CN111835392A - 一种基于非圆信号的多天线空域频谱感知方法 - Google Patents

一种基于非圆信号的多天线空域频谱感知方法 Download PDF

Info

Publication number
CN111835392A
CN111835392A CN202010668212.2A CN202010668212A CN111835392A CN 111835392 A CN111835392 A CN 111835392A CN 202010668212 A CN202010668212 A CN 202010668212A CN 111835392 A CN111835392 A CN 111835392A
Authority
CN
China
Prior art keywords
signal
user
spectrum
signals
matrix
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202010668212.2A
Other languages
English (en)
Other versions
CN111835392B (zh
Inventor
陈云华
史治平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Electronic Science and Technology of China
Original Assignee
University of Electronic Science and Technology of China
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Electronic Science and Technology of China filed Critical University of Electronic Science and Technology of China
Priority to CN202010668212.2A priority Critical patent/CN111835392B/zh
Publication of CN111835392A publication Critical patent/CN111835392A/zh
Application granted granted Critical
Publication of CN111835392B publication Critical patent/CN111835392B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/08Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station
    • H04B7/0837Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station using pre-detection combining
    • H04B7/0842Weighted combining
    • H04B7/086Weighted combining using weights depending on external parameters, e.g. direction of arrival [DOA], predetermined weights or beamforming
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/309Measuring or estimating channel quality parameters
    • H04B17/336Signal-to-interference ratio [SIR] or carrier-to-interference ratio [CIR]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/08Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station
    • H04B7/0837Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station using pre-detection combining
    • H04B7/0842Weighted combining
    • H04B7/0848Joint weighting
    • H04B7/0857Joint weighting using maximum ratio combining techniques, e.g. signal-to- interference ratio [SIR], received signal strenght indication [RSS]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Quality & Reliability (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)

Abstract

本发明属于认知无线电技术领域,具体涉及一种基于非圆信号的多天线空域频谱感知方法。本发明将空间角度维信息作为频谱机会的空域频谱感知方法,并利用非圆信号的非圆特性,估计出信号空间角度维的到达角,通过波束形成技术,就可以避开主用户通信方向或对主用户通信方向进行零陷天线波束设计,这样,认知用户就可以在同一频率、同一时间甚至同一地点,避开主用户的通信方向,通过不同的空间角度进行频谱接入,从而增加系统容量,提高频谱利用率。本发明将空间角度维信息作为一种新的频谱机会,检测空间角度维的频谱空穴,考虑非圆信号的非圆特性,虽增加了计算复杂度,但提高了信号检测的性能和DOA估计性能,增加了系统容量,提高了频谱利用率。

