CN111822010B - 一种ZnFe2O4/Bi7O9I3磁性复合光催化材料及其制备方法 - Google Patents
一种ZnFe2O4/Bi7O9I3磁性复合光催化材料及其制备方法 Download PDFInfo
- Publication number
- CN111822010B CN111822010B CN202010626388.1A CN202010626388A CN111822010B CN 111822010 B CN111822010 B CN 111822010B CN 202010626388 A CN202010626388 A CN 202010626388A CN 111822010 B CN111822010 B CN 111822010B
- Authority
- CN
- China
- Prior art keywords
- znfe
- solution
- precipitate
- magnetic composite
- photocatalytic material
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 230000001699 photocatalysis Effects 0.000 title claims abstract description 53
- 239000002131 composite material Substances 0.000 title claims abstract description 48
- 239000000463 material Substances 0.000 title claims abstract description 43
- 238000002360 preparation method Methods 0.000 title claims abstract description 18
- IISBACLAFKSPIT-UHFFFAOYSA-N bisphenol A Chemical compound C=1C=C(O)C=CC=1C(C)(C)C1=CC=C(O)C=C1 IISBACLAFKSPIT-UHFFFAOYSA-N 0.000 claims abstract description 27
- 239000002135 nanosheet Substances 0.000 claims abstract description 15
- 230000015556 catabolic process Effects 0.000 claims abstract description 12
- 238000006731 degradation reaction Methods 0.000 claims abstract description 12
- 239000003344 environmental pollutant Substances 0.000 claims abstract description 10
- 239000002105 nanoparticle Substances 0.000 claims abstract description 10
- 231100000719 pollutant Toxicity 0.000 claims abstract description 10
- 230000005415 magnetization Effects 0.000 claims abstract description 6
- 235000002017 Zea mays subsp mays Nutrition 0.000 claims abstract description 4
- 241000482268 Zea mays subsp. mays Species 0.000 claims abstract description 4
- 239000002245 particle Substances 0.000 claims abstract description 4
- 239000000047 product Substances 0.000 claims description 29
- 239000002244 precipitate Substances 0.000 claims description 27
- 238000003756 stirring Methods 0.000 claims description 16
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 16
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 claims description 9
- 239000008367 deionised water Substances 0.000 claims description 9
- 229910021641 deionized water Inorganic materials 0.000 claims description 9
- 238000001035 drying Methods 0.000 claims description 7
- 238000005406 washing Methods 0.000 claims description 7
- 238000013329 compounding Methods 0.000 claims description 5
- 230000000593 degrading effect Effects 0.000 claims description 4
- 238000002156 mixing Methods 0.000 claims description 4
- 238000003837 high-temperature calcination Methods 0.000 abstract description 5
- 238000004064 recycling Methods 0.000 abstract description 3
- 238000011031 large-scale manufacturing process Methods 0.000 abstract description 2
- 239000002122 magnetic nanoparticle Substances 0.000 abstract 1
- 239000000203 mixture Substances 0.000 abstract 1
- 239000011941 photocatalyst Substances 0.000 description 10
- 238000000034 method Methods 0.000 description 9
- 238000002835 absorbance Methods 0.000 description 6
- 239000003054 catalyst Substances 0.000 description 6
- 239000000975 dye Substances 0.000 description 6
- 230000005389 magnetism Effects 0.000 description 5
- 239000000126 substance Substances 0.000 description 5
- 230000007547 defect Effects 0.000 description 4
- 238000005286 illumination Methods 0.000 description 4
- 238000001179 sorption measurement Methods 0.000 description 4
- 229910010413 TiO 2 Inorganic materials 0.000 description 3
- 230000008859 change Effects 0.000 description 3
- 238000013032 photocatalytic reaction Methods 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 238000011160 research Methods 0.000 description 3
- 239000004065 semiconductor Substances 0.000 description 3
- CBACFHTXHGHTMH-UHFFFAOYSA-N 2-piperidin-1-ylethyl 2-phenyl-2-piperidin-1-ylacetate;dihydrochloride Chemical compound Cl.Cl.C1CCCCN1C(C=1C=CC=CC=1)C(=O)OCCN1CCCCC1 CBACFHTXHGHTMH-UHFFFAOYSA-N 0.000 description 2
- 229910052797 bismuth Inorganic materials 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000005265 energy consumption Methods 0.000 description 2
- 230000007613 environmental effect Effects 0.000 description 2
- 238000007146 photocatalysis Methods 0.000 description 2
- 229920000767 polyaniline Polymers 0.000 description 2
- 238000004321 preservation Methods 0.000 description 2
- 238000011084 recovery Methods 0.000 description 2
- 230000004044 response Effects 0.000 description 2
- 238000000926 separation method Methods 0.000 description 2
- 230000007704 transition Effects 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- AFCARXCZXQIEQB-UHFFFAOYSA-N N-[3-oxo-3-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)propyl]-2-[[3-(trifluoromethoxy)phenyl]methylamino]pyrimidine-5-carboxamide Chemical compound O=C(CCNC(=O)C=1C=NC(=NC=1)NCC1=CC(=CC=C1)OC(F)(F)F)N1CC2=C(CC1)NN=N2 AFCARXCZXQIEQB-UHFFFAOYSA-N 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- JCXGWMGPZLAOME-UHFFFAOYSA-N bismuth atom Chemical compound [Bi] JCXGWMGPZLAOME-UHFFFAOYSA-N 0.000 description 1
