CN111830009A - 全介质超表面集成化拉曼光谱探测系统 - Google Patents

全介质超表面集成化拉曼光谱探测系统 Download PDF

Info

Publication number
CN111830009A
CN111830009A CN202010729989.5A CN202010729989A CN111830009A CN 111830009 A CN111830009 A CN 111830009A CN 202010729989 A CN202010729989 A CN 202010729989A CN 111830009 A CN111830009 A CN 111830009A
Authority
CN
China
Prior art keywords
super
waveguide
raman
spectrometer
array
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202010729989.5A
Other languages
English (en)
Other versions
CN111830009B (zh
Inventor
叶鑫
唐烽
陈骏
李波
杨李茗
邵婷
孙来喜
李青芝
石兆华
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Laser Fusion Research Center China Academy of Engineering Physics
Original Assignee
Laser Fusion Research Center China Academy of Engineering Physics
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Laser Fusion Research Center China Academy of Engineering Physics filed Critical Laser Fusion Research Center China Academy of Engineering Physics
Priority to CN202010729989.5A priority Critical patent/CN111830009B/zh
Publication of CN111830009A publication Critical patent/CN111830009A/zh
Application granted granted Critical
Publication of CN111830009B publication Critical patent/CN111830009B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/65Raman scattering
    • G01N21/658Raman scattering enhancement Raman, e.g. surface plasmons

Landscapes

  • Health & Medical Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

本发明涉及一种全介质超表面集成化拉曼光谱探测系统。该系统包括激光器、光纤、波导、纳米结构阵列、滤波片和超表面光谱仪,波导激发传输拉曼信号,纳米结构阵列设置在波导的上表面,纳米结构阵列提供强电磁场,将探测物分子悬浮设置在纳米结构阵列周围,探测物分子在强电磁场作用下发出拉曼信号,滤波片镀在波导输出端,滤波片将波导输出的泵浦光滤掉,超表面芯片光谱仪设置在滤波片的表面,超表面芯片光谱仪将滤波片滤掉入射光波段后的拉曼信号进行解析,得到探测物分子的各种光谱信息。本发明能够实现拉曼信号的激发、增强、采集在同一结构上同步进行,完成高度集成芯片化拉曼传感系统的目标。

