CN111825151A - 层状金属氢氧化物的应用 - Google Patents
层状金属氢氧化物的应用 Download PDFInfo
- Publication number
- CN111825151A CN111825151A CN202010596259.2A CN202010596259A CN111825151A CN 111825151 A CN111825151 A CN 111825151A CN 202010596259 A CN202010596259 A CN 202010596259A CN 111825151 A CN111825151 A CN 111825151A
- Authority
- CN
- China
- Prior art keywords
- pfos
- metal
- water
- metal hydroxide
- layered metal
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/28—Treatment of water, waste water, or sewage by sorption
- C02F1/281—Treatment of water, waste water, or sewage by sorption using inorganic sorbents
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/02—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
- B01J20/06—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising oxides or hydroxides of metals not provided for in group B01J20/04
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/02—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
- B01J20/06—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising oxides or hydroxides of metals not provided for in group B01J20/04
- B01J20/08—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising oxides or hydroxides of metals not provided for in group B01J20/04 comprising aluminium oxide or hydroxide; comprising bauxite
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/28—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
- B01J20/28014—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their form
- B01J20/28033—Membrane, sheet, cloth, pad, lamellar or mat
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2101/00—Nature of the contaminant
- C02F2101/30—Organic compounds
- C02F2101/34—Organic compounds containing oxygen
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2101/00—Nature of the contaminant
- C02F2101/30—Organic compounds
- C02F2101/36—Organic compounds containing halogen
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2101/00—Nature of the contaminant
- C02F2101/30—Organic compounds
- C02F2101/40—Organic compounds containing sulfur
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2103/00—Nature of the water, waste water, sewage or sludge to be treated
- C02F2103/06—Contaminated groundwater or leachate
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Analytical Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Inorganic Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Hydrology & Water Resources (AREA)
- Engineering & Computer Science (AREA)
- Environmental & Geological Engineering (AREA)
- Water Supply & Treatment (AREA)
- Solid-Sorbent Or Filter-Aiding Compositions (AREA)
Abstract
层状金属氢氧化物的应用,本发明涉及快速高效吸附全氟辛烷磺酸(PFOS)的层状金属氢氧化物(LDHs),金属组成分别为:铜镁铁、铜镁铝及锌铝。本发明所述层状金属氢氧化物对地下水或地表水中低浓度PFOS(0.05‑1 mg/L)具有快速高效的吸附能力,且水体中常见的阴离子如氯离子、碳酸氢根离子及有机酸等对PFOS在LDHs上吸附的影响甚微。吸附后的LDHs在50%的甲醇中解吸1 h可完成吸附剂的再生。所述层状金属氢氧化物在吸附PFOS时适用较广的pH范围(5.0~11.0)。
Description
技术领域
本发明涉及水污染控制技术领域,具体涉及层状金属氢氧化物的应用。
背景技术
全氟化合物是一类稳定的人工合成化学物质,因其具有优良的表面性能,在灭火剂、感光材料表面处理剂、纺织品和皮革的处理剂等药剂中得以广泛的应用。其中,PFOS因在全球范围内水环境中检出频繁而得到密切关注。已有研究表明,PFOS对免疫系统有一定的抑制作用并具有生物累积性,目前已被列入持久性有机污染物名单。PFOS中碳氟键键能高,难以被传统化学和生物技术降解去除。吸附法是水中有机污染物去除的常用方法之一,具有简单易行等优点。传统吸附剂中,活性炭因具有原料广泛、成本低廉等优点而得到广泛应用,同时由于其大的比表面积,丰富的官能团而对多种有机物都具有良好的吸附性能。研究表明活性炭对PFOS的吸附性能良好,但吸附平衡和解吸再生时间长。此外,离子交换树脂也是研究较多的PFOS吸附剂之一,具有吸附容量大等特点,但除吸附平衡时间长外,还易受水中其它阴离子竞争吸附的影响。因此,研发一种吸附速度快,不易受水中常见阴离子影响的吸附剂对PFOS的去除具有重要意义。
层状金属氢氧化物(LDHs)是一种阴离子型矿物,具有合成方法简单、比表面积较大、层板金属可变等优点,近年作为催化剂和吸附剂得到了广泛的研究。目前,文献报道对PFOS的吸附研究,多采用镁铝型LDHs。虽然吸附速率快,但吸附容量较低。由于LDHs层板金属的可调控性,不同金属组成LDHs的表面及层间特性具有差异,从而影响其对PFOS的吸附性能。因此,确定吸附PFOS性能优良的金属组成对其高效去除具有重要意义。
发明内容
解决的技术问题:本发明提供一种层状金属氢氧化物的应用,所涉及的三种LDHs对PFOS去除速率极快,吸附量高,经再生后可循环使用,pH适用范围广。
技术方案:层状金属氢氧化物在吸附水体中全氟辛烷磺酰基化合物中的应用。
层状金属氢氧化物在制备吸附水体中全氟辛烷磺酰基化合物产品中的应用。
优选的,上述层状金属氢氧化物的金属组成为铜镁铁、铜镁铝或锌铝的氢氧化物。
优选的,上述水体的pH值范围为5.0~11.0。
上述总二价金属与三价金属的摩尔比为3:1,含有两种二价金属的摩尔比为1:1。
具体合成方法如下:1)取相应金属盐溶于蒸馏水中使总金属浓度为0.8mol/L,其中二价金属与三价金属摩尔比为3:1,二价金属之间的摩尔比为1:1;将上述混合金属溶液以1滴/秒的速率滴加到蒸馏水中,同时采用混合碱溶液控制反应过程中pH值为10,所述混合碱溶液为3.0mol/L NaOH和1.0mol/L Na2CO3;2)反应过程搅拌速率为150r/min,反应温度为30℃;3)将滴加完混合金属溶液后获得的悬浮液在40℃条件下水浴老化22h,离心去除上清液并反复水洗三次后,在甲醇中分散1h;4)移除甲醇,在100℃的烘箱中干燥得层状金属氢氧化物。
上述制备得到的层状金属氢氧化物的粒径不大于10μm。
有益效果:本发明所述层状金属氢氧化物对地下水或地表水中低浓度PFOS(0.05-1mg/L)具有快速高效的吸附能力,吸附平衡时间仅需1h,且水体中常见的阴离子如氯离子、碳酸氢根离子及有机酸等对PFOS在LDHs上吸附的影响甚微。吸附后的LDHs在50%的甲醇中解吸1h可完成吸附剂的再生。所述层状金属氢氧化物在吸附PFOS时适用较广的pH范围(5.0~11.0)。
附图说明
图1为不同时间和浓度条件下CuMgFe-LDH对PFOS的去除率,其中(a)为不同时间CuMgFe-LDH对PFOS的去除率;(b)为CuMgFe-LDH对0.05-1mg/L的PFOS的去除率。
具体实施方式
以下通过实例进一步对本发明进行说明。
实施例1
本实施例合成了6种不同金属组成的LDHs,分别为铜镁铁、铜镍铁、铜镁铝、锌铝、镁铝以及镁铁用以吸附水中的PFOS,并对其吸附量进行比较。
步骤一,采用恒定pH共沉淀法合成上述六种LDHs,具体为:1)分别取上述6种金属盐溶于50mL蒸馏水中使三价金属离子浓度为0.2mol/L,二价金属离子浓度为0.3mol/L,将上述混合金属溶液以1滴/秒的速率滴加到含100mL蒸馏水的250mL三口烧瓶中,同时采用混合碱溶液控制反应过程中pH值为10,所述混合碱溶液为3.0mol/L NaOH和1.0mol/L Na2CO3;2)反应过程搅拌速率为150r/min,反应温度为30℃;3)将滴加完混合金属溶液后获得的悬浮液在40℃条件下水浴老化22h,离心去除上清液并反复水洗三次后,在甲醇中分散1h;4)移除甲醇,在100℃的烘箱中干燥得相应金属组成的层状金属氢氧化物。
步骤二,在带螺旋盖的8mL硼硅酸盐玻璃瓶中分别加入PFOS和6种上述LDHs。总反应液体积为5mL,PFOS浓度为1mg/L,LDHs投加量为0.1g/L,反应pH值为7.0;步骤二,将密封的硼硅酸盐玻璃瓶置于振荡床中,调整转速为150rpm,温度为25℃,反应时间1h。反应结束后离心并分析上清液中PFOS的浓度,得表1数据:
表1 不同金属组成LDHs对PFOS吸附量及去除率
表1的结果表明,在相同吸附实验条件下,CuMgAl、CuMgFe、ZnAl对PFOS的去除率分别达到93%、93%和87%,远高于其他三种LDHs。
实施例2
本实施例以CuMgFe-LDH为例,比较不同时间和浓度条件下对PFOS的去除率。
A:不同时间条件CuMgFe-LDH对PFOS的去除。步骤一,在8组带螺旋盖的8mL硼硅酸盐玻璃瓶中分别加入PFOS和CuMgFe-LDH。反应液体积为5mL,PFOS浓度为1mg/L,LDH投加量为0.1g/L,反应pH值为7.0;步骤二,将密封的硼硅酸盐玻璃瓶置于振荡床中,调整转速为150rpm,温度为25℃。在5、10、20、30、60、120、180和240min时分别取出一组玻璃瓶,离心,分析上清液中PFOS的含量,结果如图1a所示。
B:不同浓度条件CuMgFe-LDH对PFOS的去除。步骤一,在6组带螺旋盖的8mL硼硅酸盐玻璃瓶中分别加入PFOS和CuMgFe-LDH。反应液体积为5mL,PFOS浓度分别为0.05、0.1、0.2、0.4、0.8和1mg/L,LDH投加量为0.1g/L,反应pH值为7.0;步骤二,将密封的硼硅酸盐玻璃瓶置于振荡床中,调整转速为150rpm,温度为25℃。在1h时取出玻璃瓶,离心,分析上清液中PFOS的含量,结果如图1b所示。图1a的结果表明,CuMgFe-LDH对PFOS的去除速率极快,5min的去除率可达到80%以上,吸附平衡时间仅需1h,远快于碳材料和离子交换树脂。图1b的结果表明,CuMgFe-LDH对0.05-1mg/L的PFOS具有较高的去除率。
实施例3
本实施例以CuMgFe-LDH为例,比较在其它全氟化合物、水中常见阴离子、有机质对PFOS吸附的影响。
A:其它全氟化合物对CuMgFe-LDH吸附PFOS的影响。步骤一,在带螺旋盖的8mL硼硅酸盐玻璃瓶中分别加入PFOS、PFOA以及CuMgFe-LDH。反应液体积为5mL,PFOS、盐玻璃瓶置于振荡床中,调整转速为150rpm,温度为25℃。在1h时取取样离心,分析上清液中PFOS的含量。
B:水中常见阴离子对CuMgFe-LDH吸附PFOS的影响。步骤一,在4组带螺旋盖的8mL硼硅酸盐玻璃瓶中分别加入PFOS、CuMgFe-LDH以及氯离子、碳酸氢根离子、硝酸根离子、硫酸根离子。反应液体积为5mL,PFOS浓度为1mg/L,LDH投加量为0.1g/L,阴离子浓度为10mmol/L,反应pH值为7.0;步骤二同A。
C:有机质对CuMgFe-LDH吸附PFOS的影响。步骤一,在带螺旋盖的8mL硼硅酸盐玻璃瓶中分别加入PFOS、CuMgFe-LDH以及富里酸(代表有机质)。反应液体积为5mL,PFOS浓度为1mg/L,LDH投加量为0.1g/L,富里酸浓度为5mg/L,反应pH值为7.0;步骤二同A。
经检测得表2数据。
表2 PFOS与PFOA、水中常见阴离子和有机质共存时的去除率
表2的结果表明,除了带两个单位负电荷的硫酸根离子外,PFOS在上述其他物质存在下均能保持较高的去除率,证明本发明中的LDHs适合复杂情况下PFOS的吸附去除。
实施例4
本实施例以CuMgFe-LDH为例,比较不同pH条件对PFOS吸附的影响。
步骤一,在5组带螺旋盖的8mL硼硅酸盐玻璃瓶中分别加入PFOS和CuMgFe-LDH。反应液体积为5mL,PFOS浓度为1mg/L,CuMgFe-LDH投加量为0.1g/L,分别设置反应初始pH值为3.0、6.0、7.0、9.0和11.0;步骤二,将密封的硼硅酸盐玻璃瓶置于振荡床中,调整转速为150rpm,温度为25℃。在1h时取样离心,分析上清液中PFOS的含量并测试反应终点pH值。经检测得表3数据。
表3 PFOS在不同pH条件下的去除率
表3的结果表明,在pH 3.0~11.0的范围内,CuMgFe-LDH对PFOS的去除率都较高。
实施例5
本实施例以CuMgFe-LDH为例,比较甲醇和乙腈对PFOS的解吸作用,以及材料循环使用的性能。
A:甲醇和乙腈对PFOS的解吸。步骤一,在带螺旋盖的8mL硼硅酸盐玻璃瓶中分别加入PFOS和CuMgFe-LDH。反应液体积为5mL,PFOS浓度为1mg/L,CuMgFe-LDH投加量为0.1g/L,反应pH值为7.0;步骤二,将密封的硼硅酸盐玻璃瓶置于振荡床中,调整转速为150rpm,温度为25℃。在1h时取1mL悬浮液加入1mL 50%甲醇或乙腈再次振荡1h,离心,分析上清液中PFOS的含量。结果如表4所示。
B:CuMgFe-LDH循环使用性能。步骤一,在带螺旋盖的22mL硼硅酸盐玻璃瓶中分别加入PFOS和CuMgFe-LDH。反应液体积为20mL,PFOS浓度为5mg/L,CuMgFe-LDH投加量为0.5g/L,反应pH值为7.0;步骤二,将密封的硼硅酸盐玻璃瓶置于振荡床中,调整转速为150rpm,温度为25℃。在1h时取出样瓶,离心,去除上清液,加入5mL 50%甲醇,振荡1h,离心,去除甲醇,并用水清洗两次。循环三次。检测每次循环吸附平衡时上清液中PFOS含量,得表5数据。
表4 50%甲醇和乙腈对PFOS的解吸
表5 CuMgFe-LDH吸附剂的循环使用性能
表4的结果表明,50%甲醇和乙腈对PFOS的解吸率均达95%以上,且解吸时间仅需1h。表5的结果表明,CuMgFe-LDH再生后,循环使用三次后仍对PFOS具有较高的吸附去除能力,表明CuMgFe-LDH在吸附解吸过程中可保持稳定。
以上示意性地针对本发明创造及其实施方式进行了描述,该描述没有限制性,所以,如果本领域的普通技术人员受其启示,在不脱离本发明宗旨的情况下,不经创造性的设计出于该技术方案相似的结构方式及实施例,均应属本发明的保护范围。
Claims (7)
1.层状金属氢氧化物在吸附水体中全氟辛烷磺酰基化合物中的应用。
2.层状金属氢氧化物在制备吸附水体中全氟辛烷磺酰基化合物产品中的应用。
3.根据权利要求1或2的所述的应用,其特征在于所述层状金属氢氧化物的金属组成为铜镁铁、铜镁铝或锌铝的氢氧化物。
4.根据权利要求1或2的所述的应用,其特征在于所述水体的pH值范围为5.0~11.0。
5.根据权利要求3所述的应用,其特征在于总二价金属与三价金属的摩尔比为3:1,含有两种二价金属的摩尔比为1:1。
6.根据权利要求3所述的应用,其特征在于合成方法如下:1)取相应金属盐溶于蒸馏水中使总金属浓度为0.8 mol/L,其中二价金属与三价金属摩尔比为3:1,二价金属之间的摩尔比为1:1;将上述混合金属溶液以1滴/秒的速率滴加到蒸馏水中,同时采用混合碱溶液控制反应过程中pH值为10,所述混合碱溶液为3.0 mol/L NaOH和1.0 mol/L Na2CO3;2)反应过程搅拌速率为150 r/min,反应温度为30 ℃;3)将滴加完混合金属溶液后获得的悬浮液在40 ℃条件下水浴老化22 h,离心去除上清液并反复水洗三次后,在甲醇中分散1h;4)移除甲醇,在100 ℃的烘箱中干燥得层状金属氢氧化物。
7.根据权利要求6所述的应用,其特征在于制备得到的层状金属氢氧化物的粒径不大于10 μm。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010596259.2A CN111825151A (zh) | 2020-06-28 | 2020-06-28 | 层状金属氢氧化物的应用 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010596259.2A CN111825151A (zh) | 2020-06-28 | 2020-06-28 | 层状金属氢氧化物的应用 |
Publications (1)
Publication Number | Publication Date |
---|---|
CN111825151A true CN111825151A (zh) | 2020-10-27 |
Family
ID=72898950
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202010596259.2A Pending CN111825151A (zh) | 2020-06-28 | 2020-06-28 | 层状金属氢氧化物的应用 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN111825151A (zh) |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5114898A (en) * | 1990-01-18 | 1992-05-19 | Board Of Trustees Operating Michigan State University | Layered double hydroxide sorbents for the removal of SOx from flue gas and other gas streams |
EP0695522A2 (en) * | 1994-08-01 | 1996-02-07 | Mitsubishi Pencil Co., Ltd. | Liquid applicator |
CN1962453A (zh) * | 2006-11-22 | 2007-05-16 | 天津化工研究设计院 | 一种水滑石型层状氢氧化物的生产方法 |
CN101759213A (zh) * | 2010-01-05 | 2010-06-30 | 北京化工大学 | 一种金属粉制备层状双金属氢氧化物的方法 |
CN110467226A (zh) * | 2018-05-10 | 2019-11-19 | 李大鹏 | 一种铁基水滑石的制备方法 |
CN111295361A (zh) * | 2017-09-08 | 2020-06-16 | 联邦科学和工业研究组织 | 水处理方法 |
-
2020
- 2020-06-28 CN CN202010596259.2A patent/CN111825151A/zh active Pending
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5114898A (en) * | 1990-01-18 | 1992-05-19 | Board Of Trustees Operating Michigan State University | Layered double hydroxide sorbents for the removal of SOx from flue gas and other gas streams |
EP0695522A2 (en) * | 1994-08-01 | 1996-02-07 | Mitsubishi Pencil Co., Ltd. | Liquid applicator |
CN1962453A (zh) * | 2006-11-22 | 2007-05-16 | 天津化工研究设计院 | 一种水滑石型层状氢氧化物的生产方法 |
CN101759213A (zh) * | 2010-01-05 | 2010-06-30 | 北京化工大学 | 一种金属粉制备层状双金属氢氧化物的方法 |
CN111295361A (zh) * | 2017-09-08 | 2020-06-16 | 联邦科学和工业研究组织 | 水处理方法 |
CN110467226A (zh) * | 2018-05-10 | 2019-11-19 | 李大鹏 | 一种铁基水滑石的制备方法 |
Non-Patent Citations (4)
Title |
---|
KUN YANG等: "Adsorptive removal of phosphate by Mg–Al and Zn–Al layered double hydroxides: Kinetics, isotherms and mechanisms", 《SEPARATION AND PURIFICATION TECHNOLOGY》 * |
YANWEI GUO等: "Synthesis of mesoporous Cu/Mg/Fe layered double hydroxide and its adsorption performance for arsenate in aqueous solutions", 《JOURNAL OF ENVIRONMENTAL SCIENCES 》 * |
刘娇等: "铜镁铝三元水滑石的姜-泰勒效应", 《物理化学学报》 * |
胡志豪: "层状双金属氢氧化物对水中全氟辛烷磺酸盐的吸附去除研究", 《中国优秀硕士学位论文全文数据库-工程I辑》 * |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Zhang et al. | Rapid and selective adsorption of cationic dyes by a unique metal-organic framework with decorated pore surface | |
Zhou et al. | Adsorption behavior of Cu (II) and Cr (VI) on aged microplastics in antibiotics-heavy metals coexisting system | |
Wu et al. | The simultaneous adsorption of nitrate and phosphate by an organic-modified aluminum-manganese bimetal oxide: Adsorption properties and mechanisms | |
Liu et al. | Analyzing the adsorptive behavior of Amoxicillin on four Zr-MOFs nanoparticles: Functional groups dependence of adsorption performance and mechanisms | |
Fang et al. | Enhanced adsorption of rubidium ion by a phenol@ MIL-101 (Cr) composite material | |
Li et al. | Displacement mechanism of binary competitive adsorption for aqueous divalent metal ions onto a novel IDA-chelating resin: isotherm and kinetic modeling | |
Xu et al. | Molecularly imprinted TiO 2 hybridized magnetic Fe 3 O 4 nanoparticles for selective photocatalytic degradation and removal of estrone | |
Wu et al. | A novel chitosan based adsorbent for boron separation | |
Wu et al. | A new porous magnetic chitosan modified by melamine for fast and efficient adsorption of Cu (II) ions | |
Zhao et al. | Separation of tungsten and molybdenum using macroporous resin: Equilibrium adsorption for single and binary systems | |
Zhou et al. | Selective adsorption of Au (III) with ultra-fast kinetics by a new metal-organic polymer | |
Ma et al. | Novel chelating resin with cyanoguanidine group: useful recyclable materials for Hg (II) removal in aqueous environment | |
Ogata et al. | Preparation of adsorbent for phosphate recovery from aqueous solutions based on condensed tannin gel | |
Li et al. | Simultaneous speciation of inorganic rhenium and molybdenum in the industrial wastewater by amino-functionalized nano-SiO2 | |
Pan et al. | Rapid and selective recovery of Ag (I) from simulative electroplating effluents by sulfydryl-rich covalent organic framework (COF-SH) with high adsorption capacity | |
CN115554999B (zh) | 胺化聚氨酯海绵吸附剂的合成方法与应用 | |
Liu et al. | Pellet silica-based titanate adsorbents with high selectivity for strontium removal from synthetic radioactive solutions | |
Bao et al. | Preconcentration and separation of rubidium from salt lake brine by ammonium phosphomolybdate–polyacrylonitrile (AMP‐PAN) composite adsorbent | |
CN113842889B (zh) | 一种微波合成金属有机骨架材料DUT-5(Al)及其合成方法和应用 | |
Ali et al. | Complexation of Hg (II) ions with a functionalized adsorbent: A thermodynamic and kinetic approach | |
Obeso et al. | Al (iii)-based MOF for the selective adsorption of phosphate and arsenate from aqueous solutions | |
Ahmad et al. | Synthesis of zeolitic imidazolate framework‐8 modified graphene oxide composite and its application for lead removal | |
CN111825151A (zh) | 层状金属氢氧化物的应用 | |
Lin et al. | Solvent-free mechanochemical synthesis of a sodium disulfonate covalent organic framework for simultaneous highly efficient selective capture and sensitive fluorescence detection of fluoroquinolones | |
Shao et al. | Boron continuous recovery from brines by the multicolumn simulated moving bed process with boron chelating resin |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20201027 |