握区域土壤侵蚀强度的空间变化,为宏观层面水土保持措施的布设、区域水土保持规划的编制提供科学支撑,更加精准的防治土壤侵蚀。Constructing a method that can reflect the spatial gravity center of different soil erosion in the region can realize quantitative analysis of the spatial gravity center position of regional soil erosion. Change direction, better grasp the spatial changes of regional soil erosion intensity, provide scientific support for the deployment of macro-level soil and water conservation measures, and the preparation of regional soil and water conservation plans, and more accurately prevent soil erosion.

Claims (4)

1.一种区域土壤侵蚀空间重心确定的方法,其特征在于:包括以下步骤:1. a method for determining the center of gravity of regional soil erosion space, is characterized in that: comprise the following steps: 步骤一:采集测定区域内的土壤侵蚀强度分级空间栅格数据并规范其侵蚀强度代码:各个土壤侵蚀强度级别为:微度侵蚀、轻度侵蚀、中度侵蚀、强烈侵蚀、极强烈侵蚀、剧烈侵蚀,将各个级别对应的侵蚀强度代码分别规范为11、12、13、14、15、16;Step 1: Collect soil erosion intensity classification spatial raster data in the measurement area and standardize its erosion intensity code: each soil erosion intensity level is: slight erosion, mild erosion, moderate erosion, strong erosion, extremely strong erosion, severe erosion Erosion, standardize the erosion intensity codes corresponding to each level as 11, 12, 13, 14, 15, 16; 步骤二:检查土壤侵蚀强度分级空间栅格数据的参考坐标系,将其规范化为地理坐标系:Step 2: Check the reference coordinate system of the soil erosion intensity graded spatial raster data and normalize it to a geographic coordinate system: 步骤三:将地理坐标系下的土壤侵蚀强度分级空间栅格数据转化为ASCII格式;Step 3: Convert the spatial raster data of soil erosion intensity classification under the geographic coordinate system into ASCII format; 步骤四:测定区域内土壤侵蚀空间重心的计算:按照式(1)和式(2)分别计算区域土壤侵蚀空间重心坐标:包括经度坐标和纬度坐标,Step 4: Calculation of the spatial gravity center of soil erosion in the determination area: Calculate the spatial gravity center coordinates of regional soil erosion according to formula (1) and formula (2) respectively: including longitude coordinates and latitude coordinates,
Figure FDA0002594326480000011
Figure FDA0002594326480000011
其中,权重系数分别为:Among them, the weight coefficients are:
Figure FDA0002594326480000012
Figure FDA0002594326480000012
式中:
Figure FDA0002594326480000013
表示侵蚀空间重心的经度坐标,单位为°;ki表示第i个栅格的权重系数;j表示第i个栅格的侵蚀强度代码,j等于11、12、13、14、15、16时,分别表示微度侵蚀、轻度侵蚀、中度侵蚀、强烈侵蚀、极强烈侵蚀、剧烈侵蚀;Ei表示第i个栅格单元中心的经度,单位为°;n表示栅格的总数;
where:
Figure FDA0002594326480000013
Indicates the longitude coordinate of the barycenter of the erosion space, the unit is °; ki represents the weight coefficient of the ith grid; j represents the erosion intensity code of the ith grid, when j is equal to 11, 12, 13, 14, 15, 16 , respectively represent slight erosion, mild erosion, moderate erosion, strong erosion, extremely strong erosion, and severe erosion; E i represents the longitude of the center of the i-th grid cell, in °; n represents the total number of grids;
Figure FDA0002594326480000014
Figure FDA0002594326480000014
式中:
Figure FDA0002594326480000015
表示侵蚀空间重心的纬度坐标,单位为°,Ni表示第i个栅格单元中心的纬度坐标,单位为°;ki、n含义同上。
where:
Figure FDA0002594326480000015
Indicates the latitude coordinate of the barycenter of the erosion space, the unit is °, Ni represents the latitude coordinate of the center of the i -th grid cell, the unit is °; k i and n have the same meaning as above.
2.根据权利要求1所述的一种区域土壤侵蚀空间重心确定的方法,其特征在于:还包括步骤五:将计算得到的重心坐标在ArcGIS中转化为shp格式的点文件,并与土壤侵蚀强度分级空间栅格数据底图叠加,作图展示。2. the method for determining the space centroid of a kind of regional soil erosion according to claim 1, it is characterized in that: also comprise step 5: the centroid coordinate that obtains is converted into the point file of shp format in ArcGIS, and is combined with soil erosion. The intensity graded spatial raster data basemap is superimposed and displayed as a graph. 3.根据权利要求2所述的一种区域土壤侵蚀空间重心确定的方法,其特征在于:步骤五:将计算得到的重心坐标在ArcGIS中转化为shp格式的点文件,并与不同时间段的土壤侵蚀强度分级空间栅格数据底图叠加,作图展示,进行不同时间段区域土壤侵蚀空间重心的比较。3. the method for determining the space centroid of a kind of regional soil erosion according to claim 2, it is characterized in that: step 5: transform the centroid coordinates that calculate into the point file of shp format in ArcGIS, and with different time periods The base map of soil erosion intensity classification spatial raster data is superimposed and displayed as a map to compare the spatial gravity center of soil erosion in different time periods. 4.根据权利要求1所述的一种区域土壤侵蚀空间重心确定的方法,其特征在于:步骤一中所述土壤侵蚀强度分级空间栅格数据为TIFF格式,以不同色块表示不同土壤侵蚀强度级别。4. The method for determining the spatial centroid of a kind of regional soil erosion according to claim 1, characterized in that: the soil erosion intensity grading spatial grid data described in the step 1 is in TIFF format, and different soil erosion intensities are represented by different color blocks. level.
CN202010704812.XA 2020-07-21 2020-07-21 A Method for Determining the Spatial Center of Gravity of Regional Soil Erosion Pending CN111881333A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010704812.XA CN111881333A (en) 2020-07-21 2020-07-21 A Method for Determining the Spatial Center of Gravity of Regional Soil Erosion