Description

一种基于非圆信号的多天线空域频谱感知方法
技术领域
本发明属于认知无线电技术领域,具体涉及一种基于非圆信号的多天线空域频谱感知方法。
背景技术
随着无线通信的不断发展,频谱资源变得越来越稀缺,这严重制约了通信技术的发展。要推动无线通信的发展,就需要提升频谱资源的利用率,其中认知无线电(CR)技术就是一种解决频谱短缺,提高频谱资源利用率的有效方法。CR的基本思想是频谱共享或频谱复用,它的一个特点是在不对授权主用户(PU)通信产生干扰的前提下,允许未授权认知用户(CU)机会的接入授权频段。为实现这一目的,认知用户(CU)系统必须不断地检测授权主用户(PU)是否正在占用某授权频段,也即频谱感知过程。
传统维度的频谱感知算法虽然在一定程度提高了检测性能,但主要在频率维度、时间维度和地理纬度进行检测,频谱开发能力有限。另一方面,多天线技术的飞速发展和5G大规模天线阵的应用使移动终端和基站具备了角度识别能力,促进了角度维频谱资源的开发。如果估计出信号空间角度维的到达角,通过波束形成技术,就可以避开主用户(PU)通信方向或对主用户通信方向进行零陷天线波束设计,这样,认知用户就可以在同一频率、同一时间甚至同一地点,避开主用户的通信方向,通过不同的空间角度进行频谱接入,从而增加系统容量,提高频谱利用率。
发明内容
本发明提出一种基于非圆信号的多天线空域频谱感知方法,目的在于增加系统容量,提高频谱利用率。
本发明的技术方案为:
对于载有多天线的认知用户(CU),天线为各向同性的M元均匀圆形阵列(UniformCircular Array,UCA)。假设空间中有D(D≤M)个远场主用户信号从不同方向入射到M元均匀圆形阵列,主用户信号为非圆信号,将均匀圆形阵列的圆心作为参考点,则到达阵元j的第i个主用户信号为:
Figure BDA0002581297060000021
其中,hij表示第i个主用户信号si(t)和第j个接收天线之间的信道增益,zi(t)为第i个主用户信号的复包络,包含信号信息,
Figure BDA0002581297060000022
为空间信号的载波。由于信号满足窄带假设条件,则zi(t-τ)≈zi(t),经过传播延迟τ后的信号可以表示为:
Figure BDA0002581297060000023
则理想情况下第j个阵元接收到的信号可以表示为:
Figure BDA0002581297060000024
其中,τij为第i个主用户信号到达阵元j时相对于参考点的时延,wj(t)为阵元j上方差为σ2的加性高斯白噪声。
本发明的空域频谱感知方法包括以下步骤:
S1、阵列天线对接收信号进行N次采样,则认知用户每个阵列天线接收到的信号表示为:
Figure BDA0002581297060000025
其中,
Figure BDA0002581297060000026
为信号传播时延造成的相位差,
Figure BDA0002581297060000027
i=1,2,...,D表示第i个主用户信号,j=1,2,…,M表示第j个接收天线,θi
Figure BDA0002581297060000028
分别表示第i个主用户信号的方位角和仰角,n=0,1,…,N-1表示第n个采样序号,λ表示波长、
Figure BDA0002581297060000029
表示载波角频率;令M个阵列天线的接收数据构成一个M×N维矩阵:
Figure BDA00025812970600000210
其中,
Figure BDA0002581297060000031
表示主用户和认知用户接收天线的信道增益矩阵,‘.*’表示矩阵点乘,
Figure BDA0002581297060000032
为信号矩阵,
Figure BDA0002581297060000033
为阵列流行,
Figure BDA0002581297060000034
Figure BDA0002581297060000035
为加性噪声矩阵;
S2、将阵列输出X及其共轭X*同时使用,组成扩展阵列输出Y
Figure BDA0002581297060000036
S3、计算样本扩展协方差矩阵
Figure BDA0002581297060000037
Figure BDA0002581297060000038
通过采样序列得到估计的自相关函数
Figure BDA0002581297060000039
然后对
Figure BDA00025812970600000310
进行特征值分解得到2M个特征值及其对应的特征向量,从而获得
Figure BDA00025812970600000311
的最大特征值
Figure BDA00025812970600000312
Figure BDA00025812970600000313
以及特征值几何平均
Figure BDA00025812970600000314
S4、取α∈[0,1],计算融合检测算法的检验统计量T:
Figure BDA00025812970600000315
根据随机矩阵理论得到虚警概率Pfa
Figure BDA00025812970600000316
其中,
Figure BDA0002581297060000041
σ2为高斯白噪声w(n)的方差、
Figure BDA0002581297060000042
Figure BDA0002581297060000043
FTW(·)为一阶Tracy-Widom分布;根据虚警概率Pfa,确定判决门限γ:
Figure BDA0002581297060000044
其中
Figure BDA0002581297060000045
为一阶Tracy-Widom分布的逆;
S5、将统计量T与判决门限γ进行比较:
若检验统计量T大于判决门限γ,则该子带被占用,主用户存在,进入步骤S6;
若检验统计量T小于判决门限γ,则该子带未被占用,主用户不存在,认知用户直接进行频谱接入;
S6、估计主信号数
Figure BDA0002581297060000046
将步骤S3中得到的样本扩展协方差矩阵的特征值从大到小排列,即λ1≥…≥λDD+1≥…≥λ2M,V=[q1,q2,...,q2M]是对应的特征值,计算γk=λkk+1,k=1,2,…,2M-1,取主信号数的估计值
Figure BDA00025812970600000413
为使得γk=max(γ12,…,γ2M-1),k=1,2,…,2M-1时的k值;
S7、对主信号进行DOA估计:根据主信号数估计值
Figure BDA0002581297060000047
构造
Figure BDA0002581297060000048
维的噪声子空间
Figure BDA0002581297060000049
Un进行分块,
Figure BDA00025812970600000410
Un1和Un2具有相同的维数,按照
Figure BDA00025812970600000411
计算空间谱,并搜索空间,找出
Figure BDA00025812970600000412
个峰值,从而得到主信号DOA估计值,认知用户通过波束成形技术对避开主用户通信方向进行频谱接入,其中“*”为矩阵共轭。
本发明的有益效果是:将空间角度维信息作为一种新的频谱机会,检测空间角度维的频谱空穴,考虑非圆信号的非圆特性,虽增加了计算复杂度,但提高了信号检测的性能和DOA估计性能,增加了系统容量,提高了频谱利用率。
附图说明
图1为本发明的基于非圆信号的多天线空域频谱感知方案系统图;
图2为均匀圆阵(UCA)模型图;
图3和图5分别为高斯信道和瑞丽衰落信道下,α∈[0.1,1]时检测概率VS信噪比示意图;
图4和图6分别为高斯信道和瑞丽衰落信道下,DOA估计均方根误差(RMSE)VS信噪比示意图。
具体实施方式
发明内容部分已经对本发明的技术方案做了详细描述,下面结合仿真示例,说明本发明的实用性。
假设只有一个频点为f的主用户(D=1),发射信号为BPSK信号,均匀圆阵阵列天线数为M=16,采样点数N=10000。
首先,对比了不同α值时检测方案的信噪比和检测概率的关系。仿真结果如图所示。在该仿真中,设置虚警概率Pfa=0.01,SNR=-30:2:10,不同信噪比(SNR)下蒙特卡洛仿真次数为2000次。由图3和图5可以看出,当α∈[0.1,1]时,α的值越小,本方案所用检测方案的检测性能越好;当α=0.5和α=1时,本方案所用检测方案分别等价于ME-GM(maximum-eigenvalue-geometric-mean)算法和MET(maximum-eigenvalue-trace)算法,且从图3和图5可以看出,当α≤0.4时,本方案所用检测方案检测性能优于ME-GM算法和MET算法。
对比不同信噪比下的DOA估计的均方根误差(RMSE),设置主信号方向为(θ,φ)=(125°,80.1°),SNR=-22:2:6,不同信噪比(SNR)下蒙特卡洛仿真次数为200次。由图4和图6可以看出,当SNR≥-15dB时,DOA估计的均方根误差RMSE<1°,所用DOA估计方案能较准确的估计出主用户信号的到达方向,且均匀圆阵能实现360°全方位估计。估计出主用户信号的DOA后,使用波束成形技术,认知用户可避开主用户接入方向进行频谱接入,提高频谱利用率,这也佐证了本方案可以提高频谱利用率,增大系统容量。

Claims (1)

1.一种基于非圆信号的多天线空域频谱感知方法,对载有多天线的认知用户,天线为各向同性的M元均匀圆形阵列,空间中有D个远场主用户信号从不同方向入射到M元均匀圆形阵列,主用户信号为非圆信号,其特征在于,所述方法包括以下步骤:
S1、阵列天线对接收信号进行N次采样,则认知用户每个阵列天线接收到的信号表示为:
Figure FDA0002581297050000011
其中,w(n)为加性高斯白噪声,hij表示第i个主用户信号si(n)和第j个接收天线之间的信道增益,
Figure FDA0002581297050000012
为信号传播时延造成的相位差,
Figure FDA0002581297050000013
i=1,2,...,D表示第i个主用户信号,j=1,2,…,M表示第j个接收天线,θi
Figure FDA0002581297050000014
分别表示第i个主用户信号的方位角和仰角,n=0,1,…,N-1表示第n个采样序号,λ表示波长、
Figure FDA0002581297050000015
表示载波角频率;令M个阵列天线的接收数据构成一个M×N维矩阵:
Figure FDA0002581297050000016
其中,
Figure FDA0002581297050000017
表示主用户和认知用户接收天线的信道增益矩阵,‘.*’表示矩阵点乘,
Figure FDA0002581297050000018
为信号矩阵,
Figure FDA0002581297050000019
为阵列流行,
Figure FDA00025812970500000110
Figure FDA00025812970500000111
为空间信号的载波,
Figure FDA00025812970500000112
为加性噪声矩阵;
S2、将矩阵X及其共轭X*同时使用,组成扩展阵列Y:
Figure FDA00025812970500000113
S3、根据扩展阵列Y,计算扩展协方差矩阵
Figure FDA00025812970500000114
Figure FDA0002581297050000021
Figure FDA0002581297050000022
进行特征值分解得到2M个特征值及其对应的特征向量,从而获得
Figure FDA0002581297050000023
的最大特征值
Figure FDA0002581297050000024
Figure FDA0002581297050000025
以及特征值几何平均
Figure FDA0002581297050000026
S4、取α∈[0,1],计算检验统计量T:
Figure FDA0002581297050000027
根据随机矩阵理论得到虚警概率Pfa
Figure FDA0002581297050000028
其中,
Figure FDA0002581297050000029
σ2为高斯白噪声w(n)的方差、
Figure FDA00025812970500000210
Figure FDA00025812970500000211
FTW(·)为一阶Tracy-Widom分布;根据虚警概率Pfa,确定判决门限γ:
Figure FDA00025812970500000212
其中
Figure FDA00025812970500000213
为一阶Tracy-Widom分布的逆;
S5、将统计量T与判决门限γ进行比较:
若检验统计量T大于判决门限γ,则该子带被占用,主用户存在,进入步骤S6;
若检验统计量T小于判决门限γ,则该子带未被占用,主用户不存在,认知用户直接进行频谱接入;
S6、估计主信号数
Figure FDA0002581297050000031
将步骤S3中得到的扩展协方差矩阵的特征值从大到小排列,即λ1≥…≥λDD+1≥…≥λ2M,V=[q1,q2,...,q2M]是对应的特征值,计算γk=λkk+1,k=1,2,…,2M-1,取主信号数的估计值
Figure FDA0002581297050000032
为使得γk=max(γ12,…,γ2M-1),k=1,2,…,2M-1时的k值;
S7、对主信号进行DOA估计:根据主信号数估计值
Figure FDA0002581297050000033
构造
Figure FDA0002581297050000034
维的噪声子空间
Figure FDA0002581297050000035
Un进行分块,
Figure FDA0002581297050000036
Un1和Un2具有相同的维数,按照
Figure FDA0002581297050000037
计算空间谱,并搜索空间,找出
Figure FDA0002581297050000038
个峰值,从而得到主信号DOA估计值,认知用户通过波束成形技术避开主用户通信方向进行频谱接入。
CN202010668212.2A 2020-07-13 2020-07-13 一种基于非圆信号的多天线空域频谱感知方法 Active CN111835392B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010668212.2A CN111835392B (zh) 2020-07-13 2020-07-13 一种基于非圆信号的多天线空域频谱感知方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010668212.2A CN111835392B (zh) 2020-07-13 2020-07-13 一种基于非圆信号的多天线空域频谱感知方法

Publications (2)

Publication Number Publication Date
CN111835392A true CN111835392A (zh) 2020-10-27
CN111835392B CN111835392B (zh) 2023-04-28

Family

ID=72900906

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010668212.2A Active CN111835392B (zh) 2020-07-13 2020-07-13 一种基于非圆信号的多天线空域频谱感知方法

Country Status (1)

Country Link
CN (1) CN111835392B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114325579A (zh) * 2022-03-09 2022-04-12 网络通信与安全紫金山实验室 定位参数估计方法、装置、设备、存储介质和程序产品
CN115150011A (zh) * 2022-03-25 2022-10-04 中国航空无线电电子研究所 一种多天线频谱感知及接入方法、装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102291186A (zh) * 2011-07-06 2011-12-21 电子科技大学 一种基于信号到达方向估计的频谱感知方法
WO2013003636A2 (en) * 2011-06-28 2013-01-03 Nextnav, Llc Coding in a wide area positioning system (waps)
CN105281854A (zh) * 2015-11-05 2016-01-27 西安电子科技大学 一种基于非圆信号的局部最大功效不变检验频谱感知方法
US20170332243A1 (en) * 2016-05-16 2017-11-16 Federated Wireless, Inc. Method and System for Providing Spectrum Sensing Capability in a Shared Network
CN110138478A (zh) * 2019-05-30 2019-08-16 电子科技大学 一种用于非圆信号的多天线频谱感知方法
CN110912630A (zh) * 2019-11-26 2020-03-24 电子科技大学 一种基于多天线的空域频谱感知方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013003636A2 (en) * 2011-06-28 2013-01-03 Nextnav, Llc Coding in a wide area positioning system (waps)
CN102291186A (zh) * 2011-07-06 2011-12-21 电子科技大学 一种基于信号到达方向估计的频谱感知方法
CN105281854A (zh) * 2015-11-05 2016-01-27 西安电子科技大学 一种基于非圆信号的局部最大功效不变检验频谱感知方法
US20170332243A1 (en) * 2016-05-16 2017-11-16 Federated Wireless, Inc. Method and System for Providing Spectrum Sensing Capability in a Shared Network
CN110138478A (zh) * 2019-05-30 2019-08-16 电子科技大学 一种用于非圆信号的多天线频谱感知方法
CN110912630A (zh) * 2019-11-26 2020-03-24 电子科技大学 一种基于多天线的空域频谱感知方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
刘畅: ""认知无线电中基于空间谱的频谱感知技术研究"" *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114325579A (zh) * 2022-03-09 2022-04-12 网络通信与安全紫金山实验室 定位参数估计方法、装置、设备、存储介质和程序产品
CN114325579B (zh) * 2022-03-09 2022-07-15 网络通信与安全紫金山实验室 定位参数估计方法、装置、设备、存储介质和程序产品
CN115150011A (zh) * 2022-03-25 2022-10-04 中国航空无线电电子研究所 一种多天线频谱感知及接入方法、装置
CN115150011B (zh) * 2022-03-25 2024-10-22 中国航空无线电电子研究所 一种多天线频谱感知及接入方法、装置

Also Published As

Publication number Publication date
CN111835392B (zh) 2023-04-28

Similar Documents

Publication Publication Date Title
CN110912630B (zh) 一种基于多天线的空域频谱感知方法
Erceg et al. A model for the multipath delay profile of fixed wireless channels
CN112910578B (zh) 一种针对毫米波3d mimo信道的路径参数提取方法
CN103747455B (zh) 基于非均匀散射体分布的信道建模方法及参数匹配方法
CN112469119B (zh) 定位方法、装置、计算机设备和存储介质
Han et al. Direct positioning method of mixed far-field and near-field based on 5G massive MIMO system
CN111835392B (zh) 一种基于非圆信号的多天线空域频谱感知方法
Adam et al. Perfomance study of direction of arrival (DOA) estimation algorithms for linear array antenna
US9407339B2 (en) Monotonic optimization method for achieving the maximum weighted sum-rate in multicell downlink MISO systems
CN104506256B (zh) 一种mimo多天线系统性能评估方法及多天线系统
Wu et al. Joint user identification and channel estimation over rician fading channels
Thazeen et al. An efficient reconfigurable optimal source detection and beam allocation algorithm for signal subspace factorization
CN103117821A (zh) 一种基于瑞利商的加权协作频谱感知方法
Zhang et al. Energy-efficient beamforming for 3.5 GHz 5G cellular networks based on 3D spatial channel characteristics
Liao et al. AOA-assisted fingerprint localization for cell-free massive MIMO system based on 3D multipath channel model
CN112752339B (zh) 一种基于大规模mimo单站系统的指纹库更新方法
Wang et al. DOA estimation of smart antenna signal based on MUSIC algorithm
CN104270182A (zh) 基于电磁矢量传感器的mimo-y型天线阵列形成方法
CN103558581B (zh) 一种多径环境下的到来角估计算法
Hou et al. Stochastic cluster models for 5G channels based on passive sounding in in-service networks
JP2004080604A (ja) 空間角度広がりを推定する方法および受信装置
Kumar et al. Accuracy in Wireless Communication: Improved Arrival Direction Estimation in Adaptive Antennas via Expanded MUSIC Beamforming
Li et al. Radio Map Construction via Graph Signal Processing for Indoor Localization
CN113193890B (zh) 一种基于机会波束成形的信道估计方法
Fan et al. Spectrum sensing based on angular reciprocity in cognitive satellite communication system

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant