CN111847575A - 一种用二氧化锡光催化量子点清除含辛烷污染物的方法及其应用 - Google Patents

一种用二氧化锡光催化量子点清除含辛烷污染物的方法及其应用 Download PDF

Info

Publication number
CN111847575A
CN111847575A CN202010724912.9A CN202010724912A CN111847575A CN 111847575 A CN111847575 A CN 111847575A CN 202010724912 A CN202010724912 A CN 202010724912A CN 111847575 A CN111847575 A CN 111847575A
Authority
CN
China
Prior art keywords
quantum dot
sno
octane
steps
quantum dots
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202010724912.9A
Other languages
English (en)
Inventor
翟朝霞
刘剑桥
符策
金国华
田新月
洪叶
高歌
孟祥旭
何甜甜
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dalian Maritime University
Original Assignee
Dalian Maritime University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dalian Maritime University filed Critical Dalian Maritime University
Priority to CN202010724912.9A priority Critical patent/CN111847575A/zh
Publication of CN111847575A publication Critical patent/CN111847575A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/30Treatment of water, waste water, or sewage by irradiation
    • C02F1/32Treatment of water, waste water, or sewage by irradiation with ultraviolet light
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/14Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of germanium, tin or lead
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y20/00Nanooptics, e.g. quantum optics or photonic crystals
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/40Devices for separating or removing fatty or oily substances or similar floating material
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/66Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing germanium, tin or lead
    • C09K11/661Chalcogenides
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/32Hydrocarbons, e.g. oil
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/08Seawater, e.g. for desalination

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Water Supply & Treatment (AREA)
  • Environmental & Geological Engineering (AREA)
  • Hydrology & Water Resources (AREA)
  • Nanotechnology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Optics & Photonics (AREA)
  • Biophysics (AREA)
  • Physics & Mathematics (AREA)
  • Toxicology (AREA)
  • Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Catalysts (AREA)
  • Physical Water Treatments (AREA)

Abstract

本发明公开了一种用二氧化锡光催化量子点清除含辛烷污染物的方法及其应用,包括以下步骤:将SnO2量子点溶液与C8H18以(10‑20):1的质量比混合反应,并采用紫外光或含有紫外光的混合光进行照射,完成SnO2量子点对C8H18的消除。本发明利用二氧化锡光催化量子点消除油污的特性,以二氧化锡量子点的在光的催化下为基础,利用不同浓度的SnO2量子点及光催化条件下对石油中常见的C8H18的影响,建立了一种简单的消除含辛烷污染物的方法,该方法操作过程简单、无需复杂的预处理,且化学稳定性好、成本低、环保无毒、去除效率高,能对海洋中的油污主要成分C8H18进行有效消除,具有很高的可行性。