Description

全介质超表面集成化拉曼光谱探测系统
技术领域
本发明涉及拉曼光谱探测领域,特别是涉及一种全介质超表面集成化拉曼光谱探测系统。
背景技术
拉曼散射是一种非弹性散射,它是由光与物质相互作用中入射光子和分子能量的交换引起的,因此不同分子,甚至不同化学键之间都有着不同的拉曼峰位,而且具有非侵入性和无标识性的独特优势。在药理学、食品安全等众多应用中拉曼光谱逐渐发展成为一种成熟的分析化学和生物分子的技术。然而它有低信号强度的缺点,常规拉曼信号的强度只有入射光强度的10-6—10-12,要探测拉曼信号十分困难,通常要对拉曼信号进行增强后,再测量。表面增强拉曼光谱(SERS)是实验室和工业中广泛应用的拉曼检测技术之一。SERS的增强机理主要分为两类:电磁增强和化学增强,其中起主要作用的是电磁增强,光照在有负介电常数的物质(通常为金属)上,如果入射光的消逝场能与负介电常数的物质表面的电子震动发生波矢匹配,那么在交界面处产生的等离激元共振效应能带来强的电磁场,从而增强拉曼散射。
增强拉曼散射分为两个过程:
1、激发拉曼偶极子。强大的局部电磁场,将增强激发拉曼偶极子的强度。
2、拉曼偶极子辐射。受到激发的拉曼偶极子,向外辐射,在这时,强大的局部电磁场又将增强辐射强度。
目前,市面上存在的拉曼光谱传感系统大多数是利用棱镜或光栅耦合激发金属纳米结构的等离激元共振产生强的近场电磁场,增强拉曼散射并利用拉曼光谱仪进行收集的。根据不同分子,和不同化学键组成有着不同的拉曼光谱峰位,从而确定测量物质的种类,在有些情况下,根据峰位的强度还可以在一定程度上对待测物质进行定量测量。图1为基于棱镜或光栅激发的拉曼传感器示意图,如图1所示,基于棱镜或光栅激发的拉曼传感器,收集拉曼信号有反射形式和透射形式两种。激光器1发射的光以一定的角度入射时,探测物分子5涂在金属纳米结构4表面或周围,探测物分子5的拉曼散射被激发,并且此时激发光与金属纳米结构4产生波矢匹配,能激发放在波导3上的金属纳米结构4的局域表面等离子体共振,带来强大的局部电磁场。这时拉曼信号的激发过程与辐射过程都得到了极大的增强。最后,用滤波片6将入射光滤掉(这里强调,由于拉曼散射是光与物质分子发生的非弹性散射,所以拉曼散射的光波长是与入射光不同的),再通过光谱仪8(用到的光谱仪大部分是基于光栅功能的光谱仪,是几何光学基础的光栅分光系统)探测到该物质的拉曼光谱,确定物质种类以及含量。
强烈的表面等离子体共振只发生在具有负介电常数的物质与介质的交界面处,现有的SERS传感系统,用于产生强大电磁场的等离子结构都是贵金属材质,贵金属存在成本高,机械性能较差(可能氧化,附着力,粘附性差)等局限性。现有的大多数拉曼传感系统,都已棱镜或金属光栅结构进行拉曼信号的激发和增强,这种形式,对于拉曼信号的激发和收集是分开进行的(拉曼信号的激发和收集没有集成,不能实现同步进行)。这对于实现更小型集成芯片化的集成化拉曼光谱探测系统是一个很大的阻碍。
发明内容
本发明的主要目的是提供一种全介质超表面集成化拉曼光谱探测系统,提升现有传感系统的集成化和智能化,改善采用贵金属纳米材质带来的成本高,机械性能差(可能氧化,附着力、粘附性差)等局限性。实现拉曼信号的激发,增强,采集,在同一结构上同步进行的,完成高度集成芯片化拉曼传感系统的目标。
为实现上述目的,本发明提供了如下方案:
一种全介质超表面集成化拉曼光谱探测系统,包括:激光器、光纤、波导、纳米结构阵列、滤波片和超表面光谱仪,所述激光器用于提供泵浦光源,所述光纤输入端与所述激光器输出端连接,所述光纤输出端与所述波导输入端相连接,将光线导入所述波导,所述波导用于激发传输拉曼信号,所述纳米结构阵列设置在所述波导的上表面,所述纳米结构阵列用于提供强电磁场,将探测物分子悬浮设置在所述纳米结构阵列周围,所述探测物分子用于在所述强电磁场作用下发出拉曼信号,所述滤波片镀在所述波导的输出端,所述滤波片用于将所述波导输出的泵浦光滤掉,所述超表面芯片光谱仪设置在所述滤波片的表面,所述超表面芯片光谱仪用于将所述滤波片滤掉入射光波段后的拉曼信号进行解析,得到所述探测物分子的各种光谱信息。
可选地,所述纳米结构阵列为全介质材料。
可选地,所述全介质材料采用类金属介质材料,所述类金属介质材料包括氮化钛、氮化铬和碳氮化钛,所述类金属介质材料在某一特定波段内,介电常数为负值,并可以产生强烈的表面等离激元共振效应,提供强大的局部电磁场。
可选地,所述纳米结构阵列的形状为方形、三角形、球型或圆柱型。
可选地,所述波导、所述滤波片和超表面光谱仪是紧密贴合,集成在一起的。
可选地,所述超表面芯片光谱仪包括超表面分光部件和面阵探测器,所述超表面分光部件和面阵探测器紧密贴合,集成在一起设计。
可选地,所述超表面分光部件包括超原子阵列、二氧化硅基底和封装胶,所述超原子阵列设置在所述二氧化硅基底上,所述封装胶用于将所述超原子阵列进行封装。
可选地,所述面阵探测器采用CCD或CMOS芯片。
根据本发明提供的具体实施例,本发明公开了以下技术效果:
在智能化的今天,器件的小型集成智能化是发展趋势。现有的大多数拉曼传感器,都已棱镜或金属光栅结构进行拉曼信号的激发和增强,这种形式,对于拉曼信号的激发和收集是分开进行的(拉曼信号的激发和收集不在同一结构上,不能实现同步进行)。这对于实现更小型集成化的拉曼传感系统,提升现有传感系统集成智能的进程,改善采用贵金属纳米材质所带来的成本高,机械性能较差(可能氧化,附着力,粘附性差)等局限性。实现拉曼信号的激发、增强和采集,在同一结构上同步进行的,达到高度集成芯片化拉曼传感器的目标。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为基于棱镜或光栅激发的拉曼传感器示意图;
图2为本发明基于波导平台的全介质集成化表面增强拉曼传感器组成示意图;
图3为超表面光谱仪结构示意图;
图4为波导输出端、滤波片和超表面光谱仪紧密贴合结构示意图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
本发明的主要目的是提供一种全介质超表面集成化拉曼光谱探测系统,提升现有传感系统的集成化和智能化,改善采用贵金属纳米材质带来的成本高,机械性能差(可能氧化,附着力、粘附性差)等局限性。实现拉曼信号的激发,增强,采集,在同一结构上同步进行的,完成高度集成芯片化拉曼传感系统的目标。
为使本发明的上述目的、特征和优点能够更加明显易懂,下面结合附图和具体实施方式对本发明作进一步详细的说明。
图2为本发明基于波导平台的全介质集成化表面增强拉曼传感系统组成示意图。如图2所示,一种基于波导平台的全介质集成化表面增强拉曼传感系统包括:激光器1、光纤2、波导3、纳米结构阵列4、滤波片6、超表面芯片光谱仪7,激光器1能提供泵浦光源,具体的,激光器1能提供激发全介质材料的可激发波段,光纤2将泵浦光光的耦合输入到波导3的输入端,纳米结构阵列4设置在波导3的表面,纳米结构阵列4用于提供强大磁场,探测物分子5悬浮设置在纳米结构阵列4周围,探测物分子5用于在激发光和强电磁场作用下激发并增强拉曼信号,滤波片6以多层滤波膜的形式镀在波导的输出端,滤波片6用于滤掉泵浦光波段,超表面芯片光谱仪7设置在所述滤波片的表面,以接收拉曼光谱信号。具体的,超表面光谱仪7输入端与滤波片6输出端紧密贴合,超表面光谱仪7用于将滤波片6滤掉入射光波段后的拉曼信号进行解析,得到探测物分子5的各种光谱信息。
下面具体介绍光的传播过程:
激光器1发出的纳米结构阵列的激发波段激光,光纤2将泵浦光耦合进入波导3输入端,将激发介质纳米结构等离子共振的激发波段输入至波导。光在波导3内以一定的模式进行全内反射传输,产生的消逝场将会激发纳米结构阵列4(包含多个纳米单元)的表面等离激元共振效应,带来强大的局部强大的电磁场,此时将探测物分子5悬浮设置在各纳米单元周围。探测物分子5为固态、液态或气态,也就是说本发明的传感系统探测时不限制探测物分子的状态。探测物分子5的拉曼散射在强大的局部电磁场下被激发并增强,部分的拉曼信号将耦合回波导4,随着泵浦光一起传输,滤波片6以多层滤波膜的形式镀在波导输出端,用于滤掉泵浦光波段,将泵浦光滤掉只剩下拉曼光,超表面光谱仪7与滤波片6输出端紧密贴合,超表面芯片光谱仪7的探测波段覆盖拉曼光的波段,光谱仪7将拉曼信号进行解析,得到探测物分子5的各种光谱信息。
波导3的材料、大小和形状都可视情况而定,但波导1的可传输波段模式必须包括可激发纳米结构表面等离激元共振的波段。纳米结构阵列4为全介质材料,全介质材料在设定波段内,介电常数为负值。全介质材料采用类金属介质材料,如氮化钛(TiN)、氮化铬(GeN)、碳氮化钛(TiNC)等。在某一特定波段内,该物质可以产生强烈的表面等离激元共振效应,用于提供强大的局部电磁场。纳米结构阵列4的形状为方形、三角形、球型或圆柱型等任意几何形状。纳米结构阵列4的形状、大小和排列顺序都可调整。纳米结构阵列4的形状、尺寸和排列都会影响纳米结构阵列4产生表面等离激元共振的激发波段和强度,可以根据需求调整纳米结构阵列4的形状、尺寸和排列顺序。或者将纳米结构阵列4改成狭缝或框状等一系列双波导模型,类似双波导形状。
特定波段范围内的入射波从波导3输入端端入射,以一定模式在波导3中间段内传输。在传输过程中,消逝场激发铺至在波导3上表面的纳米结构阵列4表面,该纳米结构阵列4的等离激元共振效应发生,与此同时,放在纳米结构阵列4附近的探测物质分子5的拉曼散射被激发。因纳米结构阵列4产生表面等离共振时,提供的强大局域电磁场,拉曼散射的激发和辐射过程都得到了极大的增强,拉曼信号得到了有效的增强。一部分拉曼信号会耦合回波导3,从波导3输出端输出。
超表面芯片光谱仪7基于超原子调控光场,且超表面芯片光谱仪7探测范围覆盖拉曼光的波段范围。图3为超表面芯片光谱仪系统示意图。如图3所示,超表面芯片光谱仪7,包括超表面分光部件和面阵探测器74,其中超表面分光部件和面阵探测器紧密贴合集成设计。所述超表面分光部件包括超原子阵列71、二氧化硅基底72和封装胶73,所述超原子阵列71设置在所述二氧化硅基底72上,所述封装胶73用于将所述超原子阵列71进行封装。超原子阵列71包括多个超原子,超原子是根据惠更斯原理所设计的纳米结构阵列,面阵探测器74采用CCD或CMOS芯片。具体的,超表面上即二氧化硅基底72根据惠更斯原理排列的超原子,对入射的拉曼光进行响应,解析光谱,之后输出,输出后的光谱信息进入面阵探测器74,从而能够提取出探测物质分子5的拉曼光谱信息。
为体现出集成化拉曼光谱探测系统的芯片集成化独特优势。将波导3输出端、滤波片6和超表面光谱仪7紧密贴合,集成在一起设计,如图4所示。这样的设计理念使整个系统达到高度集成化,将拉曼光谱检测系统实现芯片级,智能化。
对上述中出现的术语进行解释:
消逝场:光在波导内以全反射形式传输,在全反射界面上,尽管所有的功率都被反射回来,但在界面处仍然存在光场,其场强随着到边界距离的增加而迅速消逝,这样一个消逝的,不携带能量的场,称为消逝场。
双波导:为两个波导的形式,两个波导内光可产生相互耦合,在传播过程中,光在两个波导内都有传输。
超原子:能够改变光的相位,振幅,偏振等光的特性的介质纳米结构阵列。
在智能化的今天,器件的小型集成智能化是发展趋势。现有的大多数拉曼传感器,都已棱镜或金属光栅结构进行拉曼信号的激发和增强,这种形式,对于拉曼信号的激发和收集是分开进行的(拉曼信号的激发和收集不在同一结构上)。本发明可实现拉曼信号的激发、增强和采集,在同一结构上进行,达到高度集成芯片化拉曼传感系统的目标。此外本发明所采用的全介质纳米结构可以有效改善现有传感器采用贵金属纳米材质所带来的成本高,机械性能较差(可能氧化,附着力,粘附性差)等局限性。
本说明书中各个实施例采用递进的方式描述,每个实施例重点说明的都是与其他实施例的不同之处,各个实施例之间相同相似部分互相参见即可。
本文中应用了具体个例对本发明的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本发明的装置及其核心思想;同时,对于本领域的一般技术人员,依据本发明的思想,在具体实施方式及应用范围上均会有改变之处。综上所述,本说明书内容不应理解为对本发明的限制。

Claims (8)

1.一种全介质超表面集成化拉曼光谱探测系统,其特征在于,包括:激光器、光纤、波导、纳米结构阵列、滤波片和超表面光谱仪,所述激光器用于提供泵浦光源,所述光纤输入端与所述激光器输出端连接,所述光纤输出端与所述波导输入端相连接,将光线导入所述波导,所述波导用于激发传输拉曼信号,所述纳米结构阵列设置在所述波导的上表面,所述纳米结构阵列用于提供强电磁场,将探测物分子悬浮设置在所述纳米结构阵列周围,所述探测物分子用于在所述强电磁场作用下发出拉曼信号,所述滤波片镀在所述波导的输出端,所述滤波片用于将所述波导输出的泵浦光滤掉,所述超表面芯片光谱仪设置在所述滤波片的表面,所述超表面芯片光谱仪用于将所述滤波片滤掉入射光波段后的拉曼信号进行解析,得到所述探测物分子的各种光谱信息。
2.根据权利要求1所述的一种全介质超表面集成化拉曼光谱探测系统,其特征在于,所述纳米结构阵列为全介质材料。
3.根据权利要求2所述的一种全介质超表面集成化拉曼光谱探测系统,其特征在于,所述全介质材料采用类金属介质材料,所述类金属介质材料包括氮化钛、氮化铬和碳氮化钛,所述类金属介质材料在某一特定波段内,介电常数为负值,并可以产生强烈的表面等离激元共振效应,提供强大的局部电磁场。
4.根据权利要求1所述的一种全介质超表面集成化拉曼光谱探测系统,其特征在于,所述纳米结构阵列的形状为方形、三角形、球型或圆柱型。
5.根据权利要求1所述的一种全介质超表面集成化拉曼光谱探测系统,其特征在于,所述波导、所述滤波片和超表面光谱仪是紧密贴合,集成在一起的。
6.根据权利要求1所述的一种全介质超表面集成化拉曼光谱探测系统,其特征在于,所述超表面芯片光谱仪包括超表面分光部件和面阵探测器,所述超表面分光部件和面阵探测器紧密贴合,集成在一起设计。
7.根据权利要求1所述的一种全介质超表面集成化拉曼光谱探测系统,其特征在于,所述超表面分光部件包括超原子阵列、二氧化硅基底和封装胶,所述超原子阵列设置在所述二氧化硅基底上,所述封装胶用于将所述超原子阵列进行封装。
8.根据权利要求6所述的一种全介质超表面集成化拉曼光谱探测系统,其特征在于,所述面阵探测器采用CCD或CMOS芯片。
CN202010729989.5A 2020-07-27 2020-07-27 全介质超表面集成化拉曼光谱探测系统 Active CN111830009B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010729989.5A CN111830009B (zh) 2020-07-27 2020-07-27 全介质超表面集成化拉曼光谱探测系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010729989.5A CN111830009B (zh) 2020-07-27 2020-07-27 全介质超表面集成化拉曼光谱探测系统

Publications (2)

Publication Number Publication Date
CN111830009A true CN111830009A (zh) 2020-10-27
CN111830009B CN111830009B (zh) 2022-04-01

Family

ID=72925559

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010729989.5A Active CN111830009B (zh) 2020-07-27 2020-07-27 全介质超表面集成化拉曼光谱探测系统

Country Status (1)

Country Link
CN (1) CN111830009B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114199377A (zh) * 2021-08-23 2022-03-18 南开大学 一种近红外纳米增强光谱仪
CN115825013A (zh) * 2022-10-27 2023-03-21 厦门大学 一种抗氧化纳米等离激元超表面生物传感器及其制备方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120273662A1 (en) * 2011-04-26 2012-11-01 Caldwell Joshua D Three-dimensional coherent plasmonic nanowire arrays for enhancement of optical processes
CN105628199A (zh) * 2014-10-26 2016-06-01 中国科学院重庆绿色智能技术研究院 具有亚波长金属结构的芯片型光谱仪
US20180003706A1 (en) * 2016-06-30 2018-01-04 Sightline Innovation Inc. System, method, and module for biomarker detection
CN107677367A (zh) * 2017-10-11 2018-02-09 中国工程物理研究院激光聚变研究中心 一种具有中性衰减特性的金属滤片及其制备方法
CN207263300U (zh) * 2017-10-24 2018-04-20 中国计量大学 一种基于超表面结构的光谱仪
CN109374591A (zh) * 2018-12-17 2019-02-22 浙江大学 基于全介质人工微结构超表面的荧光增强芯片
CN110147023A (zh) * 2019-06-17 2019-08-20 中国人民解放军军事科学院国防科技创新研究院 一种基于石墨烯和硅基纳米线的拉曼放大器及其制备方法
US20200141871A1 (en) * 2017-04-28 2020-05-07 Northwestern University Surface-functionalized nanostructures for molecular sensing applications

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120273662A1 (en) * 2011-04-26 2012-11-01 Caldwell Joshua D Three-dimensional coherent plasmonic nanowire arrays for enhancement of optical processes
CN105628199A (zh) * 2014-10-26 2016-06-01 中国科学院重庆绿色智能技术研究院 具有亚波长金属结构的芯片型光谱仪
US20180003706A1 (en) * 2016-06-30 2018-01-04 Sightline Innovation Inc. System, method, and module for biomarker detection
US20200141871A1 (en) * 2017-04-28 2020-05-07 Northwestern University Surface-functionalized nanostructures for molecular sensing applications
CN107677367A (zh) * 2017-10-11 2018-02-09 中国工程物理研究院激光聚变研究中心 一种具有中性衰减特性的金属滤片及其制备方法
CN207263300U (zh) * 2017-10-24 2018-04-20 中国计量大学 一种基于超表面结构的光谱仪
CN109374591A (zh) * 2018-12-17 2019-02-22 浙江大学 基于全介质人工微结构超表面的荧光增强芯片
CN110147023A (zh) * 2019-06-17 2019-08-20 中国人民解放军军事科学院国防科技创新研究院 一种基于石墨烯和硅基纳米线的拉曼放大器及其制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
E.REYES-GÓMEZ 等: "Signature of bulk longitudinal plasmon-polaritons in the transmission/reflection spectra of one-dimensional metamaterial heterostructures", 《SUPERLATTICES AND MICROSTRUCTURES》 *
胡中 等: "几何相位电磁超表面:从原理到应用", 《激光与光电子学进展》 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114199377A (zh) * 2021-08-23 2022-03-18 南开大学 一种近红外纳米增强光谱仪
CN114199377B (zh) * 2021-08-23 2023-12-05 南开大学 一种近红外纳米增强光谱仪
CN115825013A (zh) * 2022-10-27 2023-03-21 厦门大学 一种抗氧化纳米等离激元超表面生物传感器及其制备方法
CN115825013B (zh) * 2022-10-27 2024-09-10 厦门大学 一种抗氧化纳米等离激元超表面生物传感器及其制备方法

Also Published As

Publication number Publication date
CN111830009B (zh) 2022-04-01

Similar Documents

Publication Publication Date Title
US7271914B2 (en) Biomolecular sensor system utilizing a transverse propagation wave of surface plasmon resonance (SPR)
JP3659686B2 (ja) 薬品の微視的特性の空洞内検知のための装置および方法
CN111830009B (zh) 全介质超表面集成化拉曼光谱探测系统
US9223064B2 (en) Photonic crystal-metallic structures and applications
EP3123172B1 (en) Bioassay system and method for detecting analytes in body fluids
CN109444106B (zh) 一种基于表面增强拉曼光谱的光催化原位监测系统
CN102809388B (zh) 光纤探针传感器
TWI476394B (zh) And a method and method for determining whether a target biomolecule exists in a sample to be measured
CN110160984B (zh) 一种基于超表面和铌酸锂混合结构的片上太赫兹传感增强器件
WO2008091666A1 (en) Surface plasmon enhanced raman spectroscopy
CN102095719A (zh) 基于表面等离子共振和受激拉曼散射的光纤型传感系统
US9157861B2 (en) Sensor and method of detecting a target analyte
CN101294900B (zh) 高精细度腔表面等离子体共振传感装置
Butt et al. Metal‐Insulator‐Metal Waveguide Plasmonic Sensor System for Refractive Index Sensing Applications
CN101281134B (zh) 纳米结构持久性有毒物质检测方法
Liu et al. Long-range surface plasmon resonance configuration for enhancing SERS with an adjustable refractive index sample buffer to maintain the symmetry condition
NL2034374B1 (en) High-sensitivity and small-size near-infrared spr portable detection device
CN1190660C (zh) 外差干涉式表面等离子体波感测装置及方法
EP2791654A1 (en) Method for exciting a sub-wavelength inclusion structure
Gu et al. Ultra-sensitive compact fiber sensor based on nanoparticle surface enhanced Raman scattering
CN107727614A (zh) 时空分辨光谱成像系统
CN213275352U (zh) 一种基于离轴抛物面反射镜的拉曼信号收集探头
La Spada et al. Metamaterial resonator arrays for organic and inorganic compound sensing
CN210982220U (zh) 一种基于量子增强的光纤表面等离子体共振折射率传感器
CN111965161A (zh) 一种光纤表面增强拉曼光谱传感检测装置及检测方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant