CN111880236B - 一种构建多层等效源模型计算化极与数据类型转换的方法 - Google Patents

一种构建多层等效源模型计算化极与数据类型转换的方法 Download PDF

Info

Publication number
CN111880236B
CN111880236B CN202010602732.3A CN202010602732A CN111880236B CN 111880236 B CN111880236 B CN 111880236B CN 202010602732 A CN202010602732 A CN 202010602732A CN 111880236 B CN111880236 B CN 111880236B
Authority
CN
China
Prior art keywords
equivalent source
source model
data
calculation
multilayer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202010602732.3A
Other languages
English (en)
Other versions
CN111880236A (zh
Inventor
左博新
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China University of Geosciences
Original Assignee
China University of Geosciences
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China University of Geosciences filed Critical China University of Geosciences
Priority to CN202010602732.3A priority Critical patent/CN111880236B/zh
Publication of CN111880236A publication Critical patent/CN111880236A/zh
Application granted granted Critical
Publication of CN111880236B publication Critical patent/CN111880236B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V3/00Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation
    • G01V3/40Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation specially adapted for measuring magnetic field characteristics of the earth
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V3/00Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation
    • G01V3/38Processing data, e.g. for analysis, for interpretation, for correction
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Remote Sensing (AREA)
  • General Physics & Mathematics (AREA)
  • Geophysics (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Environmental & Geological Engineering (AREA)
  • Theoretical Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Evolutionary Computation (AREA)
  • Geometry (AREA)
  • General Engineering & Computer Science (AREA)
  • Measuring Magnetic Variables (AREA)
  • Geophysics And Detection Of Objects (AREA)

Abstract

本发明公开了一种构建多层等效源模型计算化极与数据类型转换的方法,输入磁测数据,根据观测数据的观测位置和高度数据等因素,对自由空间和地下空间进行非均匀网格剖分;利用基于积分方程的多层等效源反演方法,对磁测数据进行三维反演计算,构建多层等效源模型;利用构建的多层等效源模型,进行垂直磁化地磁场的化极与数据转换计算,其中,基于积分方程的三维正演计算方法计算磁测数据,得到化极与数据类型转换结果。该方法基于积分方程理论重新构建了等效源模型的计算框架,实现了对高磁化率场源所产生的含有强退磁效应的磁异常数据的高精度处理;且,采用深度规整因子,实现了利用反演过程对多层等效源模型深度位置的自适应估计。

Description

一种构建多层等效源模型计算化极与数据类型转换的方法
技术领域
本发明涉及地球物理学技术领域领域,更具体地说,涉及一种基于积分方法,实现非均匀网格多层等效源磁测数据化极与数据类型转换的方法。
背景技术
在地磁探测中,人们通常对磁场的总场进行探测,但在实际地数据解释中,又往往需要将这些数据转换所需要的数据类型,如化极数据、磁场分量、张量数据等,磁场数据类型转换就是把已观测到的磁场数据类型转换为所需要的不同类型的磁场数据。这项任务的主要挑战是磁测地形对于传统的数据类型转换以及化极计算有一定的限制,且传统等效源的数据转换方法对于数据的精度有一定损失。
现有文献1“Dampney,C.N.G.THE EQUIVALENT SOURCE TECHNIQUE[J].geophysics,1969,34(1):39.”、“Li Y.Reduction to the pole using equivalentsources[J].SEG Technical Program Expanded Abstracts,1999,19(1):2484.”中均考虑通过在地下空间有限的深度内设置单层的等效源,从而实现了低纬度磁异常的化极方法。
现有文献2“Li D.,Q.Liang,J.Du,S.Sun,Y.Zhang,C.Chen,2019,Transformingtotal-field magnetic anomalies into three components using dual-layerequivalent sources,Geophysical Research Letter,47(3),e2019GL084607.”中,公开了将对地下等效源分为两层。
现有文献3“黄翼坚,王万银,于长春.等效源法三维随机点位场数据处理和转换[J].地球物理学进展,2009(01):101-107.”中基于单层的等效源实现了磁场数据的转换。
现有文献4“李端,陈超,杜劲松,等.多层等效源曲面磁异常转换方法[J].地球物理学报,2018,061(007):3055-3073”中通过将地下等效源分为三层来实现磁场数据的转换。
基于上述的现有文献1-4,本申请与之前研究差异主要包括以下几点:
1)本文提出的多层等效源基于积分方程正反演理论框架;
2)提出的多层等效源网格是基于连续网格,且数目通常大于3层,与以往研究最大三层且不连续的网格有较大差别;
3)以往方法需要单独对每一层的深度位置进行估算,然后单独放置。
总的来说,本申请提出的方法利用了深度规整化因子,不需要单独估计等效层深度和范围,等效层的深度和分布可以在反演过程中被算法直接确定。
发明内容
本发明要解决的技术问题在于,针对现有技术的对于化极与数据类型转换运算的精度及速度控制不够准确的缺陷,提供一种构建多层等效源模型计算化极与数据类型转换的方法。
本发明解决其技术问题所采用的技术方案是:构造一种构建多层等效源模型的方法,包括以下步骤:
S1、输入已有的磁场数据d0
S2、根据观测区域的地形高度信息和设定的反演最大深度,构建等效源模型空间,对所述等效源模型空间进行结构化非均匀的多层网格剖分;
S3、构建目标函数,采用步骤S2构建的结构化非均匀网格,对磁场数据d0进行带深度规整化因子Wr、正值约束项和规整化项β的积分方程三维反演计算,得到多层等效源模型m。
本发明公开的一种根据上述的用于构建多层等效源模型方法来计算化极数据的方法,包括:
S4、利用步骤S3求解得到的多层等效源模型m,通过积分方程磁场三维正演计算得到化极数据;其中,化极数据BS的计算公式为:
BS=Gm;
其中,Bs=[Bsx,Bsy,Bsz],Bsx、Bsy和Bsz分别为基于正演计算得到的三分量磁异常场,G为灵敏度矩阵。
本发明公开的一种根据上述的用于构建多层等效源模型方法进行数据类型转换的方法,包括:
S4、当利用步骤S3求解得到的多层等效源模型m,以及基于构建多层等效源模型计算得到化极数据BS后,通过数据类型转换公式计算转换后的磁场数据。
实施本发明的一种构建多层等效源模型计算化极与数据类型转换的方法,具有以下有益效果:
1)本发明提出了一个多层等效源基于积分方程的正、反演理论框架;
2)本发明提出的多层等效源网格是基于连续网格的,且其分层数目大于3层,与以往研究最大三层且不连续的网格有较大差别;
3)现有的方法需要单独对每一个等效层的深度位置进行估算,然后在单独放置。本发明提出的方法不需要单独估计等效层深度和范围,其中,利用深度规整化因子,等效层的深度和分布可以在反演过程中被算法直接确定,不需要单独估计和放置。
附图说明
下面将结合附图及实施例对本发明作进一步说明,附图中:
图1是本发明公开的一种构建多层等效源模型的实施方法流程图;
图2是本发明公开的基于实施例1构建的多层等效源模型实现化极数据计算的方法流程图;
图3是本发明公开的基于实施例1构建的多层等效源模型实现数据类型转换的方法流程图;
图4是本发明公开的基于实施例1构建的一个非均匀网格剖分示意图。
具体实施方式
为了对本发明的技术特征、目的和效果有更加清楚的理解,现对照附图详细说明本发明的具体实施方式。
实施例1:
请参考图1,其为本发明公开的一种构建多层等效源模型的实施方法流程图,当前实施例下为构建多层等效源模型,具体包括以下步骤:
S1、输入已有的磁场数据d0,d0可能的形式有磁异常总场数据,磁异常分量数据,磁梯度张量数据等(以下以观测数据为磁异常总场类型数据为例,其他类型观测数据过程相同);
S2、根据观测区域的地形高度信息和在磁场探测过程中检测到的磁异常体可能存在的最大深度范围,构建等效源模型空间,对所述等效源模型空间进行结构化非均匀的多层网格剖分;其中:
所述地形高度信息将进一步反映区域的地形起伏,在计算机内进行反演网格建模的时候,为了能够反映真实的应用场景,将基于起伏地形映射得到的地形起伏曲面,作为反演网格模型的上顶面;
设定反演最大深度,基于所述反演最大深度所在水平面确定所述反演网格模型的下底面;
在确定了所述反演网格模型的上顶面和下底面后,将以连续网格划分的方式对等效源模型空间进行剖分;本实施例下,基于上述方案,可确定的分层数目通常大于3层;而以往在进行等效源网格模型研究的时候,其分层层数最大不过三层且以不连续网格划分的方式进行模型剖分有较大差别。
本实施例下,基于连续网格划分方式,在后续计算化极数据和磁场数据转换的时候,可有效提高算法的计算精度。而,在进行结构化非均匀的多层网格剖分时包括精细网格和扩展网格剖分,需要说明的是:
(1)在进行精细网格剖分时:
基于所述等效源模型空间的上顶面,确定地形起伏曲面的最高点和最低点后,进一步确定地形起伏深度范围空间,在所述地形起伏深度范围空间内进行精细网格剖分。在进行网格边长定义的时候,其边长值是根据情况自定义设置的,但不管设置多长,都视为1长度单位。举例:一个10km*10km*10km的空间(这个空间是个立方体,实际中有可能是长方体或其他),在基于这个空间将其划分为100*100*100个网格的时候,那么每一个网格的大小均对应为:100m*100m*100m。
(2)在进行扩展网格剖分时:
将起伏地形曲面的最低点作为起始点,从所述起始点所在水平面以下至等效源模型空间下底面确定的深度范围空间内,进行扩展网格剖分。在进行网格边长定义的时候,本实施例下,所述扩展网格的扩张方式将以其向外围及下方扩散的网格的大小呈1.2倍的速度增长,最大为1.5长度单位的大小。
精细网格与扩展网格是一个连续的整体。
当前步骤下,考虑了在构建等效源模型空间时,以扩展网格和精细网格为单位,以连续网格划分的方式对所述等效源模型空间进行结构化非均匀的多层网格剖分,保证一定的反演精度的基础上同时降低计算量,有效的提高执行算法的迭代效率。
S3、构建目标函数,采用步骤S2构建的结构化非均匀网格,结合精细网格和扩展网格确定的网格区域,对磁场数据d0进行带深度规整化因子Wr、正值约束项和规整化项β的积分方程三维反演计算,得到多层等效源模型m;其中:
本步骤下构建的目标函数为:
Figure BDA0002559635640000051
通过上述目标函数进一步反映,为了保证模型的计算精度,以d0为基础,结合所述参考等效源模型和最终要输出的等效源模型确定优化目标即为误差值φ。在优化的过程中,若满足φ值最小,则将对应的输出项m作为最终确定的等效源模型。
需要说明的是,公式(1)中,
Figure BDA0002559635640000061
为目标函数的数值约束项,
Figure BDA0002559635640000062
为目标函数的模型约束项;m为输出的多层等效源模型的磁化率矩阵;F=(*)为对“*”的正演计算操作(基于最终输出的等效源模型m,将应用F到后续的磁场三维正演计算得到化极数据和磁场转换数据);d0为输入的磁场数据,β为预定义的第一规整化因子,Wr为深度规整化因子,其中,β为自定义值且区别于Wr;mref、m分别为当前目标函数优化过程中参考等效源模型、目标输出等效源模型所代表的磁化率矩阵。其中,所述的“第一规整化因子”仅用于和深度规整化因子Wr做一个区分说明,β和Wr本质上都代表的是规整化因子,区别在于不同应用场景下,两项参数的取值有所不同。
所述深度规整化因子Wr的数学表达式为:
Figure BDA0002559635640000063
其中,z为所述多层等效源模型到观测面的距离,z0为观测面高度,r为深度系数。
公式(2)为计算Wr时的惯用方式,但在将(2)式应用到(1)式后,可以使得结果更加收敛,抵消正演操作中敏感度矩阵带来的衰减,使模型分布范围更加符合真实情况,以往方法需要单独对每一层的深度位置进行估算,然后单独放置,加入深度规整化因子不需要单独估计等效层深度和范围,利用深度规整化因子,等效层的深度和分布可以在反演过程中被算法直接确定,不需要单独估计和放置。
实施例2:
当需要得到磁场的化极数据时,即可基于实施例1所述的一种构建多层等效源模型的方法,进行化极数据的计算,其包括下述执行步骤(具体的执行流程请参考图2):
S4、利用步骤S3求解得到的多层等效源模型m,通过积分方程磁场三维正演计算得到化极数据;其中,正演计算的计算公式为:
BS=Gm;
其中,G为灵敏度矩阵,隐含表达了磁感应强度、磁倾角、磁偏角、观测位置等参数,其可以通过磁感应强度、磁倾角、磁偏角、观测位置计算得出,在步骤S3迭代的过程中,参数G的磁倾角与磁偏角由数据观测区域的地磁场决定;在步骤S4中计算化极数据时,参数G采用磁倾角90度,磁偏角0度的垂直磁化地磁场;BS为所求的三分量场数据(即化极数据);m为多层等效源模型。
实施例3:
基于实施例1、2所述的一种构建多层等效源模型的方法和计算化极数据的方法,在进行磁场数据转换的时候,包括下述步骤(具体的执行流程请参考图3):
S4、利用步骤S3求解得到的多层等效源模型m,当利用实施例2所述的实现计算化极的方法确定化极数据BS后,再次通过数据转换公式计算转换后的磁场数据;其中,计算转换后的磁场数据包括以下子步骤:
S41、通过下述公式从三分量数据转换为磁异常数据:
Figure BDA0002559635640000071
其中,ds为拟合的磁异常数据;B0=[B0x,B0y,B0z]为背景场三分量数据,其隐含表达了磁感应强度、磁倾角、磁偏角等参数,其也可根据磁感应强度、磁倾角、磁偏角等参数计算得出;
S42、在将三分量数据转换为磁异常数据后,利用下述的磁场张量转换公式,进行磁场数据的转换:
Figure BDA0002559635640000081
其中,
Figure BDA0002559635640000082
为梯度算子,矩阵[*]中的每项因子均为磁场的不同张量。
图4,为非均匀网格剖分的效果示意图。
结合实施例1-3,本发明的公开的一种构建多层等效源模型计算化极与数据类型转换的方法,提出了一个多层等效源基于积分方程的正、反演理论框架;这也是现有技术并没有研究到的,且本发明提出的多层等效源网格是基于连续网格的,且其分层数目通常大于3层,与以往研究最大三层且不连续的网格有较大差别;基于连续网格划分方式,在后续计算化极数据和磁场数据转换的时候,可有效提高算法的计算精度。最后,现有的方法需要单独对每一个等效层的深度位置进行估算,然后在单独放置。本发明提出的方法不需要单独估计等效层深度和范围,其中,利用深度规整化因子,等效层的深度和分布可以在反演过程中被算法直接确定,不需要单独估计和放置。
上面结合附图对本发明的实施例进行了描述,但是本发明并不局限于上述的具体实施方式,上述的具体实施方式仅仅是示意性的,而不是限制性的,本领域的普通技术人员在本发明的启示下,在不脱离本发明宗旨和权利要求所保护的范围情况下,还可做出很多形式,这些均属于本发明的保护之内。

Claims (4)

1.一种构建多层等效源模型的方法,其特征在于,包括以下步骤:
S1、输入已有的磁场数据d0
S2、根据观测区域的地形高度信息和设定的反演最大深度,构建等效源模型空间,对所述等效源模型空间,以连续网格划分的方式,进行结构化非均匀的多层网格剖分;且,模型的分层数目大于3;所述等效源模型空间包括上顶面和下底面之间的连续空间,其中:
所述等效源模型空间的上顶面为地形起伏曲面;所述等效源模型空间下底面为设定的反演最大深度所在的水平平面;
所述进行结构化非均匀的多层网格剖分包括精细网格剖分和扩展网格剖分,其中,在所述等效源模型空间内:
基于所述等效源模型空间的上顶面,确定地形起伏曲面的最高点和最低点后,进一步确定地形起伏深度范围空间,在所述地形起伏深度范围空间内进行精细网格剖分;
将地形起伏曲面的最低点作为起始点,从所述起始点以下至等效源模型空间下底面确定的深度范围空间内,进行扩展网格剖分;
精细网格与扩展网格是一个连续的整体;
S3、构建目标函数,采用步骤S2构建的结构化非均匀网格,对磁场数据d0进行带深度规整化因子Wr、正值约束项和规整化项β的积分方程三维反演计算,得到多层等效源模型m;
在剖分所得的等效源网格模型上,基于积分方程进行三维反演计算的时候,构建的目标函数为:
Figure FDA0003451929820000011
其中,φ为误差值即优化目标;
Figure FDA0003451929820000012
为目标函数的数值约束项,
Figure FDA0003451929820000021
为目标函数的模型约束项;d0为输入的观测数据,β为预定义的第一规整化因子,Wr为深度规整化因子;mref、m分别为当前目标函数优化过程中参考等效源模型、目标输出等效源模型所代表的磁化率矩阵;F(*)为对“*”的正演计算操作;
所述深度规整化因子Wr的数学表达式为:
Figure FDA0003451929820000022
其中,z为所述多层等效源模型到观测面的距离,z0为观测面高度,r为深度系数。
2.一种根据权利要求1所述的一种构建多层等效源模型的方法计算化极数据的方法,其特征在于,包括:
S4、利用步骤S3求解得到的多层等效源模型m,通过积分方程磁场三维正演计算得到化极数据;其中,化极数据BS的计算公式为:
BS=Gm;
其中,Bs=[Bsx,Bsy,Bsz],Bsx、Bsy和Bsz分别为基于正演计算得到的三分量磁异常场,G为灵敏度矩阵;m为已求得的多层等效源模型。
3.一种根据权利要求2所述的计算化极数据的方法实现数据类型转换的方法,其特征在于,还包括:
当利用步骤S3求解得到的多层等效源模型m,以及基于构建多层等效源模型计算得到化极数据BS后,通过数据类型转换公式计算转换后的磁场数据。
4.根据权利要求3所述的数据类型转换的方法,其特征在于,计算转换后的磁场数据包括以下步骤:
S41、通过下述公式,使用三分量场数据计算拟合的磁异常数据:
Figure FDA0003451929820000031
其中,ds为拟合的磁异常数据,B0=[B0x,B0y,B0z]为背景场三分量场数据;B0x、B0y和B0z分别为对应分量下的场数据;
S42、基于所求的背景场的三分量场数据,利用下述的磁场张量转换公式,进行磁场数据的转换:
Figure FDA0003451929820000032
其中,
Figure FDA0003451929820000033
为梯度算子,矩阵[*]中的每项因子均为磁场的不同张量。
CN202010602732.3A 2020-06-29 2020-06-29 一种构建多层等效源模型计算化极与数据类型转换的方法 Active CN111880236B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010602732.3A CN111880236B (zh) 2020-06-29 2020-06-29 一种构建多层等效源模型计算化极与数据类型转换的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010602732.3A CN111880236B (zh) 2020-06-29 2020-06-29 一种构建多层等效源模型计算化极与数据类型转换的方法

Publications (2)

Publication Number Publication Date
CN111880236A CN111880236A (zh) 2020-11-03
CN111880236B true CN111880236B (zh) 2022-02-18

Family

ID=73158124

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010602732.3A Active CN111880236B (zh) 2020-06-29 2020-06-29 一种构建多层等效源模型计算化极与数据类型转换的方法

Country Status (1)

Country Link
CN (1) CN111880236B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113139289B (zh) * 2021-04-23 2022-06-07 中国地质大学(武汉) 一种基于积分方程的退磁效应下磁测数据的正反演方法
CN116839571B (zh) * 2023-09-01 2023-12-01 中国地质大学(武汉) 一种基于静磁场信标的急救援透地探测定位方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103258128A (zh) * 2013-05-08 2013-08-21 浙江大学 一种地磁场空间延拓算法的评估方法
CN106405664A (zh) * 2016-08-25 2017-02-15 中国科学院地质与地球物理研究所 一种磁异常化极方法
CN107291659A (zh) * 2017-05-16 2017-10-24 哈尔滨工程大学 平面地磁异常场一步向上延拓平面模量梯度场的递归余弦变换法
CN110389391A (zh) * 2019-08-01 2019-10-29 自然资源部第二海洋研究所 一种基于空间域的重磁位场解析延拓方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10401528B2 (en) * 2015-11-25 2019-09-03 Schlumber Technology Corporation Hybrid electric and magnetic surface to borehole and borehole to surface method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103258128A (zh) * 2013-05-08 2013-08-21 浙江大学 一种地磁场空间延拓算法的评估方法
CN106405664A (zh) * 2016-08-25 2017-02-15 中国科学院地质与地球物理研究所 一种磁异常化极方法
CN107291659A (zh) * 2017-05-16 2017-10-24 哈尔滨工程大学 平面地磁异常场一步向上延拓平面模量梯度场的递归余弦变换法
CN110389391A (zh) * 2019-08-01 2019-10-29 自然资源部第二海洋研究所 一种基于空间域的重磁位场解析延拓方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
3D Magnetic Amplitude Inversion in the Presence of Self-Demagnetization and Remanent Magnetization;Boxin Zuo等;《GEOPHYSICS》;20191231;2-22 *
基于PDE的三维磁场正反演研究;左博新 等;《中国地球科学联合学术年会2017》;20171231;1998-2000 *

Also Published As

Publication number Publication date
CN111880236A (zh) 2020-11-03

Similar Documents

Publication Publication Date Title
CN111856599B (zh) 一种基于pde的磁测数据等效源化极与类型转换方法
CN111880236B (zh) 一种构建多层等效源模型计算化极与数据类型转换的方法
EA004551B1 (ru) Способ интерпретации сейсмических фаций с использованием текстурного анализа и нейронных сетей
CN110400371B (zh) 一种水平构造地貌实体的三维模型构建方法
CN105607122B (zh) 一种基于全变分地震数据分解模型的地震纹理提取与增强方法
CN105118090A (zh) 一种自适应复杂地形结构的点云滤波方法
CN111856598B (zh) 一种磁测数据多层等效源上延拓与下延拓方法
CN112363236A (zh) 一种基于pde的重力场数据等效源延拓与数据类型转换方法
CN115238550B (zh) 自适应非结构网格的滑坡降雨的地电场数值模拟计算方法
CN104299241A (zh) 基于 Hadoop 的遥感图像显著性目标检测方法及系统
Yang et al. 3D gravity inversion with optimized mesh based on edge and center anomaly detection
Mojica et al. Regularization parameter selection in the 3D gravity inversion of the basement relief using GCV: A parallel approach
CN114332413A (zh) 一种基于滑动克里金插值的地质体建模方法及装置
CN112241676A (zh) 一种地形杂物自动识别的方法
Mastellone et al. Volume Continuation of potential fields from the minimum-length solution: An optimal tool for continuation through general surfaces
CN103310461B (zh) 基于块卡尔曼滤波的图像边缘提取方法
CN111859251B (zh) 一种基于pde的磁测数据等效源上延拓与下延拓方法
CN112346139B (zh) 一种重力数据多层等效源延拓与数据转换方法
CN114200541B (zh) 一种基于余弦点积梯度约束的三维重磁联合反演方法
CN108983290B (zh) 一种三维横向各向同性介质中旅行时确定方法及系统
Foks et al. Automatic boundary extraction from magnetic field data using triangular meshes
CN112748471B (zh) 一种非结构化等效源的重磁数据延拓与转换方法
CN109636018A (zh) 计算气温与气候因子遥相关关系的方法及装置
CN113034555B (zh) 一种基于最小生成树的特征精匹配方法及应用
CN109856673B (zh) 一种基于优势频率迭代加权的高分辨Radon变换数据分离技术

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant