CN111863600A - Method for increasing adhesion between a layer of solid material and a layer of fluid material - Google Patents
Method for increasing adhesion between a layer of solid material and a layer of fluid material Download PDFInfo
- Publication number
- CN111863600A CN111863600A CN201910359869.8A CN201910359869A CN111863600A CN 111863600 A CN111863600 A CN 111863600A CN 201910359869 A CN201910359869 A CN 201910359869A CN 111863600 A CN111863600 A CN 111863600A
- Authority
- CN
- China
- Prior art keywords
- layer
- solid material
- material layer
- fluid material
- oxygen plasma
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/027—Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34
- H01L21/0271—Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising organic layers
- H01L21/0273—Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising organic layers characterised by the treatment of photoresist layers
- H01L21/0274—Photolithographic processes
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Drying Of Semiconductors (AREA)
- Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
Abstract
本发明公开一种增加固体材料层和流体材料层之间贴附性的方法,包含提供一固体材料层,对固体材料层进行一氧等离子体制作工艺,以增加固体材料层的表面平坦度,其中氧等离子体制作工艺的操作条件包含输入氧气体和氮气体,氧气体流量介于6000至8000每分钟标准毫升,氮气体流量介于600至1000每分钟标准毫升,最后在氧等离子体制作工艺后,形成一流体材料层直接接触固体材料层的表面。
The invention discloses a method for increasing the adhesion between a solid material layer and a fluid material layer, which includes providing a solid material layer and performing an oxygen plasma manufacturing process on the solid material layer to increase the surface flatness of the solid material layer, The operating conditions of the oxygen plasma production process include inputting oxygen gas and nitrogen gas, the oxygen gas flow rate is between 6000 and 8000 standard milliliters per minute, and the nitrogen gas flow rate is between 600 and 1000 standard milliliters per minute. Finally, in the oxygen plasma production process Thereafter, a layer of fluid material is formed that directly contacts the surface of the layer of solid material.
Description
技术领域technical field
本发明涉及一种增加固体材料层和流体材料层之间贴附性的方法,特别是涉及用于光刻制作工艺之前形成掩模材料的方法。The present invention relates to a method for increasing the adhesion between a layer of solid material and a layer of fluid material, and in particular to a method for forming a mask material prior to a lithographic fabrication process.
背景技术Background technique
半导体集成电路工业历经了指数性的成长,集成电路材料及设计的技术发展已创造了数代集成电路,每一代都有比上一代更小且更复杂的电路。集成电路的演化的过程中,元件密度不断提升,而元件尺寸则不断缩小,尺寸缩小的制作工艺一般提供了生产效率的提升以及减少相关的浪费,增加了制作工艺及生产的复杂性。The semiconductor integrated circuit industry has experienced exponential growth, and technological advances in integrated circuit materials and design have created generations of integrated circuits, each with smaller and more complex circuits than the previous generation. During the evolution of integrated circuits, the density of components continues to increase, while the size of components continues to shrink. The reduced-size manufacturing process generally improves production efficiency and reduces related waste, increasing the complexity of the manufacturing process and production.
光刻制作工艺为一种用于将集成电路的图案转移至半导体基板上的传统方法,其普及应用之一为在半导体装置的制造期间执行曝光以定义图案或图像,其可通过形成具有各种电、物理或化学特性的各种层的形状或图案来制造集成电路(IC)和其他半导体装置。The lithographic fabrication process is a traditional method for transferring a pattern of an integrated circuit onto a semiconductor substrate, and one of its popular applications is performing exposure during the fabrication of a semiconductor device to define a pattern or image, which can be achieved by forming various The shape or pattern of various layers of electrical, physical or chemical properties to fabricate integrated circuits (ICs) and other semiconductor devices.
在光刻制作工艺中,光致抗蚀剂图案的品质直接影响了集成电路的最终品质。然而依照传统方式所形成的光致抗蚀剂,光致抗蚀剂内部经常出现气体孔洞,造成光致抗蚀剂表面不平整,在蚀刻之后所形成的集成电路,则会因为气体孔洞导致集成电路结构上的缺陷。In the photolithography process, the quality of the photoresist pattern directly affects the final quality of the integrated circuit. However, in the photoresist formed by the traditional method, gas holes often appear inside the photoresist, resulting in uneven surface of the photoresist. The integrated circuits formed after etching will be integrated due to gas holes. Defects in circuit structure.
发明内容SUMMARY OF THE INVENTION
根据本发明的一优选实施例,一种增加固体材料层和流体材料层之间贴附性的方法,包含首先提供一固体材料层,对固体材料层进行一氧等离子体制作工艺,以增加固体材料层的表面平坦度,其中氧等离子体制作工艺的操作条件包含输入氧气体和氮气体,氧气体流量介于6000至8000每分钟标准毫升,氮气体流量介于600至1000每分钟标准毫升,最后在氧等离子体制作工艺后,形成一流体材料层直接接触固体材料层的表面。According to a preferred embodiment of the present invention, a method for increasing the adhesion between a solid material layer and a fluid material layer includes first providing a solid material layer, and performing an oxygen plasma fabrication process on the solid material layer to increase the solid The surface flatness of the material layer, wherein the operating conditions of the oxygen plasma production process include inputting oxygen gas and nitrogen gas, the flow rate of oxygen gas is between 6000 and 8000 standard milliliters per minute, and the flow rate of nitrogen gas is between 600 and 1000 standard milliliters per minute, Finally, after the oxygen plasma fabrication process, a fluid material layer is formed to directly contact the surface of the solid material layer.
根据本发明之另一优选实施例,一种增加固体材料层和流体材料层之间贴附性的方法,仅由以下步骤组成步骤(a):提供一固体材料层,步骤(b):对固体材料层进行一氧等离子体制作工艺,其中氧等离子体制作工艺的操作条件包含输入氧气体和氮气体,氧气体流量介于6000至8000每分钟标准毫升以及氮气体流量介于600至1000每分钟标准毫升,步骤(c):在步骤(b)之后,形成一流体材料层直接接触固体材料层的表面。According to another preferred embodiment of the present invention, a method for increasing the adhesion between a layer of solid material and a layer of fluid material consists only of the following steps: step (a): providing a layer of solid material, step (b): pairing The solid material layer is subjected to an oxygen plasma production process, wherein the operating conditions of the oxygen plasma production process include inputting oxygen gas and nitrogen gas, the oxygen gas flow rate is between 6000 and 8000 standard milliliters per minute, and the nitrogen gas flow rate is between 600 and 1000 per minute. Minute standard milliliter, step (c): After step (b), a layer of fluid material is formed to directly contact the surface of the layer of solid material.
为让本发明的上述目的、特征及优点能更明显易懂,下文特举优选实施方式,并配合所附的附图,作详细说明如下。然而如下的优选实施方式与附图仅供参考与说明用,并非用来对本发明加以限制者。In order to make the above-mentioned objects, features and advantages of the present invention more clearly understood, preferred embodiments are exemplified below, and are described in detail as follows in conjunction with the accompanying drawings. However, the following preferred embodiments and accompanying drawings are only for reference and description, and are not intended to limit the present invention.
附图说明Description of drawings
图1为本发明增加固体材料层和流体材料层之间贴附性的方法的流程图;Fig. 1 is the flow chart of the method for increasing the adhesion between the solid material layer and the fluid material layer of the present invention;
图2至图6为本发明的第一优选实施例所绘示的增加固体材料层和流体材料层之间贴附性以及蚀刻基底的方法的示意图;2 to 6 are schematic diagrams of the method for increasing the adhesion between the solid material layer and the fluid material layer and for etching the substrate according to the first preferred embodiment of the present invention;
图7至图8为本发明的第二优选实施例所绘示的增加固体材料层和流体材料层之间贴附性的方法的示意图;7 to 8 are schematic diagrams of the method for increasing the adhesion between the solid material layer and the fluid material layer according to the second preferred embodiment of the present invention;
图9至图10为本发明的第三优选实施例所绘示的增加固体材料层和流体材料层之间贴附性的方法的示意图。9 to 10 are schematic diagrams of a method for increasing the adhesion between a solid material layer and a fluid material layer according to a third preferred embodiment of the present invention.
主要元件符号说明Description of main component symbols
1 步骤 2 步骤1
3 步骤 10 基底3
12 固体材料层 14 垫氧化硅12
16 垫氮化硅 18 氧等离子体制16 Pad Silicon Nitride 18 Oxygen Plasma
作工艺 craft
20 流体材料层 21 掩模材料20
22 有机介电层 24 含硅硬掩模22 Organic
26 光致抗蚀剂 100 腟室26 Photoresist 100 Chambers
112 固体材料层 118 氧等离子体制112
作工艺 craft
120 流体材料层 200 腟室120
212 固体材料层 218 氧等离子体制212
作工艺 craft
220 流体材料层 300 腟室220
400 腟室 500 腟室400
600 腟室 700 腟室600
具体实施方式Detailed ways
在半导体制作工艺中,进行光刻制作工艺之前,需要形成流体材料层(例如光致抗蚀剂)在固体材料层(例如基底)上方,之后经过步进机的曝光以在光致抗蚀剂上定义图案。然而由于固体材料层表面的亲水性不佳,使得流体材料层无法平坦地贴附在固体材料层表面,因此在流体材料层中或是流体材料层的表面就会形成气体孔洞,造成流体材料层的表面不平整,影响到后续在流体材料层上所定义的图案的完整性。In the semiconductor manufacturing process, before the photolithography process, a fluid material layer (such as photoresist) needs to be formed over a solid material layer (such as a substrate), and then exposed by a stepper to make the photoresist Define the pattern above. However, due to the poor hydrophilicity of the surface of the solid material layer, the fluid material layer cannot be flatly attached to the surface of the solid material layer, so gas pores will be formed in the fluid material layer or on the surface of the fluid material layer, causing the fluid material layer The surface of the layer is uneven, affecting the integrity of the pattern subsequently defined on the layer of fluid material.
因此本发明提供了一种增加固体材料层和流体材料层之间贴附性的方法以避免气体孔洞的形成,图1绘示的是本发明增加固体材料层和流体材料层之间贴附性的方法的流程图。如图1所示,本发明的增加固体材料层和流体材料层之间贴附性的方法由三个步骤所组成,首先进行步骤1,提供一固体材料层,接着进行步骤2,在第一腔室中,对最上层的固体材料层进行一氧等离子体制作工艺以改善固体材料层的表面亲水性,氧等离子体制作工艺的操作条件包含输入氧气体和氮气体,氧气体流量介于6000至8000每分钟标准毫升(Standard Cubic Centimeters per Minute,sccm)以及氮气体流量介于600至1000每分钟标准毫升,操作压力介于1至2托耳(torr)之间,操作功率介于600至2500瓦特(watt)之间,操作温度介于摄氏100至250度之间。根据本发明的一优选实施例,氧等离子体制作工艺的氧气体流量较佳为7000每分钟标准毫升。根据本发明的另一优选实施例,氮气体流量较佳为800每分钟标准毫升。根据本发明的另一优选实施例,操作压力较佳为1托耳。根据本发明的另一较佳实施例,操作温度较佳为摄氏250度。值得注意的是在氧等离子体制作工艺时第一腔室中没有通入氢气和氮气的混合气体(H2N2),在第一腔室中也不含有氢气和氮气的混合气体。此外,氧等离子体制作工艺时,氧气体流量需在8000每分钟标准毫升以下,若是高于8000每分钟标准毫升,则会产生预期以外的氧化层,例如厚度大于50纳米的氧化层,此氧化层会影响最后元件的轮廓。Therefore, the present invention provides a method for increasing the adhesion between the solid material layer and the fluid material layer to avoid the formation of gas voids. FIG. 1 shows that the present invention increases the adhesion between the solid material layer and the fluid material layer. The flow chart of the method. As shown in FIG. 1 , the method for increasing the adhesion between the solid material layer and the fluid material layer of the present invention consists of three steps. First,
在步骤2完成之后,在第二腔室中,进行步骤3以形成一流体材料层直接接触固体材料层的表面。根据本发明的一优选实施例,步骤2中的第一腔室和步骤3中的第二腔室可以是同一个腔室。根据本发明的另一优选实施例,步骤2中的第一腔室和步骤3中的第二腔室可以是不同腔室,例如是同一个机台中的不同腔室。至此,本发明的增加固体材料层和流体材料层之间贴附性的方法已经完成,之后在第三腔室中,烘烤流体材料层将流体材料层固化后转变成掩模材料,之后在第四腔室中进行光刻制作工艺以在掩模材料上定义图案,然后将固体材料层和掩模材料送入其它腔室进行显影制作工艺,最后再以图案化的掩模材料为掩模,蚀刻固体材料层。根据本发明的一优选实施例,第一腔室、第二腔室、第三腔室和第四腔室可以是同一个腔室,根据本发明的另一优选实施例,第一腔室、第二腔室、第三腔室和第四腔室为不同腔室。After
本发明特意在形成流体材料层之前,先对最上层的固体材料层进行氧等离子体制作工艺,在氧等离子体制作工艺之后最上层的固体材料层的亲水性变高以及表面平坦度(smoothness)也变高,而且和未进行氧等离子体制作工艺的情况相较,流体材料层对固体材料层的接触角也变小,因此使得流体材料层可以更佳地贴附在固体材料层上并且在流体材料层中不会存在有气体孔洞。In the present invention, prior to forming the fluid material layer, the uppermost solid material layer is firstly subjected to an oxygen plasma fabrication process. After the oxygen plasma fabrication process, the hydrophilicity and smoothness of the uppermost solid material layer become higher. ) also becomes higher, and the contact angle of the fluid material layer to the solid material layer also becomes smaller compared to the case where the oxygen plasma fabrication process is not performed, so that the fluid material layer can better adhere to the solid material layer and There will be no gas voids in the fluid material layer.
举例而言,固体材料层可以为氧化硅、氮化硅、多晶硅、介电层或先进曝光图样薄膜(advanced patterning film,APF),固体材料层可以为单层或多层,如由下至上依序堆叠的多晶硅、氧化硅和氮化硅,或者是单层的多晶硅。For example, the solid material layer can be silicon oxide, silicon nitride, polysilicon, a dielectric layer or an advanced patterning film (APF). Sequentially stacked polysilicon, silicon oxide and silicon nitride, or a single layer of polysilicon.
流体材料层可以为底部抗反射层(bottom anti-reflective coating,BARC)、有机介电层(organic dielectric layer,ODL)、含硅硬掩模(silicon-containing hardmask bottom anti-reflection coating,SHB)或光致抗蚀剂。流体材料层也可以是单层或多层,例如由下至上依序堆叠的有机介电层、含硅硬掩模和光致抗蚀剂,或者是单层的光致抗蚀剂。The fluid material layer may be bottom anti-reflective coating (BARC), organic dielectric layer (ODL), silicon-containing hardmask bottom anti-reflection coating (SHB) or photoresist. The layer of fluid material can also be a single layer or multiple layers, such as an organic dielectric layer, a silicon-containing hard mask and a photoresist, or a single layer of photoresist, stacked sequentially from bottom to top.
以下将列举数个本发明的优选实施例以说明本发明的实践方法。Several preferred embodiments of the present invention will be listed below to illustrate the practice of the present invention.
图2至图6为根据本发明的第一优选实施例所绘示的增加固体材料层和流体材料层之间贴附性以及蚀刻基底的方法。根据本发明的第一优选实施例,如图2所示,首先在腟室100中,提供一半导体基底10,例如一硅基底,接着形成固体材料层12覆盖并接触基底10,固体材料层12由下至上依序为一垫氧化硅14和一垫氮化硅16。然后在腟室100中,对最上层的固体材料层12进行一氧等离子体制作工艺18,也就是对垫氮化硅16进行氧等离子体制作工艺18,前述氧等离子体制作工艺18的操作条件包含输入氧气体和氮气体,氧气体流量介于6000至8000每分钟标准毫升,氮气体流量介于600至1000每分钟标准毫升,操作压力介于1至2托耳之间,操作功率介于600至2500瓦特之间,操作温度介于摄氏100至250度之间。氧等离子体制作工艺18的氧气体流量较佳为7000每分钟标准毫升,氮气体流量较佳为800每分钟标准毫升,操作压力较佳为1托耳,操作温度较佳为摄氏250度。在氧等离子体制作工艺18之后,垫氮化硅16的表面粗糙度降底,也就是表面变平整,此外亲水性增加,使得后续将形成在垫氮化硅16上的流体材料层的接触角度变小。2 to 6 illustrate a method for increasing the adhesion between a solid material layer and a fluid material layer and for etching a substrate according to the first preferred embodiment of the present invention. According to the first preferred embodiment of the present invention, as shown in FIG. 2 , first, a
如图3所示,在氧等离子体制作工艺18之后,在腔室200中利用旋转涂布制作工艺形成流体材料层20,在本实施例中,流体材料层20由下至上依序为有机介电层22、含硅硬掩模24和光致抗蚀剂26,至此本发明的增加固体材料层12和流体材料层20之间贴附性的方法业已完成。之后利用烘烤制作工艺将流体材料层20硬化变成为掩模材料21(图未示)。如图4所示,在腔室300中将掩模材料21中的光致抗蚀剂26利用曝光制作工艺图案化,详细来说是将光罩28的图案转印到光致抗蚀剂26上(转印图案的位置以虚线表示)。在本实施例中,腔室300可以是一步进机(scanner)的腔室。根据本发明的一优选实施例,腔室100、腔室200和腔室300为同一腔室。根据本发明的另一优选实施例,腔室100、腔室200和腔室300为不同腔室,例如同一机台中的不同腔室。As shown in FIG. 3 , after the oxygen
如图5所示,将基底10、固体材料层12和掩模材料21移出腔室300,然后进行光致抗蚀剂26的显影制作工艺,之后以光致抗蚀剂26为掩模,蚀刻含硅硬掩模24和有机介电层22(图未示),然后以有机介电层22和含硅硬掩模24为掩模,蚀刻垫氮化硅16和垫氧化硅14。如图6所示,以垫氮化硅16和垫氧化硅14为掩模,蚀刻基底10。由于本发明在形成流体材料层20前进行了氧等离子体制作工艺18,因此后续形成的流体材料层20中不会有气体孔洞,而且流体材料层会是平坦的,所以之后转印到基底10上的图案,不会因为流体材料层20上有缺陷而造成最后基底10上的图案有缺损。As shown in FIG. 5 , the
图7至图8为根据本发明的第二优选实施例所绘示的增加固体材料层和流体材料层之间贴附性的方法。根据本发明的第二优选实施例,如图7所示,在腔室400中提供一固体材料层112,如一多晶硅,接着对固体材料层112进行一氧等离子体制作工艺118,氧等离子体制作工艺118的操作条件和范围如前文所述,在此不在赘述。如图8所示,在腔室500中形成一流体材料层120,例如光致抗蚀剂,直接接触固体材料层112。后续烘烤流体材料层120、图案化掩模材料以及蚀刻固体材料层112的步骤和第一优选实施例中的步骤相同,在此不再赘述。根据本发明的一优选实施例,腔室400和腔室500为同一腔室。根据本发明的另一优选实施例,腔室400和腔室500为不同腔室。7 to 8 illustrate a method for increasing the adhesion between a solid material layer and a fluid material layer according to a second preferred embodiment of the present invention. According to the second preferred embodiment of the present invention, as shown in FIG. 7 , a
图9至图10为根据本发明的第三优选实施例所绘示的增加固体材料层和流体材料层之间贴附性的方法。根据本发明的第三优选实施例,如图9所示,在腔室600中提供一固体材料层212,如一氧化硅层,接着对固体材料层212进行一氧等离子体制作工艺218,氧等离子体制作工艺212的操作条件和范围如前文所述,在此不在赘述。如图10所示,在腔室700中形成一流体材料层220,例如底部抗反射层,直接触固体材料层212。后续烘烤流体材料层220图案化掩模材料以及蚀刻固体材料层212的步骤,和第一优选实施例中的步骤相同,在此不再赘述。根据本发明的一优选实施例,腔室600和腔室700为同一腔室。根据本发明的另一优选实施例,腔室600和腔室700为不同腔室。9 to 10 illustrate a method for increasing the adhesion between a solid material layer and a fluid material layer according to a third preferred embodiment of the present invention. According to the third preferred embodiment of the present invention, as shown in FIG. 9 , a
以上所述仅为本发明的优选实施例,凡依本发明权利要求所做的均等变化与修饰,都应属本发明的涵盖范围。The above descriptions are only preferred embodiments of the present invention, and all equivalent changes and modifications made according to the claims of the present invention shall fall within the scope of the present invention.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910359869.8A CN111863600A (en) | 2019-04-30 | 2019-04-30 | Method for increasing adhesion between a layer of solid material and a layer of fluid material |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910359869.8A CN111863600A (en) | 2019-04-30 | 2019-04-30 | Method for increasing adhesion between a layer of solid material and a layer of fluid material |
Publications (1)
Publication Number | Publication Date |
---|---|
CN111863600A true CN111863600A (en) | 2020-10-30 |
Family
ID=72965562
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201910359869.8A Pending CN111863600A (en) | 2019-04-30 | 2019-04-30 | Method for increasing adhesion between a layer of solid material and a layer of fluid material |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN111863600A (en) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4176003A (en) * | 1978-02-22 | 1979-11-27 | Ncr Corporation | Method for enhancing the adhesion of photoresist to polysilicon |
US20030059550A1 (en) * | 2001-09-25 | 2003-03-27 | Jsr Corporation | Method of film formation, insulating film, and substrate for semiconductor |
US6677251B1 (en) * | 2002-07-29 | 2004-01-13 | Taiwan Semiconductor Manufacturing Co., Ltd | Method for forming a hydrophilic surface on low-k dielectric insulating layers for improved adhesion |
CN1564876A (en) * | 2001-10-02 | 2005-01-12 | 株式会社先端技术培育系统 | Thin metal oxide film and process for producing the same |
CN106292186A (en) * | 2016-10-10 | 2017-01-04 | 上海华力微电子有限公司 | A kind of photoetching method |
-
2019
- 2019-04-30 CN CN201910359869.8A patent/CN111863600A/en active Pending
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4176003A (en) * | 1978-02-22 | 1979-11-27 | Ncr Corporation | Method for enhancing the adhesion of photoresist to polysilicon |
US20030059550A1 (en) * | 2001-09-25 | 2003-03-27 | Jsr Corporation | Method of film formation, insulating film, and substrate for semiconductor |
CN1564876A (en) * | 2001-10-02 | 2005-01-12 | 株式会社先端技术培育系统 | Thin metal oxide film and process for producing the same |
US6677251B1 (en) * | 2002-07-29 | 2004-01-13 | Taiwan Semiconductor Manufacturing Co., Ltd | Method for forming a hydrophilic surface on low-k dielectric insulating layers for improved adhesion |
CN106292186A (en) * | 2016-10-10 | 2017-01-04 | 上海华力微电子有限公司 | A kind of photoetching method |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US12027370B2 (en) | Method of forming an integrated circuit using a patterned mask layer | |
TWI651809B (en) | Feature size reduction | |
CN104658892B (en) | Method for integrated circuit patterns | |
TWI406105B (en) | Double exposure patterning with carbonaceous hardmask | |
TWI404141B (en) | Pattern forming method, method of manufacturing semiconductor device, and device for manufacturing semiconductor device | |
TW201007391A (en) | Within-sequence metrology based process tuning for adaptive self-aligned double patterning | |
CN109786220A (en) | The forming method of semiconductor structure | |
CN103247523B (en) | The manufacture method of semiconductor structure | |
CN106200272A (en) | Self-aligned dual-pattern imaging method | |
WO2022100070A1 (en) | Photoresist treatment method and self-aligned double patterning method | |
KR20100134418A (en) | Contact hole formation method using spacer patterning process | |
JP2010087300A (en) | Method of manufacturing semiconductor device | |
US20030194647A1 (en) | Composite photoresist for pattern transferring | |
US9412612B2 (en) | Method of forming semiconductor device | |
TWI301296B (en) | Method for fabricating a hard mask polysilicon gate | |
CN108807164B (en) | Manufacturing method of transistor gate | |
CN101188188A (en) | patterning method | |
CN111863600A (en) | Method for increasing adhesion between a layer of solid material and a layer of fluid material | |
TWI467647B (en) | Method for high aspect ratio patterning in a spin-on layer | |
CN110648905A (en) | Method for manufacturing semiconductor device | |
JP5164446B2 (en) | Method for forming fine pattern of semiconductor element | |
CN112992784B (en) | Semiconductor structures and methods of forming them | |
CN113078048B (en) | Mask pattern, semiconductor structure and forming method thereof | |
CN109494187B (en) | Method for manufacturing semiconductor structure | |
CN113097056B (en) | Method for forming semiconductor device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20201030 |
|
RJ01 | Rejection of invention patent application after publication |