CN111853848A - 一种燃煤锅炉不同层燃烧器之间燃料量分配的优化方法 - Google Patents

一种燃煤锅炉不同层燃烧器之间燃料量分配的优化方法 Download PDF

Info

Publication number
CN111853848A
CN111853848A CN202010603074.XA CN202010603074A CN111853848A CN 111853848 A CN111853848 A CN 111853848A CN 202010603074 A CN202010603074 A CN 202010603074A CN 111853848 A CN111853848 A CN 111853848A
Authority
CN
China
Prior art keywords
fuel quantity
layer
load
interval
data
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202010603074.XA
Other languages
English (en)
Other versions
CN111853848B (zh
Inventor
周怀春
王志
米列东
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jiangsu Hanguang Intelligent Technology Co ltd
China University of Mining and Technology CUMT
Northeast Electric Power University
Original Assignee
Northeast Dianli University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Northeast Dianli University filed Critical Northeast Dianli University
Priority to CN202010603074.XA priority Critical patent/CN111853848B/zh
Publication of CN111853848A publication Critical patent/CN111853848A/zh
Application granted granted Critical
Publication of CN111853848B publication Critical patent/CN111853848B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N1/00Regulating fuel supply
    • F23N1/02Regulating fuel supply conjointly with air supply
    • F23N1/022Regulating fuel supply conjointly with air supply using electronic means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N5/00Systems for controlling combustion
    • F23N5/26Details
    • F23N5/265Details using electronic means

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Regulation And Control Of Combustion (AREA)
  • Control Of Steam Boilers And Waste-Gas Boilers (AREA)

Abstract

本发明提出一种燃煤锅炉不同层燃烧器之间燃料量分配的优化方法,其特点是:利用锅炉随负荷、气温分布的优化控制规律,分析平均煤质下各层燃烧器燃料量分配占比,并计算随负荷、气温变化的不同层燃烧器之间燃料量按比例分配的规律。将计算结果与对应负荷、气温下的DCS各层燃烧器燃料量的实时控制指令做差值,最终根据偏差做出燃料量分配比例修正,实现不同层燃烧器之间燃料量的合理分配。本发明提供的方法在变负荷及煤质波动较大的运行工况下能够快速准确地计算各层燃烧器燃料量分配比例,减少排放NOx的同时,且保证锅炉运行效率保持在高位水平。

Description

一种燃煤锅炉不同层燃烧器之间燃料量分配的优化方法
技术领域
本发明属于锅炉燃烧优化控制技术领域,具体涉及一种燃煤锅炉不同层燃烧器之间燃料量分配的优化方法。
背景技术
燃烧器的运行方式指燃烧器负荷分配及其投停方式。其中,燃烧器负荷分配是指煤粉燃料在各层燃烧器喷口、各角或各只喷口的分配;燃烧器的投停方式是指投、停燃烧器的只数与位置。燃烧器的运行方式决定了炉膛燃烧过程的好坏,尤其是燃料量分配的合理性决定了锅炉燃烧效率的高低。在保证锅炉稳定燃烧的前提下,如何实现不同层燃烧器燃料量的合理分配,并保持较高的锅炉燃烧效率,是我们亟待解决的问题。
许多学者针对锅炉燃料量的分配进行了研究,方彦军等通过改进的PSO算法计算了磨煤机出力组合对磨煤机的节能贡献,该方法虽然提高了磨煤机效率且降低了机组的厂用电耗,但是此燃煤分配方案未考虑炉膛燃烧状况对锅炉发电效率的影响。李静等通过分析总煤量-功率关系图,发现机组在同一负荷下平均煤耗量变化范围较大,锅炉效率出现波动,于是将锅炉运行效率分为高效区和低效区,然后通过实验验证锅炉运行在高效区时,不同层燃烧器给煤量的比例关系对提高燃烧效率的贡献,该方案仅总结了总燃料量随机组负荷变化时不同层燃烧器的分配趋势,但是无法给出不同层燃烧器燃料量的具体分配比例。王福珍设计了通流面积可调燃烧器及双向双分级燃烧技术,利用分隔板把燃烧器内部分隔为2~4个分隔通道,实现了A~E层燃烧器适应锅炉负荷的投运方式,尤其是超低负荷工况下稳燃、低NOx的运行,但是此类方案需要对燃烧器硬件进行改造,由于硬件改造工程量较大,且需要多次启、停机对硬件性能不断调试,因此此类方案适用性较差。
总结已有方法,暂未发现随负荷、气温变化精准调节不同层燃烧器之间燃料量分配的方法。因此,基于机组历史运行数据,挖掘潜在提升机组锅炉经济性的煤粉分配方式,发展一种燃煤锅炉不同层燃烧器之间燃料量分配的优化方法具有实际的科学意义。
发明内容
本发明要解决的技术问题是:克服现有技术的缺点和不足,提供一种燃煤锅炉不同层燃烧器之间燃料量分配的优化方法,其利用锅炉随负荷、气温分布的优化控制规律,分析平均煤质下各层燃烧器燃料量分配占比,计算得出随负荷、气温变化的不同层燃烧器之间燃料量按比例分配的优化控制规律。将计算结果匹配对应负荷、气温下的DCS控制指令,最终根据偏差做出比例修正,实现不同层燃烧器之间燃料量的合理分配。
特别说明一下,本发明仅仅以DCS记录的各层给煤机转速表示各层燃烧器燃料量、各层给煤机转速之和表示全部燃烧器总燃料量,没有考虑煤质变化的影响,得到的结果将是在实际煤质波动条件下的平均煤质下的经济性和排放水平的相对变化,并不是追求绝对准确的经济性评价指标。
本发明解决技术问题的技术方案是:一种燃煤锅炉不同层燃烧器之间燃料量分配的优化方法,其特征在于:包括以下步骤:
1)建立按负荷、气温分布的优于优化目标的控制规律
①获取机组历史运行数据
a确定从DCS历史数据库中提取的参数类型xk,参数类型包括:实际负荷、总燃料量、各层给煤机燃料量、各层磨煤机一次风量、二次风总量、各层二次风门开度、各层给煤机转速、总风量、给水流量、主蒸汽压力、调节级压力、烟气含氧量、送风机入口风温、NOx浓度和过热器壁温,其中参数类别以k划分,k=1,2,…,K个;
b设定数据的时间间隔值;
c根据步骤a中列出的参数和步骤b设定的数据时间间隔值,以同一时刻所述参数的数据单元作为数据包,提取燃煤机组过去一年DCS历史运行数据;
②按负荷、气温划分二维区间,将历史数据按二维区间进行分类
a根据全年负荷主要运行区段,确定负荷优化区间:设机组在主要运行区段内的最高运行负荷为Smax,最低运行负荷为Smin,则负荷优化区间为[Smin,Smax];
b确定负荷区间数:设负荷划分间隔为LS,i代表划分的负荷区间数,i=1,2,…,m个,则负荷区间数m通过公式(1)获得;
m=(Smax-Smin)/LS (1)
c根据全年送风机入口风温变化,确定气温优化区间:设全年送风机入口最高风温为Tmax,最低风温为Tmin,则气温优化区间为[Tmin,Tmax];
d确定气温区间数:设气温划分间隔为LT,j代表划分的气温区间数,j=1,2,…,n个,则气温区间数n通过公式(2)获得:
n=(Tmax-Tmin)/LT (2)
e由步骤a~d获得第i负荷段、第j气温段的二维区间为公式(3)
{[Smin+(i-1)×LS,Smin+i×LS],[Tmin+(j-1)×LT,Tmin+j×LT]} (3)
③计算各二维区间的各类参数均值、锅炉效率均值和NOx排放均值
a将步骤①获取的机组历史运行数据的数据包按照步骤②划分的二维区间进行分类,超出负荷、气温二维区间的数据包予以舍弃;
b统计步骤a中各二维区间内数据包数量l,l=1,2,…,Li,j个;则式(3)所表述的二维区间内的运行数据表示为:xi,j,k,l,所述二维区间的各类参数均值为公式(4)所示:
Figure BDA0002559793450000031
式中:
Figure BDA0002559793450000032
表示第i负荷段、第j气温段内第k个参数的均值;
c定义锅炉效率均值=实际负荷均值/总燃料量均值,锅炉效率均值为公式(5)所示:
Figure BDA0002559793450000033
式中:
Figure BDA0002559793450000034
Figure BDA0002559793450000035
为该二维区间的总燃料量均值,
Figure BDA0002559793450000036
Figure BDA0002559793450000037
为该二维区间的实际负荷均值,其中
Figure BDA0002559793450000038
d计算NOx排放均值
Figure BDA0002559793450000039
Figure BDA00025597934500000310
e二维区间的各类参数出现无效数据的处理;
④根据优化目标筛选二维区间内的数据包
在第i负荷段、第j气温段组成的二维区间内,通过优于锅炉效率均值
Figure BDA00025597934500000311
和NOx排放均值
Figure BDA00025597934500000312
来优选数据包,筛选条件为公式(6)所示:
Figure BDA00025597934500000313
式中:xi,j,E,l和xi,j,NOx,l表示第i负荷段、第j气温段、第l个数据包的锅炉效率和NOx排放,其中
Figure BDA00025597934500000314
⑤各二维区间优于锅炉效率均值和NOx排放均值的数据包的处理
a符合优化目标的数据包经筛选后保存在原二维区间内,并统计符合优化目标的数据包数量l′,其中l′=1,2,…,Li,j′,不符合优化目标的数据包予以淘汰;
b优选后的二维区间的数据包个数少于限定值的处理;
⑥从各二维区间优于优化目标的数据集合中计算该区间各类参数均值
对于符合优化目标的数据包再次计算该二维区间各类参数均值为公式(7)所示:
Figure BDA00025597934500000315
式中:
Figure BDA00025597934500000316
表示筛选后的第i负荷段、第j气温段、第k个参数的均值;x′i,j,k,l′表示筛选后第i负荷段、第j气温段、第k个参数的第l′个数据,由此得到按负荷、气温分布的优于优化目标的优化控制规律;
⑦二维区间内异常数据的处理
对于二维区间内的异常数据,依据相邻工况运行数据的渐变性,采用正则化矩阵对突变峰值进行均值滤波;
2)计算优化控制规律下A~H层燃烧器燃料量分配占比
①计算所有燃烧器总燃料量
定义A~H表示各层燃烧器标号,
Figure BDA0002559793450000041
为第i负荷段、第j气温段A~H层给煤机转速之和,即所有燃烧器总燃料量为公式(8)所示:
Figure BDA0002559793450000042
式中:
Figure BDA0002559793450000043
为第i负荷段、第j气温段的A~H层给煤机转速,即A~H层燃烧器燃料量,且
Figure BDA0002559793450000044
②计算平均煤质下所有二维区间各层燃烧器燃料量分配占比
计算平均煤质下所有二维区间各层燃烧器燃料量分配占比为公式(9)所示:
Figure BDA0002559793450000045
式中:fi,j,A~fi,j,H为第i负荷段、第j气温段的A~H层燃烧器燃料量分配占比;
3)计算DCS实时信号下A~H层燃烧器燃料量分配占比
①计算DCS实时信号下A~H层燃烧器总燃料量
设DCS各类参数的实时控制信号为Sin,k,其中k为参数类别且k=1,2,…,K,与对应负荷、气温下的优化控制规律的参数类别一一对应,则DCS实时信号下A~H层给煤机转速之和,即燃烧器总燃料量为公式(10)所示:
Figure BDA0002559793450000046
式中:Sin,A~Sin,H为DCS实时控制信号下A~H层给煤机转速,即各层燃烧器燃料量,且
Figure BDA0002559793450000051
②计算DCS实时控制信号下各层燃烧器之间燃料量分配占比
计算DCS实时控制信号下各层燃烧器之间燃料量分配占比为公式(11)所示:
Figure BDA0002559793450000052
式中:fin,A~fin,H为DCS实时控制信号下A~H层燃烧器燃料量分配占比;
4)计算各层燃烧器燃料量的比例修正,输出分配比例
①设Δfk代表优化控制规律与DCS实时控制信号之间A~H层燃烧器燃料量分配占比的绝对差值,表述为公式(12):
Δfk=|fi,j,k-fin,k|,k=A,B,…,H (12)
②若绝对差值Δfk在DCS实际控制信号各层燃烧器燃料量分配占比fin,k的设定幅度值以内,即Δfk/fin,k<设定幅度值,则各层燃烧器燃料量的分配比例修正为fi,j,k;若差值Δfk超出或等于DCS实际控制信号各层燃烧器燃料量分配占比fin,k的设定幅度值,即Δfk/fin,k≥设定幅度值,则各层燃烧器燃料量的分配比例修正为fin,k·(1±设定幅度值)。
对于步骤1)的①所述的设定数据的时间间隔值为1~3分钟。
对于步骤1)的③二维区间的各类参数出现无效数据的处理:在所划分的不同负荷、不同气温的工况下,并不能保证二维区间的各类参数全部都出现有效运行数据,此时,将采用同一负荷段内其他二维区间的同类参数的平均值予以替代。
对于步骤1)的⑤优选后的二维区间的数据包个数少于限定值的处理:在数据包个数少于限定值的情况,认定该二维区间所含有效数据量不全,淘汰该区间已优选的数据包,并采用同一负荷段内其他二维区间的同类参数的平均值予以替代。
所述步骤1)的⑤的限定值为500。
对于所述步骤1)的⑦二维区间内异常数据的处理,依据相邻工况运行数据的渐变性,采用正则化矩阵对突变峰值进行均值替代,具体如下:
a)利用步骤②中按负荷、气温分布的二维区间建立二维数组A,数组元素表示为Ai,j
其中负荷段i=1,2,…,m,气温段j=1,2,…,n,按数组元素位于数组边界、四个顶角和内部等三种位置分类处理;
b)若区间位于数组边界,利用相邻三个区间的数据求均值为公式(13)所示:
A1,2=(A1,1+A2,2+A1,3)/3 (13)
c)若区间位于数组顶角,利用相邻两个区间的数据求均值为公式(14)所示:
Am,n=(Am-1,n+Am,n-1)/2 (14)
d)若区间位于数组内部,利用相邻四个区间的数据求均值为公式(15)所示:
Ai,j=(Ai-1,j+Ai,j-1+Ai+1,j+Ai,j+1)/4 (15)
对于步骤4)的②所述的设定幅度值为5%。
本发明的一种燃煤锅炉不同层燃烧器之间燃料量分配的优化方法的优点体现在:
一是考虑气温(送风机入口风温)对锅炉优化控制的影响,将历史运行数据按负荷、气温进行精细划分,优化方案最大限度贴合实际运行工况,保证调控质量;
二是在精准调控的基础上,筛选二维区间内优于锅炉效率均值(实际负荷均值/总燃料量均值)和NOx排放均值的优化控制规律,以达到节能减排的目的;
三是优化方案安全可靠,调节幅度控制在原有DCS控制信号的±5%以内,保证机组稳定运行;
四是对于煤质波动较大的燃料具有很强的适用性。
附图说明
图1为本发明的流程图;
图2为总燃料量拟合系数;
图3为A层燃烧器燃料量(给煤机转速)的拟合系数;
图4为B层燃烧器燃料量(给煤机转速)的拟合系数;
图5为C层燃烧器燃料量(给煤机转速)的拟合系数;
图6为D层燃烧器燃料量(给煤机转速)的拟合系数;
图7为E层燃烧器燃料量(给煤机转速)的拟合系数;
图8为F层燃烧器燃料量(给煤机转速)的拟合系数。
具体实施方式
下面结合附图和实施例对本发明进一步说明。
参见图1,实施例1,本实施例1一种燃煤锅炉不同层燃烧器之间燃料量分配的优化方法,包括以下步骤:
1)建立按负荷、气温分布的优于优化目标的优化控制规律
①获取机组历史运行数据
a确定从DCS历史数据库中提取的参数类型xk,参数类型包括:实际负荷、总燃料量、各层给煤机燃料量、各层磨煤机一次风量、二次风总量、各层二次风门开度、各层给煤机转速、总风量、给水流量、主蒸汽压力、调节级压力、烟气含氧量、送风机入口风温、NOx浓度和过热器壁温,其中参数类别以k划分,k=1,2,…,K个;
b设定数据的时间间隔值为1分钟;
c根据步骤a中列出的参数和步骤b设定的数据时间间隔值,以同一时刻所述参数的数据单元作为数据包,提取燃煤机组过去一年DCS历史运行数据;
②按负荷、气温划分二维区间,将历史数据按二维区间进行分类
a根据全年负荷主要运行区段,确定负荷优化区间:设机组在主要运行区段内的最高运行负荷为Smax,最低运行负荷为Smin,则负荷优化区间为[Smin,Smax];
b确定负荷区间数:设负荷划分间隔为LS,i代表划分的负荷区间数,i=1,2,...,m个,则负荷区间数m通过公式(1)获得;
m=(Smax-Smin)/LS (1)
c根据全年送风机入口风温变化,确定气温优化区间:设全年送风机入口最高风温为Tmax,最低风温为Tmin,则气温优化区间为[Tmin,Tmax];
d确定气温区间数:设气温划分间隔为LT,j代表划分的气温区间数,j=1,2,…,n个,则气温区间数n通过公式(2)获得:
n=(Tmax-Tmin)/LT (2)
e由步骤a~d获得第i负荷段、第j气温段的二维区间为公式(3)
{[Smin+(i-1)×LS,Smin+i×LS],[Tmin+(j-1)×LT,Tmin+j×LT]} (3)
③计算各二维区间的各类参数均值、锅炉效率均值和NOx排放均值
a将步骤①获取的机组历史运行数据的数据包按照步骤②划分的二维区间进行分类,超出负荷、气温二维区间的数据包予以舍弃;
b统计步骤a中各二维区间内数据包数量l,l=1,2,…,Li,j个;则式(3)所表述的二维区间内的运行数据表示为:xi,j,k,l,所述二维区间的各类参数均值为公式(4)所示:
Figure BDA0002559793450000071
式中:
Figure BDA0002559793450000072
表示第i负荷段、第j气温段内第k个参数的均值;
c定义锅炉效率均值=实际负荷均值/总燃料量均值,锅炉效率均值为公式(5)所示:
Figure BDA0002559793450000081
式中:
Figure BDA0002559793450000082
Figure BDA0002559793450000083
为该二维区间的总燃料量均值,
Figure BDA0002559793450000084
Figure BDA0002559793450000085
为该二维区间的实际负荷均值,其中
Figure BDA0002559793450000086
d计算NOx排放均值
Figure BDA0002559793450000087
Figure BDA0002559793450000088
e二维区间的各类参数出现无效数据的处理
在所划分的不同负荷、不同气温的工况下,并不能保证二维区间的各类参数全部出现有效运行数据,此时,将采用同一负荷段内其他二维区间的同类参数的平均值予以替代。
④根据优化目标筛选二维区间内的数据包
在第i负荷段、第j气温段组成的二维区间内,通过优于锅炉效率均值
Figure BDA0002559793450000089
和NOx排放均值
Figure BDA00025597934500000810
来优选数据包,筛选条件为公式(6)所示:
Figure BDA00025597934500000811
式中:xi,j,E,l和xi,j,NOx,l表示第i负荷段、第j气温段、第l个数据包的锅炉效率和NOx排放,其中
Figure BDA00025597934500000812
⑤各二维区间优于锅炉效率均值和NOx排放均值的数据包的处理
a符合优化目标的数据包经筛选后保存在原二维区间内,并统计符合优化目标的数据包数量l′,其中l′=1,2,…,Li,j′,不符合优化目标的数据包予以淘汰;
b优选后的二维区间的数据包个数少于限定值的处理
对于数据包个数少于限定值为500的情况,认定该二维区间所含有效数据量不全,淘汰该区间已优选的数据包,并采用同一负荷段内其他二维区间的同类参数的平均值予以替代。
⑥从各二维区间优于优化目标的数据集合中计算该区间各类参数均值
对于符合优化目标的数据包再次计算该二维区间各类参数均值为公式(7)所示:
Figure BDA00025597934500000813
式中:
Figure BDA00025597934500000814
表示筛选后的第i负荷段、第j气温段、第k个参数的均值;x′i,j,k,l′表示筛选后第i负荷段、第j气温段、第k个参数的第l′个数据,由此得到按负荷、气温分布的优于优化目标的优化控制规律;
⑦二维区间内异常数据的处理
对于二维区间内的异常数据,依据相邻工况运行数据的渐变性,采用正则化矩阵对突变峰值进行均值滤波;
2)计算优化控制规律下A~H层燃烧器燃料量分配占比
①计算所有燃烧器总燃料量
定义A~H表示各层燃烧器标号,
Figure BDA0002559793450000091
为第i负荷段、第j气温段A~H层给煤机转速之和,即所有燃烧器总燃料量为公式(8)所示:
Figure BDA0002559793450000092
式中:
Figure BDA0002559793450000093
为第i负荷段、第j气温段的A~H层给煤机转速,即A~H层燃烧器燃料量,且
Figure BDA0002559793450000094
②计算平均煤质下所有二维区间各层燃烧器燃料量分配占比
计算平均煤质下所有二维区间各层燃烧器燃料量分配占比为公式(9)所示:
Figure BDA0002559793450000095
式中:fi,j,A~fi,j,H为第i负荷段、第j气温段的A~H层燃烧器燃料量分配占比;
3)计算DCS实时信号下A~H层燃烧器燃料量分配占比
①计算DCS实时信号下A~H层燃烧器总燃料量
设DCS各类参数的实时控制信号为Sin,k,其中k为参数类别且k=1,2,…,K,与对应负荷、气温下的优化控制规律的参数类别一一对应,则DCS实时信号下A~H层给煤机转速之和,即燃烧器总燃料量为公式(10)所示:
Figure BDA0002559793450000096
式中:Sin,A~Sin,H为DCS实时控制信号下A~H层给煤机转速,即各层燃烧器燃料量,且
Figure BDA0002559793450000097
②计算DCS实时控制信号下各层燃烧器之间燃料量分配占比
计算DCS实时控制信号下各层燃烧器之间燃料量分配占比为公式(11)所示:
Figure BDA0002559793450000101
式中:fin,A~fin,H为DCS实时控制信号下A~H层燃烧器燃料量分配占比;
4)计算各层燃烧器燃料量的比例修正,输出分配比例
①设Δfk代表优化控制规律与DCS实时控制信号之间A~H层燃烧器燃料量分配占比的绝对差值,表述为公式(12)所示:
Δfk=|fi,j,k-fin,k|,k=A,B,…,H (12)
②若绝对差值Δfk在DCS实际控制信号各层燃烧器燃料量分配占比fin,k的5%以内,即Δfk/fin,k<5%,则各层燃烧器燃料量的分配比例修正为fi,j,k;若差值Δfk超出或等于DCS实际控制信号各层燃烧器燃料量分配占比fin,k的5%,即Δfk/fin,k≥5%,则各层燃烧器燃料量的分配比例修正为fin,k·(1±5%);
对于二维区间内的异常数据,依据相邻工况运行数据的渐变性,采用正则化矩阵对突变峰值进行均值滤波,具体如下:
a)利用步骤②中按负荷、气温分布的二维区间建立二维数组A,数组元素表示为Ai,j,其中负荷段i=1,2,…,m,气温段j=1,2,...,n,按数组元素位于数组边界、四个顶角和内部等三种位置分类处理;
b)若区间位于数组边界,利用相邻三个区间的数据求均值为公式(13)所示:
A1,2=(A1,1+A2,2+A1,3)/3 (13)
c)若区间位于数组顶角,利用相邻两个区间的数据求均值为公式(14)所示:
Am,n=(Am-1,n+Am,n-1)/2 (14)
d)若如区间位于数组内部,利用相邻四个区间的数据求均值为公式(15)所示:
Ai,j=(Ai-1,j+Ai,j-1+Ai+1,j+Ai,j+1)/4 (15)
参见图1-图8,实施例2,本实施例以我国南方某电厂6号600MW燃煤发电机组为研究对象,首先确定提取的参数类型如表1所示,其中包括:实际负荷、总燃料量、各层给煤机给煤量、各层磨煤机一次风量、二次风总量、各层二次风门开度、各层给煤机转速、总风量、给水流量、主蒸汽压力、调节级压力、烟气含氧量、送风机入口风温、NOx浓度、过热器壁温等58类参数,即K=58,数据包的提取时间间隔设置为1分钟;
表1提取DCS参数列表
序号 参数 单位 序号 参数 单位
1 实际负荷 MW 30 E层扩建端二次风门开度
2 总燃料量 t/h 31 F层固定端二次风门开度
3 A给煤量 t/h 32 F层扩建端二次风门开度
4 B给煤量 t/h 33 C层固定端二次风量 t/h
5 C给煤量 t/h 34 C层扩建端二次风量 t/h
6 D给煤量 t/h 35 D层固定端二次风量 t/h
7 E给煤量 t/h 36 D层扩建端二次风量 t/h
8 F给煤量 t/h 37 E层固定端二次风量 t/h
9 A磨一次风量 t/h 38 E层扩建端二次风量 t/h
10 B磨一次风量 t/h 39 F层固定端二次风量 t/h
11 C磨一次风量 t/h 40 F层扩建端二次风量 t/h
12 D磨一次风量 t/h 41 前墙固定端二次风量 t/h
13 E磨一次风量 t/h 42 前墙扩建端二次风量 t/h
14 F磨一次风量 t/h 43 后墙固定端二次风量 t/h
15 A二次风总量 t/h 44 后墙扩建端二次风量 t/h
16 B二次风总量 t/h 45 总风量 t/h
17 A层固定端二次风量 t/h 46 A给煤机转速 rpm
18 A层扩建端二次风量 t/h 47 B给煤机转速 rpm
19 B层固定端二次风量 t/h 48 C给煤机转速 rpm
20 B层扩建端二次风量 t/h 49 D给煤机转速 rpm
21 A层扩建端二次风门开度 t/h 50 E给煤机转速 rpm
22 B层固定端二次风门开度 51 F给煤机转速 rpm
23 A层固定端二次风门开度 52 给水流量 t/h
24 B层扩建端二次风门开度 53 主汽压力 MPa
25 C层固定端二次风门开度 54 调节级压力 MPa
26 C层扩建端二次风门开度 55 烟气含氧量
27 D层固定端二次风门开度 56 送风机入口风温
28 D层扩建端二次风门开度 57 NOx浓度
29 E层固定端二次风门开度 58 过热器壁温 mg/m<sup>3</sup>
根据以上设置规则,提取DCS历史数据,分析A~F层燃烧器燃料量(给煤机转速),并计算A~F层燃烧器燃料量(给煤机转速)之和即总燃料量
Figure BDA0002559793450000121
利用最小二乘法,对锅炉效率与A~F层燃烧器燃料量(给煤机转速)、总燃料量进行数据拟合,拟合数据为该电厂7天内的历史数据,然后分析A~F层燃烧器燃料量(给煤机转速)、总燃料量的拟合系数随负荷的变化曲线,图2为总燃料量的拟合系数随负荷变化曲线,图3-8为A~F层燃烧器燃料量(给煤机转速)的拟合系数随负荷变化曲线。
从图2可以看出拟合系数为负值,即减少总燃料量可提高锅炉效率,但是总燃料量的减少不代表A~F层给煤机转速全部降低或同比例降低,通过分析图3~8,可依据相应负荷下A~F层给煤机拟合系数的正负决定给煤机转速的增减方向;最后根据相应负荷、气温下的各层燃烧器燃料量的比例修正,决定给煤机转速的修正比例。
本发明的实施例并非穷举,本领域技术人员不经过创造性劳动的简单复制和改进,仍属于本发明权利保护的范围。

Claims (7)

1.一种燃煤锅炉不同层燃烧器之间燃料量分配的优化方法,其特征在于:包括以下步骤:
1)建立按负荷、气温分布的优于优化目标的控制规律
①获取机组历史运行数据
a确定从DCS历史数据库中提取的参数类型xk,参数类型包括:实际负荷、总燃料量、各层给煤机燃料量、各层磨煤机一次风量、二次风总量、各层二次风门开度、各层给煤机转速、总风量、给水流量、主蒸汽压力、调节级压力、烟气含氧量、送风机入口风温、NOx浓度和过热器壁温,其中参数类别以k划分,k=1,2,…,K个;
b设定数据的时间间隔值;
c根据步骤a中列出的参数和步骤b设定的数据时间间隔值,以同一时刻所述参数的数据单元作为数据包,提取燃煤机组过去一年DCS历史运行数据;
②按负荷、气温划分二维区间,将历史数据按二维区间进行分类
a根据全年负荷主要运行区段,确定负荷优化区间:设机组在主要运行区段内的最高运行负荷为Smax,最低运行负荷为Smin,则负荷优化区间为[Smin,Smax];
b确定负荷区间数:设负荷划分间隔为LS,i代表划分的负荷区间数,i=1,2,…,m个,则负荷区间数m通过公式(1)获得;
m=(Smax-Smin)/LS (1)
c根据全年送风机入口风温变化,确定气温优化区间:设全年送风机入口最高风温为Tmax,最低风温为Tmin,则气温优化区间为[Tmin,Tmax];
d确定气温区间数:设气温划分间隔为LT,j代表划分的气温区间数,j=1,2,…,n个,则气温区间数n通过公式(2)获得:
n=(Tmax-Tmin)/LT (2)
e由步骤a~d获得第i负荷段、第j气温段的二维区间为公式(3)
{[Smin+(i-1)×LS,Smin+i×LS],[Tmin+(j-1)×LT,Tmin+j×LT]} (3)
③计算各二维区间的各类参数均值、锅炉效率均值和NOx排放均值
a将步骤①获取的机组历史运行数据的数据包按照步骤②划分的二维区间进行分类,超出负荷、气温二维区间的数据包予以舍弃;
b统计步骤a中各二维区间内数据包数量l,l=1,2,…,Li,j个;则式(3)所表述的二维区间内的运行数据表示为:xi,j,k,l,所述二维区间的各类参数均值为公式(4)所示:
Figure FDA0002559793440000011
式中:
Figure FDA0002559793440000012
表示第i负荷段、第j气温段内第k个参数的均值;
c定义锅炉效率均值=实际负荷均值/总燃料量均值,锅炉效率均值为公式(5)所示:
Figure FDA0002559793440000021
式中:
Figure FDA0002559793440000022
Figure FDA0002559793440000023
为该二维区间的总燃料量均值,
Figure FDA0002559793440000024
Figure FDA0002559793440000025
为该二维区间的实际负荷均值,其中
Figure FDA0002559793440000026
d计算NOx排放均值
Figure FDA0002559793440000027
Figure FDA0002559793440000028
e二维区间的各类参数出现无效数据的处理;
④根据优化目标筛选二维区间内的数据包
在第i负荷段、第j气温段组成的二维区间内,通过优于锅炉效率均值
Figure FDA0002559793440000029
和NOx排放均值
Figure FDA00025597934400000210
来优选数据包,筛选条件为公式(6)所示:
Figure FDA00025597934400000211
式中:xi,j,E,l和xi,j,NOx,l表示第i负荷段、第j气温段、第l个数据包的锅炉效率和NOx排放,其中
Figure FDA00025597934400000212
⑤各二维区间优于锅炉效率均值和NOx排放均值的数据包的处理
a符合优化目标的数据包经筛选后保存在原二维区间内,并统计符合优化目标的数据包数量l′,其中l′=1,2,…,Li,j′,不符合优化目标的数据包予以淘汰;
b优选后的二维区间的数据包个数少于限定值的处理;
⑥从各二维区间优于优化目标的数据集合中计算该区间各类参数均值
对于符合优化目标的数据包再次计算该二维区间各类参数均值为公式(7)所示:
Figure FDA00025597934400000213
式中:
Figure FDA00025597934400000214
表示筛选后的第i负荷段、第j气温段、第k个参数的均值;x′i,j,k,l′表示筛选后第i负荷段、第j气温段、第k个参数的第l′个数据,由此得到按负荷、气温分布的优于优化目标的优化控制规律;
⑦二维区间内异常数据的处理
对于二维区间内的异常数据,依据相邻工况运行数据的渐变性,采用正则化矩阵对突变峰值进行均值滤波;
2)计算优化控制规律下A~H层燃烧器燃料量分配占比
①计算所有燃烧器总燃料量
定义A~H表示各层燃烧器标号,
Figure FDA0002559793440000031
为第i负荷段、第j气温段A~H层给煤机转速之和,即所有燃烧器总燃料量为公式(8)所示:
Figure FDA0002559793440000032
式中:
Figure FDA0002559793440000033
为第i负荷段、第j气温段的A~H层给煤机转速,即A~H层燃烧器燃料量,且
Figure FDA0002559793440000034
②计算平均煤质下所有二维区间各层燃烧器燃料量分配占比
计算平均煤质下所有二维区间各层燃烧器燃料量分配占比为公式(9)所示:
Figure FDA0002559793440000035
式中:fi,j,A~fi,j,H为第i负荷段、第j气温段的A~H层燃烧器燃料量分配占比;
3)计算DCS实时信号下A~H层燃烧器燃料量分配占比
①计算DCS实时信号下A~H层燃烧器总燃料量
设DCS各类参数的实时控制信号为Sin,k,其中k为参数类别且k=1,2,…,K,与对应负荷、气温下的优化控制规律的参数类别一一对应,则DCS实时信号下A~H层给煤机转速之和,即燃烧器总燃料量为公式(10)所示:
Figure FDA0002559793440000036
式中:Sin,A~Sin,H为DCS实时控制信号下A~H层给煤机转速,即各层燃烧器燃料量,且
Figure FDA0002559793440000037
②计算DCS实时控制信号下各层燃烧器之间燃料量分配占比
计算DCS实时控制信号下各层燃烧器之间燃料量分配占比为公式(11)所示:
Figure FDA0002559793440000041
式中:fin,A~fin,H为DCS实时控制信号下A~H层燃烧器燃料量分配占比;
4)计算各层燃烧器燃料量的比例修正,输出分配比例
①设Δfk代表优化控制规律与DCS实时控制信号之间A~H层燃烧器燃料量分配占比的绝对差值,表述为公式(12):
Δfk=|fi,j,k-fin,k|,k=A,B,…,H (12)
②若绝对差值Δfk在DCS实际控制信号各层燃烧器燃料量分配占比fin,k的设定幅度值以内,即Δfk/fin,k<设定幅度值,则各层燃烧器燃料量的分配比例修正为fi,j,k;若差值Δfk超出或等于DCS实际控制信号各层燃烧器燃料量分配占比fin,k的设定幅度值,即Δfk/fin,k≥设定幅度值,则各层燃烧器燃料量的分配比例修正为fin,k·(1±设定幅度值)。
2.如权利要求1所述燃煤锅炉不同层燃烧器之间燃料量分配的优化方法,其特征在于:对于步骤1)的①所述的设定数据的时间间隔值为1~3分钟。
3.如权利要求1所述燃煤锅炉不同层燃烧器之间燃料量分配的优化方法,其特征在于:对于步骤1)的③二维区间的各类参数出现无效数据的处理:在所划分的不同负荷、不同气温的工况下,并不能保证二维区间的各类参数全部都出现有效运行数据,此时,将采用同一负荷段内其他二维区间的同类参数的平均值予以替代。
4.如权利要求1所述燃煤锅炉不同层燃烧器之间燃料量分配的优化方法,其特征在于:对于步骤1)的⑤优选后的二维区间的数据包个数少于限定值的处理:在数据包个数少于限定值的情况,认定该二维区间所含有效数据量不全,淘汰该区间已优选的数据包,并采用同一负荷段内其他二维区间的同类参数的平均值予以替代。
5.如权利要求1或4所述燃煤锅炉不同层燃烧器之间燃料量分配的优化方法,其特征在于:所述步骤1)的⑤的限定值为500。
6.如权利要求1所述燃煤锅炉不同层燃烧器之间燃料量分配的优化方法,其特征在于:对于所述步骤1)的⑦二维区间内异常数据的处理,依据相邻工况运行数据的渐变性,采用正则化矩阵对突变峰值进行均值替代,具体如下:
a)利用步骤②中按负荷、气温分布的二维区间建立二维数组A,数组元素表示为Ai,j,其中负荷段i=1,2,…,m,气温段j=1,2,…,n,按数组元素位于数组边界、四个顶角和内部等三种位置分类处理;
b)若区间位于数组边界,利用相邻三个区间的数据求均值为公式(13)所示:
A1,2=(A1,1+A2,2+A1,3)/3 (13)
c)若区间位于数组顶角,利用相邻两个区间的数据求均值为公式(14)所示:
Am,n=(Am-1,n+Am,n-1)/2 (14)
d)若区间位于数组内部,利用相邻四个区间的数据求均值为公式(15)所示:
Ai,j=(Ai-1,j+Ai,j-1+Ai+1,j+Ai,j+1)/4 (15)。
7.如权利要求1所述燃煤锅炉不同层燃烧器之间燃料量分配的优化方法,其特征在于:对于步骤4)的②所述的设定幅度值为5%。
CN202010603074.XA 2020-06-29 2020-06-29 一种燃煤锅炉不同层燃烧器之间燃料量分配的优化方法 Active CN111853848B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010603074.XA CN111853848B (zh) 2020-06-29 2020-06-29 一种燃煤锅炉不同层燃烧器之间燃料量分配的优化方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010603074.XA CN111853848B (zh) 2020-06-29 2020-06-29 一种燃煤锅炉不同层燃烧器之间燃料量分配的优化方法

Publications (2)

Publication Number Publication Date
CN111853848A true CN111853848A (zh) 2020-10-30
CN111853848B CN111853848B (zh) 2022-09-30

Family

ID=72989574

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010603074.XA Active CN111853848B (zh) 2020-06-29 2020-06-29 一种燃煤锅炉不同层燃烧器之间燃料量分配的优化方法

Country Status (1)

Country Link
CN (1) CN111853848B (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113391615A (zh) * 2021-05-10 2021-09-14 中国大唐集团科学技术研究院有限公司西北电力试验研究院 一种概率统计的变时间脉冲算法
CN113834091A (zh) * 2021-10-12 2021-12-24 中国矿业大学 一种燃气锅炉燃烧优化供风系统控制方法
CN113834092A (zh) * 2021-10-12 2021-12-24 中国矿业大学 一种燃气锅炉燃烧优化控制方法

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09274506A (ja) * 1996-04-05 1997-10-21 Mitsubishi Heavy Ind Ltd 最適化制御装置
CN1352369A (zh) * 2001-11-07 2002-06-05 华中科技大学 锅炉多火嘴炉膛燃烧优化控制方法
JP2003074833A (ja) * 2001-09-04 2003-03-12 Mitsubishi Heavy Ind Ltd 石炭燃焼制御システム
US20040191914A1 (en) * 2003-03-28 2004-09-30 Widmer Neil Colin Combustion optimization for fossil fuel fired boilers
CN101329582A (zh) * 2008-07-18 2008-12-24 东南大学 循环流化床锅炉燃烧优化与诊断方法
CN101334666A (zh) * 2008-07-15 2008-12-31 西安艾贝尔科技发展有限公司 双进双出钢球磨煤机直吹式制粉系统优化控制方法
CN101697179A (zh) * 2009-11-05 2010-04-21 东南大学 基于正反热平衡关系的电站锅炉燃煤热值趋势测算方法
CN103148473A (zh) * 2013-03-12 2013-06-12 华北电力科学研究院有限责任公司 一种基于co的电站锅炉优化运行方法及系统
CN103216827A (zh) * 2013-05-13 2013-07-24 北京和隆优化科技股份有限公司 一种循环流化床锅炉快速稳定负荷控制方法
CN103324862A (zh) * 2013-07-11 2013-09-25 中国石油大学(华东) 一种基于改进神经网络与遗传算法的燃煤锅炉优化方法
CN103759290A (zh) * 2014-01-16 2014-04-30 广东电网公司电力科学研究院 大型燃煤机组在线监测与优化控制系统及其实现方法
CN106500128A (zh) * 2017-01-12 2017-03-15 东北电力大学 一种变负荷工况下火电厂锅炉NOx排放控制方法
CN106885228A (zh) * 2017-02-10 2017-06-23 青岛高校信息产业股份有限公司 一种锅炉风煤比优化方法和系统
CN109886471A (zh) * 2019-01-22 2019-06-14 中国大唐集团科学技术研究院有限公司火力发电技术研究院 基于神经网络与智能优化算法的火电机组负荷分配方法

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09274506A (ja) * 1996-04-05 1997-10-21 Mitsubishi Heavy Ind Ltd 最適化制御装置
JP2003074833A (ja) * 2001-09-04 2003-03-12 Mitsubishi Heavy Ind Ltd 石炭燃焼制御システム
CN1352369A (zh) * 2001-11-07 2002-06-05 华中科技大学 锅炉多火嘴炉膛燃烧优化控制方法
US20040191914A1 (en) * 2003-03-28 2004-09-30 Widmer Neil Colin Combustion optimization for fossil fuel fired boilers
CN101334666A (zh) * 2008-07-15 2008-12-31 西安艾贝尔科技发展有限公司 双进双出钢球磨煤机直吹式制粉系统优化控制方法
CN101329582A (zh) * 2008-07-18 2008-12-24 东南大学 循环流化床锅炉燃烧优化与诊断方法
CN101697179A (zh) * 2009-11-05 2010-04-21 东南大学 基于正反热平衡关系的电站锅炉燃煤热值趋势测算方法
CN103148473A (zh) * 2013-03-12 2013-06-12 华北电力科学研究院有限责任公司 一种基于co的电站锅炉优化运行方法及系统
CN103216827A (zh) * 2013-05-13 2013-07-24 北京和隆优化科技股份有限公司 一种循环流化床锅炉快速稳定负荷控制方法
CN103324862A (zh) * 2013-07-11 2013-09-25 中国石油大学(华东) 一种基于改进神经网络与遗传算法的燃煤锅炉优化方法
CN103759290A (zh) * 2014-01-16 2014-04-30 广东电网公司电力科学研究院 大型燃煤机组在线监测与优化控制系统及其实现方法
CN106500128A (zh) * 2017-01-12 2017-03-15 东北电力大学 一种变负荷工况下火电厂锅炉NOx排放控制方法
CN106885228A (zh) * 2017-02-10 2017-06-23 青岛高校信息产业股份有限公司 一种锅炉风煤比优化方法和系统
CN109886471A (zh) * 2019-01-22 2019-06-14 中国大唐集团科学技术研究院有限公司火力发电技术研究院 基于神经网络与智能优化算法的火电机组负荷分配方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
叶向前,谭磊,方彦军: "基于支持向量机增量算法的锅炉燃烧效率建模研究", 《锅炉技术》 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113391615A (zh) * 2021-05-10 2021-09-14 中国大唐集团科学技术研究院有限公司西北电力试验研究院 一种概率统计的变时间脉冲算法
CN113391615B (zh) * 2021-05-10 2024-04-02 中国大唐集团科学技术研究院有限公司西北电力试验研究院 一种概率统计的变时间脉冲算法
CN113834091A (zh) * 2021-10-12 2021-12-24 中国矿业大学 一种燃气锅炉燃烧优化供风系统控制方法
CN113834092A (zh) * 2021-10-12 2021-12-24 中国矿业大学 一种燃气锅炉燃烧优化控制方法
CN113834092B (zh) * 2021-10-12 2023-02-14 中国矿业大学 一种燃气锅炉燃烧优化控制方法

Also Published As

Publication number Publication date
CN111853848B (zh) 2022-09-30

Similar Documents

Publication Publication Date Title
CN111853848B (zh) 一种燃煤锅炉不同层燃烧器之间燃料量分配的优化方法
CN111881554B (zh) 一种锅炉随气温变化的优化控制方法
CN110486749B (zh) 一种火电机组锅炉燃烧优化控制方法及系统
CN105787211B (zh) 针对燃气透平劣化的联合循环余热锅炉压力调整方法
CN108490794B (zh) 一种深度调峰下660mw超临界机组agc控制系统
CN110848733B (zh) 一种基于煤质在线监测的燃烧优化方法
CN109058969B (zh) 一种超超临界二次再热塔式锅炉运行控制方法
CN105276611A (zh) 火电厂锅炉燃烧调整优化方法与系统
CN108594663B (zh) 一种深度调峰下660mw超临界机组agc控制方法
CN109373347B (zh) 一种机组旁路供热的给煤量优化控制方法
CN109882882B (zh) 改善低nox燃烧锅炉侧墙贴壁还原性气氛的方法及系统
CN111142377B (zh) 顾及磨煤机运行状态的协调控制系统燃料量前馈控制方法
CN112524637A (zh) 一种基于风粉和co在线监测的锅炉燃烧优化方法和系统
CN112628712A (zh) 一种基于风门阻力系数的二次风闭环优化控制系统
CN115111601B (zh) 多变负荷下内嵌算法融合的多目标锅炉燃烧优化控制方法
CN107831656A (zh) 一种火电机组协调控制系统节能优化技术
CN108763651B (zh) 一种从锅炉运行数据中提取燃烧器配风挡板过流特性的方法
CN107166428B (zh) 一种基于烟气再循环的层燃锅炉烟气含氧量控制系统
CN110701634A (zh) 一种一次风压控制系统及其控制方法
CN112945600B (zh) 基于水冷壁高温腐蚀防治的煤粉锅炉一体化综合调整方法
CN115095884A (zh) 基于数字孪生的锅炉精细化配风方法和锅炉系统
CN107631286A (zh) 一种提高超超临界锅炉机组效率的调温方法及系统
CN113153798A (zh) 一种解决轴流式一次风机失速和喘振的系统
CN111678339A (zh) 一种烧结机烟气罩内温度控制系统及方法
CN107957079B (zh) 四角切圆燃烧煤粉锅炉的控制方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
TA01 Transfer of patent application right
TA01 Transfer of patent application right

Effective date of registration: 20210721

Address after: 132012, Changchun Road, Jilin, Jilin, 169

Applicant after: NORTHEAST DIANLI University

Applicant after: China University of Mining and Technology

Applicant after: Jiangsu Hanguang Intelligent Technology Co.,Ltd.

Address before: 132012, Changchun Road, Jilin, Jilin, 169

Applicant before: NORTHEAST DIANLI University

GR01 Patent grant
GR01 Patent grant