CN111868566B - 一种基于定位漂移测算模型的农机作业面积测算方法 - Google Patents

一种基于定位漂移测算模型的农机作业面积测算方法 Download PDF

Info

Publication number
CN111868566B
CN111868566B CN201980016520.2A CN201980016520A CN111868566B CN 111868566 B CN111868566 B CN 111868566B CN 201980016520 A CN201980016520 A CN 201980016520A CN 111868566 B CN111868566 B CN 111868566B
Authority
CN
China
Prior art keywords
track
area
calculating
positioning
measuring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201980016520.2A
Other languages
English (en)
Other versions
CN111868566A (zh
Inventor
黄河
吴晓伟
张炜
史杨
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Anhui Zhongke Intelligent Perception Technology Co ltd
Original Assignee
Anhui Zhongke Intelligent Perception Technology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Anhui Zhongke Intelligent Perception Technology Co ltd filed Critical Anhui Zhongke Intelligent Perception Technology Co ltd
Publication of CN111868566A publication Critical patent/CN111868566A/zh
Application granted granted Critical
Publication of CN111868566B publication Critical patent/CN111868566B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/38Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system
    • G01S19/39Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system the satellite radio beacon positioning system transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/53Determining attitude
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B7/00Measuring arrangements characterised by the use of electric or magnetic techniques
    • G01B7/32Measuring arrangements characterised by the use of electric or magnetic techniques for measuring areas
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/38Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system
    • G01S19/39Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system the satellite radio beacon positioning system transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/42Determining position

Abstract

一种基于定位漂移测算模型的农机作业面积测算方法,包括下列步骤:步骤1、农机运行轨迹点采集和预处理:将传感器数据进行预处理,过滤农机作业状态信息,构建符合作业状态的轨迹点时间序列;步骤2、构造定位轨迹和作业轨迹;根据作业宽度建立一个多边形;步骤3、计算作业轨迹覆盖面积:从不同的角度对作业轨迹计算轨迹面积、覆盖面积和空白面积;步骤4、利用提取的核心特征构建定位漂移测算模型,训练样本对模型参数进行学习;步骤5、农机作业面积测算:将待计算的作业轨迹和作业面积输入定位漂移测算模型,获得精确的农机作业面积。解决了当农机耕作过程中存在多种作业类型,产生重叠区域、未作业区域时,农机作业面积计算精度不高的问题。

Description

一种基于定位漂移测算模型的农机作业面积测算方法
技术领域
本发明涉及一种基于定位漂移测算模型的农机作业面积测算方法。
背景技术
农机深松、耕整地作业对实现土地保墒,改善农田板结都有重要意义。在农机上安装地理信息系统、空间定位系统等数字技术导航装置,结合后台服务系统的模式,可以满足农机的深松、耕整地作业远程监控、管理需求,实现农业生产耕种收的精准作业。新型的农机管理和市场化服务模式日渐成熟,供求双方都要求农机作业服务提供精度高、可靠性高、实时便捷的农机作业面积计算结果。
现有的农机作业面积测算方法主要包括距离法、缓冲区法、栅格法等。这些方法受限于以下两个方面:当低成本的GPS(Global Positioning System,全球定位系统)由于漂移、干扰等原因造成的农机运行轨迹点定位精度不高时,作业面积测算结果会有较大误差;当农机耕作过程中存在多种作业类型,产生重叠区域、未作业区域时,计算精度不高。
因此,如何在安装低成本GPS的农机及复杂的作业环境中精确地测算农机作业面积已经成为一个急需解决的技术问题。
发明内容
本发明的目的在于提供一种基于定位漂移测算模型的农机作业面积测算方法,以解决现有技术中当农机耕作过程中存在多种作业类型,产生重叠区域、未作业区域时,农机作业面积计算精度不高的问题。
所述的一种基于定位漂移测算模型的农机作业面积测算方法,包括下列步骤:
步骤1、农机运行轨迹点采集和预处理:将农机定位传感器和姿态传感器的数据进行预处理,过滤农机作业状态信息,构建符合作业状态的轨迹点时间序列;
步骤2、构造定位轨迹和作业轨迹:将符合作业状态的定位点依次连接,建立作业轨迹的折线路径;同时每两个点分别根据作业宽度生成四边形,多个四边形进行逻辑运算建立一个多边形;
步骤3、计算作业轨迹覆盖面积:从不同的角度对作业轨迹计算轨迹面积、覆盖面积和空白面积;
步骤4、构造定位漂移测算模型:分析不同轨迹覆盖类型,抽取轨迹覆盖面积测算的核心特征,利用提取的核心特征构建定位漂移测算模型,训练样本对模型参数进行学习;
步骤5、农机作业面积测算:将待计算的作业轨迹和作业面积输入定位漂移测算模型,获得精确的农机作业面积。
优选的,所述步骤1具体包括下列步骤:
步骤1.1、接收安装在农机上的GPS传感器和姿态传感器每秒回传的数据;
步骤1.2、将间隔时间内农机定位点过近、过远的定位点过滤掉;
步骤1.3、将过滤后的且耕作深度达到国家深耕要求的轨迹点保留下来作为农机作业有效轨迹点放入集合,构建轨迹点时间序列。
优选的,所述步骤2具体包括下列步骤:
步骤2.1、将步骤1中符合作业状态的定位点依次连接,建立作业轨迹的折线路径;
步骤2.2、以农机作业轨迹上时序相邻的2个轨迹点P1、P2的坐标计算他们之间的方位角;
步骤2.3、根据农机具与轨迹是垂直的,计算农机具在上述相邻2个轨迹点间轨迹上的方位角;
步骤2.4、根据农机具方位角、犁具长度R得出轨迹点P1、P2的延伸四个点L1、L2、L3、L4,进而构成该段轨迹作业覆盖面的四边形S1,以此类推,计算出轨迹路径上的所有四边形S1...Sn;
步骤2.5:将步骤2.4中得到的四边形S1...Sn进行逻辑运算建立一个总作业面积多边形。
优选的,所述步骤3具体包括下列步骤:
步骤3.1、计算作业的理论轨迹面积:将符合作业状态的定位点依次连接,分别计算各段轨迹的距离,依据作业宽度统计轨迹覆盖的面积;
步骤3.2、计算作业的理论覆盖面积:将两两作业点形成的小矩形逻辑运算获得的多边形进行基于图形学计算,统计理论覆盖的面积、外部轮廓面积、内部空白面积。
优选的,所述步骤4具体包括下列步骤:
步骤4.1、确定反映坐标定位漂移的要素,进而提取用于实现空白面积分析的核心特征,分别是局部重叠度、全局重叠度、全局覆盖度;
步骤4.2、优化核心特征的参数,根据样本数据训练核心特征的参数,将核心特征映射到特定的统一区间[0,1];
步骤4.3、构造定位漂移测算模型,利用优化后的核心特征的参数,运用机器学习方法建立定位漂移测算模型。
优选的,所述步骤4.1具体包括下列步骤:
步骤4.1.1、确定反映坐标定位漂移的要素:取作业轨迹在地图上的有限的包络区域面积表示为外面积S,在有限的包络区域内,轨迹点生成的四边形合并形成的有效覆盖面积表示为内面积S,S和S之间存在一个差值,即内部空白面积表示为S,轨迹长度结合犁具宽度R计算形成的轨迹覆盖的面积称之为轨迹面积S
步骤4.1.2:抽取实现空白面积分析的核心特征局部重叠度、全局重叠度、全局覆盖度:
局部重叠度定义为轨迹面积和内面积的比值,用表示用α表示,
局部重叠度α表达了轨迹内局部重叠的程度,轨迹越密集、重叠区域越集中,则局部重叠度越大。理想情况下,局部重叠度趋近于1,表示轨迹无漂移,作业正常。
全局重叠度定义为轨迹面积和外面积的比值,用β表示
全局重叠度β表达了轨迹内部整体分散的程度,轨迹点分布越均匀,重叠区域越分散,则全局重叠度越大。理想情况下,完整作业轨迹,其全局重叠度趋近于1。
全局覆盖度定义为内面积和外面积的比值,用γ表示
全局覆盖度γ表达了实际作业面积覆盖作业区域的程度。作业越规范,轨迹越均匀,则全局覆盖度越大;作业异常,重叠集中,则全局覆盖度越小。
优选的,所述步骤4.2具体包括下列步骤:
步骤4.2.1:优化核心特征的参数,选择sigmod函数将参数映射到[0,1]区间
步骤4.2.2:根据样本数据训练核心特征的参数x和y,确定具体映射函数K1(α)和K2(β)。
优选的,所述步骤4.3具体包括下列步骤:
所述步骤4.3具体包括下列步骤:
步骤4.3.1:构造定位漂移测算模型,利用优化后的核心特征的参数进行形式化表示;
特别地,对S空的结构进行分析,S=S漂移+S异常中S异常可以具体分为两种类型,一种是冗余部分,特别当全局重叠度β小于1的情况下,后续有其他的轨迹进行填充;另一种是未作业空白部分,由于作业过程中未覆盖产生空白区域,面积表示为S未作业
方法定义轨迹的冗余率为θ冗余作业轨迹内部面积中冗余的作业面积占据的比例:
以S冗余表示对应的作业冗余面积,β为全局重叠度,则有:
S冗余=θ冗余×S
同时定义轨迹的空白率θ空白为实际轨迹内异常作业产生空白区域的面积占据除去作业冗余面积后的空白面积的比例,则有:
S未作业=θ空白×(S-S冗余)
S异常是异常作业产生的作业未覆盖面积,综上分析可知,应表示如下:
S异常=S冗余+S未作业
步骤4.3.2:基于优化后的核心特征的参数,运用机器学习方法建立定位漂移测算模型;
基于试验样本的轨迹,我们将实际作业面积用S表示,存在关系:
S=S-S×f(α,β)
其中f(α,β)为S异常在S中占比的计算函数,其中空白率θ空白的算式已知,因此还需要建立θ空白的计算模型;
经过试验发现,当β保持不变,α越大,θ空白的值越大;当α保持不变,β越大值,θ空白越小;依据上述结论,通过sigmod函数构建空白率θ空白的计算模型:
运用机器学习方法,结合具体的样本轨迹建立定位漂移测算模型的明确表示;基于试验样本的轨迹,我们将实际作业面积用S表示,存在关系:
S=S-S异常
即S=S冗余×S空白×(1-θ冗余)×S
由此得到定位漂移测算模型。
优选的,所述步骤5具体包括下列步骤:
步骤5.1:将定位点预处理成轨迹序列,计算不同特征和参数的取值,生成待处理的轨迹;
步骤5.2:将待处理的轨迹输入定位漂移测算模型,实现轨迹的不同分类,并对漂移区域进行纠正和补偿,得到农机作业的实际面积。
本发明具有如下优点:
本发明将采集的农机运行轨迹点经过预处理后,利用逻辑运算构造作业面积多边形,通过分析不同轨迹覆盖类型,抽取轨迹覆盖面积测算的核心特征来构建定位漂移测算模型,最终获得精确的农机作业面积。利用机器学习方法,能将测算模型不断修正提高精确性。作业异常的两种情况,一种称为冗余,为后续全局重叠度小于1,后续由其他轨迹进行填充的情况,另一种为作业异常造成作业过程中未覆盖的空白区域;作业异常产生的空白区域和定位漂移显示出的空白区域共同组成了测算时出现的空白区域。针对作业异常的两种情况,本方法都提供了用于计算分析的冗余率和空白率,并通过机器学习来不断修正不易计算的空白率,从而保证对作业异常产生的误差部分能精确计算,从而解决了由于低成本GPS定位漂移及农机操作偏移等导致的农机作业面积测算误差问题,提高了农机作业面积的测量精度,为农机精准作业及农机手作业补贴提供了依据。
附图说明
图1为本发明一种基于定位漂移测算模型的农机作业面积测算方法的流程图。
具体实施方式
下面对照附图,通过对实施例的描述,对本发明具体实施方式作进一步详细的说明,以帮助本领域的技术人员对本发明的发明构思、技术方案有更完整、准确和深入的理解。
如图1所示,本发明提供了一种基于定位漂移测算模型的农机作业面积测算方法,包括下列步骤:
步骤1、农机运行轨迹点采集和预处理:将农机定位传感器和姿态传感器的数据进行预处理,过滤农机作业状态信息,构建符合作业状态的轨迹点时间序列;其具体步骤为:
步骤1.1、接收安装在农机上的GPS传感器和姿态传感器每秒回传的数据;
步骤1.2、将间隔时间内农机定位点过近、过远的定位点过滤掉;
步骤1.3、将过滤后的且耕作深度达到国家深耕要求的轨迹点保留下来作为农机作业有效轨迹点放入集合,构建轨迹点时间序列。
步骤2、构造定位轨迹和作业轨迹:将符合作业状态的定位点依次连接,建立作业轨迹的折线路径;同时每两个点分别根据作业宽度生成四边形,多个四边形进行逻辑运算建立一个多边形;其具体步骤为:
步骤2.1、将步骤1中符合作业状态的定位点依次连接,建立作业轨迹的折线路径;
步骤2.2、以农机作业轨迹上时序相邻的2个轨迹点P1、P2的坐标计算他们之间的方位角;
步骤2.3、根据农机具与轨迹是垂直的,计算农机具在上述相邻2个轨迹点间轨迹上的方位角;
步骤2.4、根据农机具方位角、犁具长度R得出轨迹点P1、P2的延伸四个点L1、L2、L3、L4,进而构成该段轨迹作业覆盖面的四边形S1,以此类推,计算出轨迹路径上的所有四边形S1...Sn;
步骤2.5:将步骤2.4中得到的四边形S1...Sn进行逻辑运算建立一个总作业面积多边形。总作业面积多边形为后续面积计算提供依据。
步骤3、计算作业轨迹覆盖面积:从不同的角度对作业轨迹计算轨迹面积、覆盖面积和空白面积;具体包括下列步骤:
步骤3.1、计算作业的理论轨迹面积:将符合作业状态的定位点依次连接,分别计算各段轨迹的距离,依据作业宽度统计轨迹覆盖的面积,该面积包括各段轨迹之间重叠的部分;
步骤3.2、计算作业的理论覆盖面积:将两两作业点形成的小矩形逻辑运算获得的多边形进行基于图形学计算,统计理论覆盖的面积、外部轮廓面积、内部空白面积。外部轮廓面积为组成的多边形的外部轮廓围出的面积,空白面积为多边形形成的位于外部轮廓内的空白部分的面积,理论覆盖面积为多边形自身的覆盖面积。上述面积提供给构建的定位漂移测算模型以求得实际作业面积。
步骤4、构造定位漂移测算模型:分析不同轨迹覆盖类型,抽取轨迹覆盖面积测算的核心特征,利用提取的核心特征构建定位漂移测算模型,训练样本对模型参数进行学习;具体包括下列步骤:
步骤4.1、确定反映坐标定位漂移的要素,进而提取用于实现空白面积分析的核心特征,分别是局部重叠度、全局重叠度、全局覆盖度;该步骤又具体包括下列步骤:
步骤4.1.1、确定反映坐标定位漂移的要素:取作业轨迹在地图上的有限的包络区域面积表示为外面积S,在有限的包络区域内,轨迹点生成的四边形合并形成的有效覆盖面积表示为内面积S,S和S之间存在一个差值,即内部空白面积表示为S,轨迹长度结合犁具宽度R计算形成的轨迹覆盖的面积称之为轨迹面积S
步骤4.1.2:抽取实现空白面积分析的核心特征局部重叠度、全局重叠度、全局覆盖度:
局部重叠度定义为轨迹面积和内面积的比值,用表示用α表示,
局部重叠度α表达了轨迹内局部重叠的程度,轨迹越密集、重叠区域越集中,则局部重叠度越大。理想情况下,局部重叠度趋近于1,表示轨迹无漂移,作业正常。
全局重叠度定义为轨迹面积和外面积的比值,用β表示
全局重叠度β表达了轨迹内部整体分散的程度,轨迹点分布越均匀,重叠区域越分散,则全局重叠度越大。理想情况下,完整作业轨迹,其全局重叠度趋近于1。
全局覆盖度定义为内面积和外面积的比值,用γ表示
全局覆盖度γ表达了实际作业面积覆盖作业区域的程度。作业越规范,轨迹越均匀,则全局覆盖度越大;作业异常,重叠集中,则全局覆盖度越小。上述核心特征均可由步骤3计算出的面积数据获得,是求得实际作业面积所需的重要参数,根据上述核心特征的差异决定了不同轨迹覆盖类型。
步骤4.2、优化核心特征的参数,根据样本数据训练核心特征的参数,将核心特征映射到特定的统一区间[0,1];该步骤又具体包括下列步骤:
步骤4.2.1:优化核心特征的参数,选择sigmod函数将参数映射到[0,1]区间
步骤4.2.2:根据样本数据训练核心特征的参数x和y,确定具体映射函数K1(α)和K2(β)。映射函数对后续异常情况的面积分析非常重要。
步骤4.3、构造定位漂移测算模型,利用优化后的核心特征的参数,运用机器学习方法建立定位漂移测算模型,该步骤又具体包括下列步骤:
步骤4.3.1:构造定位漂移测算模型,利用优化后的核心特征的参数进行形式化表示;
特别地,对S空的结构进行分析,S=S漂移+S异常中S异常可以具体分为两种类型,一种是冗余部分,特别当全局重叠度β小于1的情况下,后续有其他的轨迹进行填充;另一种是未作业空白部分,由于作业过程中未覆盖产生空白区域,面积表示为S未作业
方法定义轨迹的冗余率为θ冗余作业轨迹内部面积中冗余的作业面积占据的比例:
以S冗余表示对应的作业冗余面积,β为全局重叠度,则有:
S冗余=θ冗余×S
同时定义轨迹的空白率θ空白为实际轨迹内异常作业产生空白区域的面积占据除去作业冗余面积后的空白面积的比例,则有:
S未作业=θ空白×(S-S冗余)
S异常是异常作业产生的作业未覆盖面积,综上分析可知,应表示如下:
S异常=S冗余+S未作业
步骤4.3.2:基于优化后的核心特征的参数,运用机器学习方法建立定位漂移测算模型;
基于试验样本的轨迹,我们将实际作业面积用S表示,存在关系:
S=S-S×f(α,β)
其中f(α,β)为S异常在S中占比的计算函数,其中空白率θ空白的算式已知,因此还需要建立θ空白的计算模型;
经过试验发现,当β保持不变,α越大,θ空白的值越大;当α保持不变,β越大值,θ空白越小;依据上述结论,通过sigmod函数构建空白率θ空白的计算模型:
运用机器学习方法,结合具体的样本轨迹建立定位漂移测算模型的明确表示;基于试验样本的轨迹,我们将实际作业面积用S表示,存在关系:
S=S-S异常
即S=S冗余×S空白×(1-θ冗余)×S
由此得到定位漂移测算模型。由于映射函数K1(α)和K2(β)已经在样本数据训练核心特征得以确定,因此S异常也能准确计算出来,保证实际作业面积的准确性。
步骤5、农机作业面积测算:将待计算的作业轨迹和作业面积输入定位漂移测算模型,获得精确的农机作业面积;具体包括下列步骤:
步骤5.1:将定位点预处理成轨迹序列,计算不同特征和参数的取值,生成待处理的轨迹;
步骤5.2:将待处理的轨迹输入定位漂移测算模型,实现轨迹的不同分类,并对漂移区域进行纠正和补偿,得到农机作业的实际面积。
本方法在结果中去除了异常情况造成的空白部分面积,而实际作业覆盖到但采集数据时因定位漂移造成未能正确显示的S漂移则仍然包括在计算结果内,从而令本方法能精确计算出实际作业面积,克服了现有技术因农机耕作过程中存在多种作业类型,产生重叠区域、未作业区域时,农机作业面积计算精度不高的缺陷,并且实际作业面积的计算较少受定位漂移现象影响。
上面结合附图对本发明进行了示例性描述,显然本发明具体实现并不受上述方式的限制,只要采用了本发明的发明构思和技术方案进行的各种非实质性的改进,或未经改进将本发明构思和技术方案直接应用于其它场合的,均在本发明保护范围之内。