- -1 bismuth halide Chemical class 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 230000003197 catalytic effect Effects 0.000 description 1
- 238000012512 characterization method Methods 0.000 description 1
- 239000000356 contaminant Substances 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 239000003814 drug Substances 0.000 description 1
- 230000005684 electric field Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 229910021389 graphene Inorganic materials 0.000 description 1
- GPRLSGONYQIRFK-UHFFFAOYSA-N hydron Chemical compound [H+] GPRLSGONYQIRFK-UHFFFAOYSA-N 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 238000009776 industrial production Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 238000005272 metallurgy Methods 0.000 description 1
- 230000005012 migration Effects 0.000 description 1
- 238000013508 migration Methods 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 230000033116 oxidation-reduction process Effects 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 238000001782 photodegradation Methods 0.000 description 1
- 238000000634 powder X-ray diffraction Methods 0.000 description 1
- 238000005215 recombination Methods 0.000 description 1
- 230000006798 recombination Effects 0.000 description 1
- 238000012827 research and development Methods 0.000 description 1
- 238000005070 sampling Methods 0.000 description 1
- 230000003595 spectral effect Effects 0.000 description 1
- 239000011029 spinel Substances 0.000 description 1
- 229910052596 spinel Inorganic materials 0.000 description 1
- 239000006228 supernatant Substances 0.000 description 1
- 230000002195 synergetic effect Effects 0.000 description 1
- 238000001308 synthesis method Methods 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 150000003608 titanium Chemical class 0.000 description 1
- 231100000331 toxic Toxicity 0.000 description 1
- 230000002588 toxic effect Effects 0.000 description 1
- 238000000870 ultraviolet spectroscopy Methods 0.000 description 1
- 229910052724 xenon Inorganic materials 0.000 description 1
- FHNFHKCVQCLJFQ-UHFFFAOYSA-N xenon atom Chemical compound [Xe] FHNFHKCVQCLJFQ-UHFFFAOYSA-N 0.000 description 1
- 239000011701 zinc Substances 0.000 description 1
- 150000003751 zinc Chemical class 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J35/00—Catalysts, in general, characterised by their form or physical properties
- B01J35/30—Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
- B01J35/33—Electric or magnetic properties