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010704812.XA CN111881333A (en) 2020-07-21 2020-07-21 A Method for Determining the Spatial Center of Gravity of Regional Soil Erosion

Publications (1)

Publication Number Publication Date
CN111881333A true CN111881333A (en) 2020-11-03

Family

ID=73155777

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010704812.XA Pending CN111881333A (en) 2020-07-21 2020-07-21 A Method for Determining the Spatial Center of Gravity of Regional Soil Erosion

Country Status (1)

Country Link
CN (1) CN111881333A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106599601A (en) * 2016-12-29 2017-04-26 中国科学院遥感与数字地球研究所 Remote sensing assessment method and system for ecosystem vulnerability
CN107886216A (en) * 2017-10-12 2018-04-06 天津大学 A kind of land carrying capacity analysis method based on Evaluation of Land Use Suitability
CN108229859A (en) * 2018-02-09 2018-06-29 中国环境科学研究院 A kind of method and system of the key area of determining bio-diversity conservation

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106599601A (en) * 2016-12-29 2017-04-26 中国科学院遥感与数字地球研究所 Remote sensing assessment method and system for ecosystem vulnerability
CN107886216A (en) * 2017-10-12 2018-04-06 天津大学 A kind of land carrying capacity analysis method based on Evaluation of Land Use Suitability
CN108229859A (en) * 2018-02-09 2018-06-29 中国环境科学研究院 A kind of method and system of the key area of determining bio-diversity conservation

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
王尧: "喀斯特地区土壤侵蚀模拟研究", 《中国博士学位论文全文数据库农业科技辑》 *

Similar Documents

Publication Publication Date Title
Vivoni et al. Generation of triangulated irregular networks based on hydrological similarity
Ren et al. Developing a rapid method for 3-dimensional urban morphology extraction using open-source data
JP4545219B1 (en) Analysis method of topographic change using topographic image and program thereof
CN113283802A (en) Landslide risk assessment method for complex and difficult mountain area
Liu et al. Application of land-use change model in guiding regional planning: A case study in Hun-Taizi River watershed, Northeast China
Cardinale et al. Present-day aeolian activity in Herschel Crater, Mars
CN108594261A (en) A kind of slip mass change detecting method based on laser radar technique
KR101943758B1 (en) Method and Apparatus for Evaluating Risk Impacts in Pedestrian Environment due to Hazardous Substance Dispersion in Urban Area
Zhu et al. Land-use change simulation and assessment of driving factors in the loess hilly region—a case study as Pengyang County
Bektas et al. Remote sensing and GIS integration for land cover analysis, a case study: Bozcaada Island
CN104899349A (en) Large-span bridge monitoring data spatial interpolation and visualization method
JP6146731B2 (en) Coordinate correction apparatus, coordinate correction program, and coordinate correction method
JP5241296B2 (en) Numerical map data processing program and numerical map data processing apparatus
Walsworth et al. Image modelling of forest changes associated with acid mine drainage
Maucha et al. European validation of GMES FTS soil sealing enhancement data
CN118397378B (en) Method, system, equipment and storage medium for classifying and extracting slope units
Sangawongse et al. Urban growth and land cover change in Chiang Mai and Taipei: results from the SLEUTH model
CN118411627B (en) Transmission channel floating object identification and monitoring system and method based on satellite remote sensing
JP5181379B1 (en) Power generation potential evaluation device and power generation potential evaluation program
CN111881333A (en) A Method for Determining the Spatial Center of Gravity of Regional Soil Erosion
WO2021199245A1 (en) Analysis device, analysis method, and storage medium
Wagtendonk et al. An indicator set for capturing long-term open space fragmentation and urban development dynamics
Saxena et al. An integrated approach for natural resources monitoring using geo-informatics and CA
CN112950779B (en) A method and system for constructing a rasterized surface for measuring the degree of landform fragmentation
Wang Managing soil erosion potential by integrating digital elevation models with the southern China’s revised universal soil loss equation: a case study for the west lake scenic spots area of Hangzhou, China

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20201103

RJ01 Rejection of invention patent application after publication