Description

一种用二氧化锡光催化量子点清除含辛烷污染物的方法及其 应用
技术领域
本发明涉及处理海洋油污领域,具体涉及一种用二氧化锡光催化量子点清除含辛烷污染物的方法及其应用。
背景技术
辛烷是一种应用非常普遍的有机物,其主要用作溶剂汽油、工业用汽油的成分,还可用作印刷油墨溶剂、涂料用溶剂的稀释剂、丁基橡胶用溶剂以及烯烃聚合等有机反应的溶剂。辛烷对人的眼睛、呼吸道粘膜有刺激作用,有麻醉和肺部刺激作用,属低毒类。其蒸气与空气可形成爆炸性混合物;遇明火、高热能引起燃烧爆炸;与氧化剂能发生强烈反应;高速冲击、流动、激荡后可因产生静电火花放电引起燃烧爆炸;其蒸气比空气重,能在较低处扩散到相当远的地方,遇明火会引着回燃;而且辛烷燃烧(分解)产物为一氧化碳和二氧化碳,会对大气环境产生污染。辛烷一旦发生泄漏,如不及时对泄露污染物进行处理,会对人体和环境产生很大的危害。
工业生产中,石油泄露是产生辛烷污染物的主要途径之一。据统计,我国海上各种溢油事故每年约发生500起,沿海地区海水含油量已超过国家规定的海水水质标准两到八倍。目前现有消除废油(含辛烷污染物)的主要方法有物理法、化学法和生物法,物理法即通过围油栏,打捞,用抽吸机吸油,用水栅和撇沫器刮油,用吸油毡吸附原油并回收处理等,其只能粗略回收部分油污,并不能彻底清洁水面;化学法即喷洒化学消油剂,通过化学反应,促进石油的分解或沉降,形成能消散于水中的微小球形物,但使用化学试剂可能引发二次污染,只能用于清理少量的油污;生物法即采用“吃油菌”,主要用在修复海上小规模溢油,不便于大规模应用。除此之外,国际上通用的清理海洋油污的方法还有燃烧和放任,燃烧虽然能清理大部分油污,但会引起大范围的空气污染,对于海洋生物的破坏性也非常大;放任适用于远离人类生活区的海洋油污,这种自然消解的方式会对污染地区的生物带来严重的影响。
发明内容
本发明针对以上问题的提出,而研究设计一种用二氧化锡光催化量子点清除含辛烷污染物的方法及其应用,来解决传统方法清除辛烷污染物时,处理速度慢、操作过程复杂、去除效率低等的缺点。本发明采用的技术手段如下:
一种用二氧化锡光催化量子点清除含辛烷污染物的方法,包括以下步骤:将SnO2量子点溶液与C8H18以(10-20):1的质量比混合,采用紫外光或含有紫外光的混合光进行照射,获得SnO2量子点溶液对C8H18的消除效果。
优选地,紫外光的波长为280-350nm。
优选地,紫外光的照射时间为0-48h。
优选地,紫外光的照射时间优选为36-48h。
优选地,SnO2量子点溶液的浓度为10-5-10-1mol/L。
优选地,SnO2量子点溶液的浓度优选为10-3mol/L。
优选地,SnO2量子点溶液的制备方法为:将SnCl2和CH4N2S混合溶解于去离子水中,在室温下搅拌15-30h,得到SnO2量子点溶液。
上述任意一项所述方法在清除海洋油污中的应用。
与现有技术比较,本发明所述的一种用二氧化锡光催化量子点清除含辛烷污染物的方法及其应用的有益效果如下:
1、本发明利用二氧化锡光催化量子点消除油污的特性,以二氧化锡量子点的在光的催化下为基础,利用不同浓度的SnO2量子点及光催化条件下对石油中常见的C8H18的影响,建立了一种简单的消除含辛烷污染物的方法,该方法操作过程简单、无需复杂的预处理,且化学稳定性好、成本低、环保无毒,能对海洋中的油污主要成分C8H18进行有效消除,使得二氧化锡光催化量子点消除海洋中油污方法具有很高的可行性。
2、本发明合成的二氧化锡量子点溶液的浓度在10-3mol/L左右时,在高压汞灯(发射紫外光的波长为280-350nm)照射下对海洋中油污主要成分C8H18的消除效果最佳。
3、本发明提供的清除海洋油污的方法仅需36-48h,即可达到对C8H18的总消除量为90%左右,清除速度较快且效率较高。
附图说明
图1是本发明实施例中制备的SnO2量子点的TEM形貌图;
图2是本发明实施例中制备的SnO2量子点的X射线衍射图样与标准SnO2样品衍射峰;
图3是本发明实施例中SnO2量子点的浓度对C8H18消除量的影响;
图4是本发明实施例中C8H18消除量随反应时间变化曲线。
具体实施方式
量子点是一种纳米级别的半导体,三个维度的尺寸都在100nm以下。由于纳米颗粒比表面积大,表面相原子数多,造成表面原子的配位不足、不饱和键和悬键增多,给这些表面原子带来很高的活性。当表面原子的价电子吸收经受外界光照,具有足够的能量,价带上的电子有机会跃迁到导带上,形成空穴-电子对。电子在高能级不稳定,会回到低能级并释放能量,表现为电子和空穴分别与吸附在表面的物质发生还原反应和氧化反应,将附近的有机物氧化成小分子二氧化碳和水,可通过上述原理实现污染物的消除。在众多已有的量子点材料中,二氧化锡具有稳定性好、环境耐受性高、所用原材料易得等特点,更由于其不含有毒有害的元素,与自然环境具有良好的兼容性,在处理油类污染物领域具有独特优势。
海洋石油污染的主要成分是石油,而C8H18是海洋石油类污染物的主要成分。传统方法消除海洋油污(含辛烷污染物)的处理速度较慢、操作过程较复杂、去除效率低且价格昂贵。本发明提供了一种成本低廉、去除效率高、安全环保的海洋油污染消除方法,主要用于消除海洋油污中的C8H18
本发明以SnCl2·2H2O为主要原料,以CH4N2S作为催化剂,在水溶液中制备了SnO2量子点,并利用其在海洋油污消除过程中的光催化特性,提供了一种有效消除油污的方法和手段。
二氧化锡量子点的合成方法,包括步骤:
(1)分别称取2.257g氯化亚锡(SnCl2·2H2O)和0.077g硫脲(CH4N2S);
(2)将上述两种物质混合溶解于50ml去离子水中,在磁搅拌装置中25℃下水浴搅拌24h。因此,在SnCl2水解氧化后,得到了水性SnO2量子点溶液;
(3)采用动态光散射分析SnO2量子点的粒径,用透射电镜观察其形貌。
(4)步骤(2)中最终得到的二氧化锡量子点溶液浓度为0.2mol/L,制备的量子点在水溶液中具有均匀的分散性,平均粒径为2.23nm。
用上述制备的二氧化锡光催化量子点消除含辛烷污染物的方法,包括以下步骤:
(1)配制10-5-10-1mol/L的不同浓度的二氧化锡量子点溶液。
(2)以石油中常见的C8H18作为目标物,称取3g,将其与30毫升不同浓度的SnO2量子点溶液混合,置于高纯度石英玻璃瓶中。
(3)采用高压汞灯(发射紫外光的波长为280-350nm)对样品进行照射,照射时间为0-48h,检测溶液中C8H18的消除量,获得SnO2量子点溶液对C8H18的消除效果。
将上述消除含辛烷污染物的方法应用于消除海洋油污时,可以采用太阳光进行照射,利用太阳光中的紫外光(波长为280-350nm),获得SnO2量子点溶液对海洋油污中C8H18的消除效果。
图1是本发明实施例中用高分辨率透射电镜(TEM)观察制备的SnO2量子点的形貌;
图2是本发明实施例中制备的SnO2量子点X射线衍射图样与标准SnO2样品衍射峰,是从含SnO2量子点的水溶液中获得的SnO2粉末的XRD图;
图3是本发明实施例中SnO2量子点的浓度对C8H18消除量的影响,横坐标表示SnO2量子点的浓度,纵坐标表示C8H18的消除量,图中曲线分别表示反应时间为2h、4h和6h时,量子点浓度对消除量的影响。由图3可知,本发明合成的二氧化锡量子点溶液在紫外光照射下对海洋中油污主要成分C8H18的消除效果较佳,并且当SnO2量子点的浓度在10-3mol/L附近时,对C8H18的消除效果最佳。
图4是本发明实施例中C8H18消除量随时间变化曲线,横坐标为时间,左侧纵坐标表示C8H18的累积消除量,右侧纵坐标表示C8H18的消除速度,图中曲线分别表示C8H18的累积消除量和消除速度。由图4可知,在紫外光照射时间大于36小时之后,消除量基本稳定,总消除量可达90%。
以上所述的实施例仅仅是对本发明的优选实施方式进行描述,并非对本发明的范围进行限定,在不脱离本发明设计精神的前提下,本领域普通技术人员对本发明的技术方案做出的各种变形和改进,均应落入本发明权利要求书确定的保护范围内。

Claims (8)

1.一种用二氧化锡光催化量子点清除含辛烷污染物的方法,其特征在于:包括以下步骤:将SnO2量子点溶液与C8H18以(10-20):1的质量比混合反应,并采用紫外光或含有紫外光的混合光进行照射,完成SnO2量子点对C8H18的消除。
2.根据权利要求1所述的一种用二氧化锡光催化量子点清除含辛烷污染物的方法,其特征在于:紫外光的波长为280-350nm。
3.根据权利要求1所述的一种用二氧化锡光催化量子点清除含辛烷污染物的方法,其特征在于:紫外光的照射时间为0-48h。
4.根据权利要求3所述的一种用二氧化锡光催化量子点清除含辛烷污染物的方法,其特征在于:紫外光的照射时间为36-48h。
5.根据权利要求1所述的一种用二氧化锡光催化量子点清除含辛烷污染物的方法,其特征在于:SnO2量子点溶液的浓度为10-5-10-1mol/L。
6.根据权利要求5所述的一种用二氧化锡光催化量子点清除含辛烷污染物的方法,其特征在于:SnO2量子点溶液的浓度为10-3mol/L。
7.根据权利要求1所述的一种用二氧化锡光催化量子点清除含辛烷污染物的方法,其特征在于:SnO2量子点溶液的制备方法为:将SnCl2和CH4N2S混合溶解于去离子水中,在室温下搅拌15-30h,得到SnO2量子点溶液。
8.权利要求1-7中任意一项所述方法在清除海洋油污中的应用。
CN202010724912.9A 2020-07-24 2020-07-24 一种用二氧化锡光催化量子点清除含辛烷污染物的方法及其应用 Pending CN111847575A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010724912.9A CN111847575A (zh) 2020-07-24 2020-07-24 一种用二氧化锡光催化量子点清除含辛烷污染物的方法及其应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010724912.9A CN111847575A (zh) 2020-07-24 2020-07-24 一种用二氧化锡光催化量子点清除含辛烷污染物的方法及其应用

Publications (1)

Publication Number Publication Date
CN111847575A true CN111847575A (zh) 2020-10-30

Family

ID=72949566

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010724912.9A Pending CN111847575A (zh) 2020-07-24 2020-07-24 一种用二氧化锡光催化量子点清除含辛烷污染物的方法及其应用

Country Status (1)

Country Link
CN (1) CN111847575A (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113231056A (zh) * 2021-04-30 2021-08-10 大连海事大学 一种铌掺杂改性二氧化锡量子点可见光催化材料的制备方法
CN113245345A (zh) * 2021-04-30 2021-08-13 大连海事大学 一种利用量子点光催化材料降解农用反光膜的方法
CN113267476A (zh) * 2021-04-30 2021-08-17 大连海事大学 一种应用二氧化锡量子点检测船用燃油中硫含量的方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020030021A1 (en) * 2000-06-22 2002-03-14 Enitecnologie S.P.A. Photodegradative process for the purification of contaminated water
CN102553557A (zh) * 2012-01-11 2012-07-11 河海大学 表面定向生长二氧化钛纳米管的空心玻璃微球的制备方法
CN102921401A (zh) * 2012-11-12 2013-02-13 扬州大学 一种聚乙二醇单甲醚修饰的二氧化锡量子点光催化剂的制备方法及其应用
CN105749902A (zh) * 2016-01-25 2016-07-13 扬州大学 一种高效单相SnO2光催化剂的制备方法
CN110161009A (zh) * 2019-06-27 2019-08-23 大连海事大学 二氧化锡量子点检测污水中重金属离子的应用及检测方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020030021A1 (en) * 2000-06-22 2002-03-14 Enitecnologie S.P.A. Photodegradative process for the purification of contaminated water
CN102553557A (zh) * 2012-01-11 2012-07-11 河海大学 表面定向生长二氧化钛纳米管的空心玻璃微球的制备方法
CN102921401A (zh) * 2012-11-12 2013-02-13 扬州大学 一种聚乙二醇单甲醚修饰的二氧化锡量子点光催化剂的制备方法及其应用
CN105749902A (zh) * 2016-01-25 2016-07-13 扬州大学 一种高效单相SnO2光催化剂的制备方法
CN110161009A (zh) * 2019-06-27 2019-08-23 大连海事大学 二氧化锡量子点检测污水中重金属离子的应用及检测方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
周锋等: "光催化降解水体有机污染物的研究进展", 《材料工程》 *
张健等: "纳米SnO2光催化剂的制备及其光催化降解海洋柴油污染的研究", 《大连海洋大学学报》 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113231056A (zh) * 2021-04-30 2021-08-10 大连海事大学 一种铌掺杂改性二氧化锡量子点可见光催化材料的制备方法
CN113245345A (zh) * 2021-04-30 2021-08-13 大连海事大学 一种利用量子点光催化材料降解农用反光膜的方法
CN113267476A (zh) * 2021-04-30 2021-08-17 大连海事大学 一种应用二氧化锡量子点检测船用燃油中硫含量的方法
CN113245345B (zh) * 2021-04-30 2022-06-17 大连海事大学 一种利用量子点光催化材料降解农用反光膜的方法
CN113267476B (zh) * 2021-04-30 2022-11-25 大连海事大学 一种应用二氧化锡量子点检测船用燃油中硫含量的方法

Similar Documents

Publication Publication Date Title
CN111847575A (zh) 一种用二氧化锡光催化量子点清除含辛烷污染物的方法及其应用
Li et al. Graphene-induced formation of visible-light-responsive SnO2-Zn2SnO4 Z-scheme photocatalyst with surface vacancy for the enhanced photoreactivity towards NO and acetone oxidation
Mohamed et al. Synthesis of novel eco-friendly CaO/C photocatalyst from coffee and eggshell wastes for dye degradation
Liang et al. 3-D hierarchical Ag/ZnO@ CF for synergistically removing phenol and Cr (VI): Heterogeneous vs. homogeneous photocatalysis
Sood et al. α-Bi2O3 nanorods: An efficient sunlight active photocatalyst for degradation of Rhodamine B and 2, 4, 6-trichlorophenol
CN104277626B (zh) 空气净化漆及其制备方法
Sheydaei et al. Systematic comparison of sono-synthesized Ce-, La-and Ho-doped ZnO nanoparticles and using the optimum catalyst in a visible light assisted continuous sono-photocatalytic membrane reactor
Thirumalai et al. Superior photocatalytic, electrocatalytic, and self-cleaning applications of Fly ash supported ZnO nanorods
Wang et al. Recycling of hyper-accumulator: synthesis of ZnO nanoparticles and photocatalytic degradation for dichlorophenol
Rad et al. Zinc-chromium layered double hydroxides anchored on carbon nanotube and biochar for ultrasound-assisted photocatalysis of rifampicin
Keerthana et al. Fabrication of Ce doped TiO2 for efficient organic pollutants removal from wastewater
Salari Facile synthesis of new Z-scheme Bi2WO6/Bi2MoO6 p–n junction photocatalysts with high photocatalytic activity: Structure, kinetics and mechanism approach
Alshamsi et al. Visible light assisted photocatalytic degradation of Rhodamine B dye on CdSe-ZnO nanocomposite: Characterization and kinetic studies
Zaid et al. Fabrication of La, Ce co-doped ZnO nanorods for improving photodegradation of methylene blue
Basavalingaiah et al. Uniform deposition of silver dots on sheet like BiVO4 nanomaterials for efficient visible light active photocatalyst towards methylene blue degradation
Lu et al. In situ doping lignin-derived carbon quantum dots on magnetic hydrotalcite for enhanced degradation of Congo Red over a wide pH range and simultaneous removal of heavy metal ions
CN106362805B (zh) 二氧化钛/石墨烯/分子印迹复合材料及其制备方法和应用
Heydari et al. BTEXS removal from aqueous phase by MCM-41 green synthesis using rice husk silica
Saeed et al. Synthesis of a visible-light-driven Ag 2 O–Co 3 O 4 Z-scheme photocatalyst for enhanced photodegradation of a reactive yellow dye
Zhang et al. Photocatalytic degradation of glyphosate using Ce/N co-doped TiO2 with oyster shell powder as carrier under the simulated fluorescent lamp
CN107986330A (zh) 一种Bi5O7I纳米片状材料及其制备方法和应用
Kumar et al. Innovations in pn type heterostructure composite materials (La2O3/CeO2) for environmental contamination remediation: synthesis, characterization, and performance assessment
Tran et al. An investigation on the visible light-driven Z-scheme BiVO4/g-C3N4 heterostructures: Performance, Evaluation, and Mechanism for Dye and Antibiotics degradation
CN104014350A (zh) 一种Mn/CdS复合光催化剂的制备方法及其应用
Yadav et al. Graphene oxide–magnesium hydroxide nanocomposites for highly efficient dye degradation

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20201030

RJ01 Rejection of invention patent application after publication