Claims (5)

1.一种基于定位漂移测算模型的农机作业面积测算方法,其特征在于:包括下列步骤:
步骤1、农机运行轨迹点采集和预处理:将农机定位传感器和姿态传感器的数据进行预处理,过滤农机作业状态信息,构建符合作业状态的轨迹点时间序列;
步骤2、构造定位轨迹和作业轨迹:将符合作业状态的定位点依次连接,建立作业轨迹的折线路径;同时每两个点分别根据作业宽度生成四边形,多个四边形进行逻辑运算建立一个多边形;
步骤3、计算作业轨迹覆盖面积:从不同的角度对作业轨迹计算轨迹面积、覆盖面积和空白面积;
步骤4、构造定位漂移测算模型:分析不同轨迹覆盖类型,抽取轨迹覆盖面积测算的核心特征,利用提取的核心特征构建定位漂移测算模型,训练样本对模型参数进行学习;
步骤5、农机作业面积测算:将待计算的作业轨迹和作业面积输入定位漂移测算模型,获得精确的农机作业面积;
所述步骤4具体包括下列步骤:
步骤4.1、确定反映坐标定位漂移的要素,进而提取用于实现空白面积分析的核心特征,分别是局部重叠度、全局重叠度、全局覆盖度;
步骤4.2、优化核心特征的参数,根据样本数据训练核心特征的参数,将核心特征映射到特定的统一区间[0,1];
步骤4.3、构造定位漂移测算模型,利用优化后的核心特征的参数,运用机器学习方法建立定位漂移测算模型;
所述步骤4.1具体包括下列步骤:
步骤4.1.1、确定反映坐标定位漂移的要素:取作业轨迹在地图上的有限的包络区域面积表示为外面积S,在有限的包络区域内,轨迹点生成的四边形合并形成的有效覆盖面积表示为内面积S,S和S之间存在一个差值,即内部空白面积表示为S,轨迹长度结合犁具宽度R计算形成的轨迹覆盖的面积称之为轨迹面积S
步骤4.1.2:抽取实现空白面积分析的核心特征局部重叠度、全局重叠度、全局覆盖度:
局部重叠度定义为轨迹面积和内面积的比值,用表示用α表示,
局部重叠度α表达了轨迹内局部重叠的程度,轨迹越密集、重叠区域越集中,则局部重叠度越大;理想情况下,局部重叠度趋近于1,表示轨迹无漂移,作业正常;
全局重叠度定义为轨迹面积和外面积的比值,用β表示
全局重叠度β表达了轨迹内部整体分散的程度,轨迹点分布越均匀,重叠区域越分散,则全局重叠度越大;理想情况下,完整作业轨迹,其全局重叠度趋近于1;
全局覆盖度定义为内面积和外面积的比值,用γ表示
全局覆盖度γ表达了实际作业面积覆盖作业区域的程度;作业越规范,轨迹越均匀,则全局覆盖度越大;作业异常,重叠集中,则全局覆盖度越小;
所述步骤4.2具体包括下列步骤:
步骤4.2.1:优化核心特征的参数,选择sigmod函数将参数映射到[0,1]区间
步骤4.2.2:根据样本数据训练核心特征的参数x和y,确定具体映射函数K1(α)和K2(β);
所述步骤4.3具体包括下列步骤:
步骤4.3.1:构造定位漂移测算模型,利用优化后的核心特征的参数进行形式化表示;
特别地,对S空的结构进行分析,S=S漂移+S异常中S异常可以具体分为两种类型,一种是冗余部分,特别当全局重叠度β小于1的情况下,后续有其他的轨迹进行填充;另一种是未作业空白部分,由于作业过程中未覆盖产生空白区域,面积表示为S未作业
方法定义轨迹的冗余率为θ冗余作业轨迹内部面积中冗余的作业面积占据的比例:
以S冗余表示对应的作业冗余面积,β为全局重叠度,则有:
S冗余=θ冗余×S
同时定义轨迹的空白率θ空白为实际轨迹内异常作业产生空白区域的面积占据除去作业冗余面积后的空白面积的比例,则有:
S未作业=θ空白×(S-S冗余)
S异常是异常作业产生的作业未覆盖面积,综上分析可知,应表示如下:
S异常=S冗余+S未作业
步骤4.3.2:基于优化后的核心特征的参数,运用机器学习方法建立定位漂移测算模型;
基于试验样本的轨迹,我们将实际作业面积用S表示,存在关系:
S=S-S×f(α,β)
其中f(α,β)为S异常在S中占比的计算函数,其中空白率θ空白的算式已知,因此还需要建立θ空白的计算模型;
经过试验发现,当β保持不变,α越大,θ空白的值越大;当α保持不变,β越大值,θ空白越小;依据上述结论,通过sigmod函数构建空白率θ空白的计算模型:
运用机器学习方法,结合具体的样本轨迹建立定位漂移测算模型的明确表示;基于试验样本的轨迹,我们将实际作业面积用S表示,存在关系:
S=S-S异常
即S=S冗余×S空白×(1-θ冗余)×S
由此得到定位漂移测算模型。
2.根据权利要求1所述的一种基于定位漂移测算模型的农机作业面积测算方法,其特征在于:所述步骤1具体包括下列步骤:
步骤1.1、接收安装在农机上的GPS传感器和姿态传感器每秒回传的数据;
步骤1.2、将间隔时间内农机定位点过近、过远的定位点过滤掉;
步骤1.3、将过滤后的且耕作深度达到国家深耕要求的轨迹点保留下来作为农机作业有效轨迹点放入集合,构建轨迹点时间序列。
3.根据权利要求1所述的一种基于定位漂移测算模型的农机作业面积测算方法,其特征在于:所述步骤2具体包括下列步骤:
步骤2.1、将步骤1中符合作业状态的定位点依次连接,建立作业轨迹的折线路径;
步骤2.2、以农机作业轨迹上时序相邻的2个轨迹点P1、P2的坐标计算他们之间的方位角;
步骤2.3、根据农机具与轨迹是垂直的,计算农机具在上述相邻2个轨迹点间轨迹上的方位角;
步骤2.4、根据农机具方位角、犁具长度R得出轨迹点P1、P2的延伸四个点L1、L2、L3、L4,进而构成该段轨迹作业覆盖面的四边形S1,以此类推,计算出轨迹路径上的所有四边形S1...Sn;
步骤2.5:将步骤2.4中得到的四边形S1...Sn进行逻辑运算建立一个总作业面积多边形。
4.根据权利要求1所述的一种基于定位漂移测算模型的农机作业面积测算方法,其特征在于:所述步骤3具体包括下列步骤:
步骤3.1、计算作业的理论轨迹面积:将符合作业状态的定位点依次连接,分别计算各段轨迹的距离,依据作业宽度统计轨迹覆盖的面积;
步骤3.2、计算作业的理论覆盖面积:将两两作业点形成的小矩形逻辑运算获得的多边形进行基于图形学计算,统计理论覆盖的面积、外部轮廓面积、内部空白面积。
5.根据权利要求1所述的一种基于定位漂移测算模型的农机作业面积测算方法,其特征在于:
所述步骤5具体包括下列步骤:
步骤5.1:将定位点预处理成轨迹序列,计算不同特征和参数的取值,生成待处理的轨迹;
步骤5.2:将待处理的轨迹输入定位漂移测算模型,实现轨迹的不同分类,并对漂移区域进行纠正和补偿,得到农机作业的实际面积。
CN201980016520.2A 2019-10-11 2019-10-11 一种基于定位漂移测算模型的农机作业面积测算方法 Active CN111868566B (zh)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/110510 WO2021068177A1 (zh) 2019-10-11 2019-10-11 一种基于定位漂移测算模型的农机作业面积测算方法

Publications (2)

Publication Number Publication Date
CN111868566A CN111868566A (zh) 2020-10-30
CN111868566B true CN111868566B (zh) 2023-10-03

Family

ID=72970932

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201980016520.2A Active CN111868566B (zh) 2019-10-11 2019-10-11 一种基于定位漂移测算模型的农机作业面积测算方法

Country Status (2)

Country Link
CN (1) CN111868566B (zh)
WO (1) WO2021068177A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113405519B (zh) * 2021-01-29 2023-07-18 丰疆智能(深圳)有限公司 农机的作业亩数计算方法和农机的作业亩数计算系统
CN113436248B (zh) * 2021-06-18 2023-05-23 黑龙江惠达科技发展有限公司 计算农机作业面积的方法和装置
CN113761730B (zh) * 2021-08-27 2023-09-29 浙江理工大学 基于改进差分的茶园四杆中耕机构多目标点轨迹综合方法
CN114526669A (zh) * 2022-02-22 2022-05-24 上海联适导航技术股份有限公司 一种农机作业实时整平面积测算方法、装置及设备
CN114662621B (zh) * 2022-05-24 2022-09-06 灵枭科技(武汉)有限公司 基于机器学习的农机作业面积计算方法及系统
CN115436973A (zh) * 2022-09-02 2022-12-06 湖北地信科技集团股份有限公司 一种北斗农机作业轨迹快速过滤分组方法

Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2168870A (en) * 1984-05-10 1986-06-25 Secr Defence Imaging system
WO1992000500A1 (en) * 1989-07-14 1992-01-09 Von Schrader Company Apparatus for determining an area coverage rate
US5902343A (en) * 1996-11-22 1999-05-11 Case Corporation Automatic scaling of GPS field maps
US6087984A (en) * 1998-05-04 2000-07-11 Trimble Navigation Limited GPS guidance system for use with circular cultivated agricultural fields
CN103673937A (zh) * 2013-11-11 2014-03-26 安徽赛为信息技术有限责任公司 一种双重算法模式农机田作业面积的计算系统及其方法
JP2014194604A (ja) * 2013-03-28 2014-10-09 Kubota Corp 農業管理支援システム
CN204666091U (zh) * 2015-06-04 2015-09-23 江苏北斗卫星应用产业研究院有限公司 基于卫星定位作业面积统计的农机终端
CN105043247A (zh) * 2014-04-25 2015-11-11 迪尔公司 残余物监测和基于残余物的控制
WO2015193822A1 (en) * 2014-06-17 2015-12-23 Casella Macchine Agricole S.R.L. Method and device for measuring vegetation cover on farmland
CN105539851A (zh) * 2015-12-09 2016-05-04 华南农业大学 基于无线传感网的无人机农药精准喷施作业系统及方法
CN106017400A (zh) * 2016-07-13 2016-10-12 哈尔滨工业大学 基于耕作轨迹等效矩形累加的农机作业面积测量方法
CN106247926A (zh) * 2016-07-13 2016-12-21 哈尔滨工业大学 基于单元格扫描和gps轨迹插值的农机耕作面积测算方法
CN108036717A (zh) * 2017-11-30 2018-05-15 北京博创联动科技有限公司 一种农机作业面积测量方法及装置
CN108332652A (zh) * 2018-01-15 2018-07-27 中国农业大学 一种农田作业面积计量方法及装置
CN109917430A (zh) * 2019-04-03 2019-06-21 安徽中科智能感知产业技术研究院有限责任公司 一种基于轨迹平滑算法的卫星定位轨迹漂移纠偏方法
WO2019137136A1 (zh) * 2018-05-11 2019-07-18 农业部南京农业机械化研究所 植保无人机作业质量检测装置及其检测方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6711501B2 (en) * 2000-12-08 2004-03-23 Satloc, Llc Vehicle navigation system and method for swathing applications
US6539303B2 (en) * 2000-12-08 2003-03-25 Mcclure John A. GPS derived swathing guidance system
CN102890706B (zh) * 2012-08-27 2015-12-02 首都师范大学 数据处理方法及装置
CN104992072B (zh) * 2015-07-21 2017-10-27 江苏北斗卫星应用产业研究院有限公司 基于空间网格剖分的作业地块自动识别与面积统计方法
US9891629B2 (en) * 2016-02-04 2018-02-13 Deere & Company Autonomous robotic agricultural machine and system thereof
CN107036572B (zh) * 2017-04-12 2019-07-23 中国农业大学 一种农机作业面积获取方法及装置
CN109813273B (zh) * 2019-03-19 2020-09-08 中电科卫星导航运营服务有限公司 一种基于空间分析的农机重复作业面积判定方法

Patent Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2168870A (en) * 1984-05-10 1986-06-25 Secr Defence Imaging system
WO1992000500A1 (en) * 1989-07-14 1992-01-09 Von Schrader Company Apparatus for determining an area coverage rate
US5902343A (en) * 1996-11-22 1999-05-11 Case Corporation Automatic scaling of GPS field maps
US6087984A (en) * 1998-05-04 2000-07-11 Trimble Navigation Limited GPS guidance system for use with circular cultivated agricultural fields
JP2014194604A (ja) * 2013-03-28 2014-10-09 Kubota Corp 農業管理支援システム
CN103673937A (zh) * 2013-11-11 2014-03-26 安徽赛为信息技术有限责任公司 一种双重算法模式农机田作业面积的计算系统及其方法
CN105043247A (zh) * 2014-04-25 2015-11-11 迪尔公司 残余物监测和基于残余物的控制
WO2015193822A1 (en) * 2014-06-17 2015-12-23 Casella Macchine Agricole S.R.L. Method and device for measuring vegetation cover on farmland
CN204666091U (zh) * 2015-06-04 2015-09-23 江苏北斗卫星应用产业研究院有限公司 基于卫星定位作业面积统计的农机终端
CN105539851A (zh) * 2015-12-09 2016-05-04 华南农业大学 基于无线传感网的无人机农药精准喷施作业系统及方法
CN106017400A (zh) * 2016-07-13 2016-10-12 哈尔滨工业大学 基于耕作轨迹等效矩形累加的农机作业面积测量方法
CN106247926A (zh) * 2016-07-13 2016-12-21 哈尔滨工业大学 基于单元格扫描和gps轨迹插值的农机耕作面积测算方法
CN108036717A (zh) * 2017-11-30 2018-05-15 北京博创联动科技有限公司 一种农机作业面积测量方法及装置
CN108332652A (zh) * 2018-01-15 2018-07-27 中国农业大学 一种农田作业面积计量方法及装置
WO2019137136A1 (zh) * 2018-05-11 2019-07-18 农业部南京农业机械化研究所 植保无人机作业质量检测装置及其检测方法
CN109917430A (zh) * 2019-04-03 2019-06-21 安徽中科智能感知产业技术研究院有限责任公司 一种基于轨迹平滑算法的卫星定位轨迹漂移纠偏方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
刘卉 ; 孟志军 ; 付卫强 ; .基于GPS轨迹的农机垄间作业重叠与遗漏评价.农业工程学报.2012,(第18期),全文. *
基于GPS轨迹的农机垄间作业重叠与遗漏评价;刘卉;孟志军;付卫强;;农业工程学报(第18期);全文 *
基于时空立方体的农机运动轨迹分割方法;肖敬;刘卉;魏学礼;陈竞平;王培;孟志军;;江苏农业科学(第20期);全文 *
肖敬 ; 刘卉 ; 魏学礼 ; 陈竞平 ; 王培 ; 孟志军 ; .基于时空立方体的农机运动轨迹分割方法.江苏农业科学.2018,(第20期),全文. *

Also Published As

Publication number Publication date
WO2021068177A1 (zh) 2021-04-15
CN111868566A (zh) 2020-10-30

Similar Documents

Publication Publication Date Title
CN111868566B (zh) 一种基于定位漂移测算模型的农机作业面积测算方法
US9972058B2 (en) Method for correcting the time delay in measuring agricultural yield
CN109033538B (zh) 一种基于实测结构面参数的裂隙岩体渗透张量的计算方法
CN102426025B (zh) 遥感卫星姿态机动时偏流修正角的仿真分析方法
CN101285686A (zh) 一种农业机械导航分级定位的方法和系统
CN111105496A (zh) 一种基于机载激光雷达点云数据的高精dem构建方法
CN106292717B (zh) 一种全自动信息采集飞行器
CN105651311B (zh) 农机作业卫星导航自动驾驶精度的测试方法
CN101806595A (zh) 一种两维电子指南针校准算法
CN107977520B (zh) 作业区域面积确定方法及装置
CN107985400A (zh) 作业区域路径规划方法和装置
CN109552417A (zh) 一种驱动轮角度零偏的校准方法及系统
CN103529451B (zh) 一种水面母船校准海底应答器坐标位置的方法
CN103837113A (zh) 一种相对坐标测量方法
CN103925904B (zh) 一种基于对称测线的超短基线安装角度偏差无偏估计方法
CN111983637A (zh) 一种基于激光雷达的果园行间路径提取方法
CN109006749B (zh) 一种基于分行阻力的田间冠层稠密度检测系统及其标定方法
CN110986815A (zh) 一种基于三维激光点云的隧道施工监控量测方法
LU500256B1 (en) Agricultural Machinery Operation Area Calculation Method Based on Positioning Drift Calculation Model
CN114970978B (zh) 一种复杂区域内单振捣台车施工轨迹动态规划方法
KR101436045B1 (ko) 차량의 주행정보를 이용한 도로경사 측정방법
CN115346128A (zh) 一种光学立体卫星dem高程改正和融合方法
CN109708665B (zh) 一种利用全站仪检验插秧机自动导航路径准确度的方法
CN109738928B (zh) 空间脉管包络分布式三维目标的卫星成像路径规划方法
CN109520485B (zh) 特长隧道两端掘进施工精度测量方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
CB02 Change of applicant information

Address after: 241000 Floor 3, Building 3, Chuangye Street, No. 8, Longhu Road, Sanshan Economic Development Zone, Wuhu City, Anhui Province

Applicant after: Anhui Zhongke intelligent perception Technology Co.,Ltd.

Address before: Room 225, Building 2, Pioneering Avenue, 8 Longhu Road, Sanshan District, Wuhu City, Anhui Province, 241000

Applicant before: ANHUI ZHONGKE INTELLIGENT SENSING INDUSTRY TECHNOLOGY RESEARCH INSTITUTE Co.,Ltd.

CB02 Change of applicant information
GR01 Patent grant
GR01 Patent grant