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J27/00—Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
- B01J27/06—Halogens; Compounds thereof
- B01J27/138—Halogens; Compounds thereof with alkaline earth metals, magnesium, beryllium, zinc, cadmium or mercury
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J35/00—Catalysts, in general, characterised by their form or physical properties
- B01J35/30—Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
- B01J35/39—Photocatalytic properties
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J35/00—Catalysts, in general, characterised by their form or physical properties
- B01J35/40—Catalysts, in general, characterised by their form or physical properties characterised by dimensions, e.g. grain size
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J35/00—Catalysts, in general, characterised by their form or physical properties
- B01J35/60—Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
- B01J35/61—Surface area
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/30—Treatment of water, waste water, or sewage by irradiation
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2101/00—Nature of the contaminant
- C02F2101/30—Organic compounds
- C02F2101/34—Organic compounds containing oxygen
- C02F2101/345—Phenols
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2305/00—Use of specific compounds during water treatment
- C02F2305/10—Photocatalysts
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02W—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
- Y02W10/00—Technologies for wastewater treatment
- Y02W10/30—Wastewater or sewage treatment systems using renewable energies
- Y02W10/37—Wastewater or sewage treatment systems using renewable energies using solar energy
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Organic Chemistry (AREA)
- Materials Engineering (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Health & Medical Sciences (AREA)
- Toxicology (AREA)
- Life Sciences & Earth Sciences (AREA)
- Hydrology & Water Resources (AREA)
- Environmental & Geological Engineering (AREA)
- Water Supply & Treatment (AREA)
- Catalysts (AREA)
Abstract
本发明属于磁性复合光催化材料领域,具体涉及一种ZnFe2O4/Bi7O9I3磁性复合光催化材料及其制备方法,首次将ZnFe2O4磁性纳米颗粒穿插于由Bi7O9I3纳米片构成的微米级花状结构中,形成颗粒插入微米花的复合结构;所述ZnFe2O4纳米颗粒尺寸为20‑80nm;所述构成Bi7O9I3微米花的Bi7O9I3纳米片厚度为5‑10nm;所述ZnFe2O4与Bi7O9I3以1:(2‑6)的质量比例进行复合,形成的磁性复合光催化材料表现出超顺磁性,饱和磁化强度高,光催化活性强的同时磁性可分离性强,对目标污染物双酚A具有良好的可见光降解能力,通过外加磁场迅速回收该光催化材料以达到多次回收利用的目的;而且该磁性复合光催化材料采用的制备方法原理可靠、简单易控,绿色安全,无需高温煅烧,设备常规,成本低廉,具有大规模生产的工业前景。
Description
技术领域
本发明属于磁性复合光催化材料领域,具体涉及一种磁性复合光催化材料及其制备方法,该磁性复合光催化材料分子式为ZnFe2O4/Bi7O9I3,具有光催化活性强、磁性高、可回收的特点。
背景技术
众所周知,对于半导体光催化剂材料,在可见光下其满价带的电子在大于等于其带隙能的可见光照射下越过禁带并进入空导带,在对应的跃迁电子的位置会产生一个具有正电荷的光生空穴氢离子。光生电子空穴对在水的溶液中会形成一个强烈的氧化还原体系,将吸附在催化剂表面的有机物质等杂质氧化还原从而具有净化水体的作用。然而传统的TiO2光催化剂由于只能吸收紫外线,大大限制了在可见光下的光催化效率。因此,探索研发对可见光具有更加良好响应效果的光催化剂成为学者们的关注热点。
迄今为止,铋系光催化剂以其高效的光催化性能和低能耗性等优势逐渐成为人们的研究热点,在卤化铋(BiOX,X=Cl,Br和I)家族中,Bi7O9I3由于其带隙较宽,在可见光下照射下可以表现出较好的光催化活性。例如中国专利 CN103861621B公开的“一种Bi7O9I3/石墨烯复合可见光催化剂及其制备方法”中指出Bi7O9I3之所以具有比传统光催化剂更优越的活性得益于其特有的内部电场、开放式片层结构和间接跃迁模式,更有利于降低电子-空穴对的复合几率,同时提出但单一的碘氧化铋催化剂依然存在着难分解、量子效率低、对太阳光的利用率低等一系列缺点。而这类问题作为光催化领域研究的重点在近年来已经有了一些进展,例如中国专利CN106881120A公开的“一种Bi7O9I3/Zn2SnO4异质结可见光催化剂的制备方法及应用”中提供了一种把空穴-电子对分离效率高的宽禁带半导体和宽光谱吸收的窄禁带半导体复合的方法,该方法能够解决现有的技术中催化剂光响应范围较窄、空穴-电子对分离效率较低等问题。但当其发明提供的光催化剂完成降解有机染料等有毒有害物质后,残留在水中并且无法通过简单操作将其回收,易产生二次污染。
复合金属氧化物如ZnFe2O4由于其特殊的尖晶石结构被广泛应用于冶金、化学工业等领域,其具有磁性强、易回收等特点,但由于其密度较大、吸附效率低等缺点,在环境治理领域依旧受到限制。中国专利CN109876814A公开的“一种氧缺陷TiO@ZnFeO异质结光催化材料的制备方法”提到了将纳米级TiO2与磁性很好的物质如ZnFe2O4复合从而扩大TiO2的光响应范围、提高光催化活性并实现可回收的方法。但此光催化剂的制备过程中需要不可避免的高温煅烧,并且钛盐的价格高于锌盐,在工业生产应用中会增加能耗与成本。又如中国专利 CN109012752A公开的“一种磁性ZnFeO/PANI/Au复合光催化剂的制备方法”,该方法制得的催化剂在ZnFe2O4、PANI、Au三者协同作用下提高了光生载流子的迁移速率并在可见光下有较高的光催化活性。
发明内容
本发明的目的在于克服现有技术的不足,提供一种ZnFe2O4/Bi7O9I3磁性复合光催化材料及其制备方法,具有光催化活性强、磁性高、易回收的特点,且制备过程中无需高温煅烧,操作简单易行,绿色安全。
一种ZnFe2O4/Bi7O9I3磁性复合光催化材料,由ZnFe2O4与Bi7O9I3以1:(2-6) 的质量比例进行复合,所述ZnFe2O4为纳米颗粒,尺寸20-80nm,所述Bi7O9I3为纳米片插成的微米级花状,构成Bi7O9I3花状结构的Bi7O9I3纳米片厚度为5-10 nm;所述ZnFe2O4纳米颗粒穿插于由Bi7O9I3纳米片构成的微米级花状结构中,形成颗粒插入微米花的复合结构。
优选的,所述ZnFe2O4与Bi7O9I3按照1:4的质量比例进行复合;所述ZnFe2O4为球状纳米颗粒,尺寸优选为20-40nm;所述Bi7O9I3纳米片厚度为5-8nm。
本发明中,上述ZnFe2O4/Bi7O9I3磁性复合光催化材料表现出超顺磁性,饱和磁化强度为23.1emu/g;对目标污染物双酚A具有良好的可见光降解能力, 40分钟之内降解率达到96%。
本发明还提供了上述ZnFe2O4/Bi7O9I3磁性复合光催化材料的制备方法,具体包括以下步骤:
(1)将ZnFe2O4溶解于50-100ml去离子水中,室温搅拌10-30min得到产物溶液I;
(2)将Bi7O9I3溶解于50-100ml去离子水中,室温搅拌10-30min得到产物溶液J;
(3)将上述产物溶液I和J以1:(2-6)的质量比例混合后在40℃下搅拌2-5h,将产物溶液离心处理5-9min得到沉淀K,转速控制在7000-9000r/min,洗涤所述沉淀K,干燥,所述沉淀K为ZnFe2O4/Bi7O9I3磁性复合光催化材料。
本发明中,所述ZnFe2O4的制备包括以下步骤:
(1)将ZnCl2和FeCl3·6H2O按1:2~7的摩尔比例溶解于去离子水中,搅拌至完全溶解,得到溶液A;
(2)将一定量NaAc(与ZnCl2摩尔比为1:6-16)加入上述溶液A中,在室温下搅拌至完全溶解,得到溶液B;
(3)将所述溶液B移入三口烧瓶中在一定温度下保温一定时间得到产物溶液C;
(4)待所述溶液C静置一定时间后将所述产物溶液C通过离心的方式,将转速控制在7000-9000r/min离心处理5-9min分离产物溶液C并得到沉淀D,洗涤并干燥所述沉淀D,所述沉淀D为ZnFe2O4。
优选的,所述ZnCl2与FeCl3·6H2O的摩尔比例为1:4,所述NaAc与ZnCl2摩尔比为1:8,所述反应温度为80℃,保温时间为8h,所述静置时间为2h。
本发明中,所述Bi7O9I3通过以下步骤制备得到:
(1)将1-20mmol的Bi(NO3)3·5H2O溶解于50-100ml乙二醇中,在室温下搅拌10-50min,得到溶液E;
(2)向所述溶液E中加入1-10mmol的KI,水浴50-100℃下搅拌2-6h得到溶液F;
(3)将上述溶液F油浴150-250℃下保温2-6h得到产物溶液G;
(4)待所述溶液G自然冷却至室温后取出,然后将所述产物溶液G通过离心的方式,将转速控制在7000-9000r/min离心处理5-9min分离产物溶液G 并得到沉淀H,洗涤所述沉淀H,干燥,所述沉淀H为Bi7O9I3。
本发明还提供了上述ZnFe2O4/Bi7O9I3磁性复合光催化材料或采用上述方法制备得到的ZnFe2O4/Bi7O9I3磁性复合光催化材料在降解目标污染物双酚A中的应用。
本发明中,采用绿色、无需高温煅烧的合成方法首次将ZnFe2O4与Bi7O9I3复合形成磁性光催化材料,并且ZnFe2O4纳米颗粒穿插于由Bi7O9I3纳米片构成的微米级花状结构中,形成颗粒插入微米花的复合结构,具有特定结构的 ZnFe2O4/Bi7O9I3磁性复合光催化材料,扩大了光催化材料的比表面积和接触位点,实现了大幅提高光催化活性的同时兼具良好的磁性,对目标污染物双酚A具有良好的可见光降解能力,且达到可多次回收利用的目的。
与现有技术相比,本发明具有以下优点和显著进步:ZnFe2O4/Bi7O9I3磁性复合光催化材料表现出超顺磁性,饱和磁化强度高,光催化活性强的同时磁性可分离性强,对目标污染物双酚A具有良好的可见光降解能力,通过外加磁场迅速回收该催化材料以达到多次回收利用的目的;而且该磁性复合光催化材料采用的制备方法原理可靠、简单易控,绿色安全,无需高温煅烧,操作简单,设备常规,成本低廉,具有大规模生产的工业前景。
附图说明
图1 ZnFe2O4/Bi7O9I3磁性复合光催化材料的X-射线粉末衍射图谱;
图2 ZnFe2O4/Bi7O9I3磁性复合光催化材料的SEM图;
图3 ZnFe2O4/Bi7O9I3磁性复合光催化材料的磁滞回线图;
图4 ZnFe2O4/Bi7O9I3磁性复合光催化材料对双酚A的光降解率图。
具体实施方式
下面结合附图对本发明的具体实施方式作进一步说明。
实施例1
本实施例提供了一种ZnFe2O4/Bi7O9I3磁性复合光催化材料,按照以下步骤制备得到:
S1、ZnFe2O4的制备:
(1)将ZnCl2和FeCl3·6H2O按1:4的摩尔比例溶解于去离子水中,搅拌至完全溶解,得到溶液A;
(2)将一定量NaAc(与ZnCl2摩尔比为1:8)加入上述溶液A中,在室温下搅拌至完全溶解,得到溶液B;
(3)将所述溶液B移入三口烧瓶中在80℃下保温8h得到产物溶液C;
(4)待所述溶液C静置2h后将所述产物溶液C通过离心的方式,将转速控制在7000-9000r/min离心处理5-9min分离产物溶液C并得到沉淀D,洗涤并干燥所述沉淀D,所述沉淀D为ZnFe2O4;
S2、Bi7O9I3的制备:
(1)将1-20mmol的Bi(NO3)3·5H2O溶解于50-100ml乙二醇中,在室温下搅拌10-50min,得到溶液E;
(2)向所述溶液E中加入1-10mmol的KI,水浴50-100℃下搅拌2-6h得到溶液F;
(3)将上述溶液F油浴150-250℃下保温2-6h得到产物溶液G;
(4)待所述溶液G自然冷却至室温后取出,然后将所述产物溶液G通过离心的方式,将转速控制在7000-9000r/min离心处理5-9min分离产物溶液G 并得到沉淀H,洗涤所述沉淀H,干燥,所述沉淀H是Bi7O9I3,为纳米片插成的微米级花状,Bi7O9I3纳米片厚度为5-10nm;
S3、ZnFe2O4/Bi7O9I3磁性复合光催化材料的制备:
(1)将上述ZnFe2O4溶解于50-100ml去离子水中,室温搅拌10-30min得到产物溶液I;
(2)将上述Bi7O9I3溶解于50-100ml去离子水中,室温搅拌10-30min得到产物溶液J;
(3)将上述产物溶液I和J按照1:4的质量比例混合后在40℃下搅拌2-5h,将产物溶液离心处理5-9min得到沉淀K,转速控制在7000-9000r/min,洗涤所述沉淀K,干燥,所述沉淀K为ZnFe2O4/Bi7O9I3磁性复合光催化材料。
实施例2
对实施例1中制备得到的ZnFe2O4/Bi7O9I3磁性复合光催化材料进行结构表征。
由图1可知:ZnFe2O4与Bi7O9I3特征峰均存在,表明ZnFe2O4/Bi7O9I3成功复合形成磁性复合光催化材料;
由图2可知:ZnFe2O4为球状纳米颗粒,尺寸20-80nm;Bi7O9I3为纳米片(厚度为5-10nm)插成微米级花状,复合后ZnFe2O4球状纳米颗粒穿插于由Bi7O9I3纳米片构成的微米级花状结构中,形成复合结构。
实施例3-饱和磁化强度的测试
利用振动磁强计测量实施例1制备得到的ZnFe2O4/Bi7O9I3磁性复合光催化材料的磁性能。
由图3知,ZnFe2O4/Bi7O9I3磁性复合光催化材料表现出超顺磁性,饱和磁化强度为23.1emu/g,具有较好的磁性。
实施例4-用于目标污染物双酚A降解的实验方法和降解能力的测试方法
(1)准确配置浓度为10mg/L双酚A溶液,称量实施例1制备得到的 ZnFe2O4/Bi7O9I3磁性复合光催化材料60mg,取30mL的染料溶液放到石英玻璃光反应器中,加入上述ZnFe2O4/Bi7O9I3磁性复合光催化材料,构成待反应系统;
(2)将待反应系统置于暗处吸附,吸附30min以达到吸附平衡;
(3)将吸附后的待反应体系置于光催化反应暗箱中,插入420nm滤光片获得可见光,打开氙灯光源进行光催化反应;
(4)分别在暗吸附后,以及光催化反应过程中间隔一定时间取样4mL,将每次取样后的溶液离心取上清液;利用紫外可见分光光度计检测各个时间段取样的吸光度:(A0-At)/A0*100%
A0为光照前染料的吸光度,At为光照不同时间后的染料的吸光度;
由吸光度-浓度标准曲线可知,吸光度和浓度成正比例关系,因此可由染料吸光度的变化趋势代替染料浓度的变化。
降解率为:C/C0*100%
式中,C0为光照前浓度,C为光照后浓度;
因此采用分光光度计测定反应前后溶液在464nm处的吸光度可以计算双酚 A溶液浓度的变化;
由图4可知:上述ZnFe2O4/Bi7O9I3磁性复合光催化材料对目标污染物双酚A 具有良好的可见光降解能力,40分钟之内降解率达到96%。
Claims (3)
1.ZnFe2O4/Bi7O9I3磁性复合光催化材料在降解目标污染物双酚A中的应用,其特征在于,所述ZnFe2O4/Bi7O9I3磁性复合光催化材料表现出超顺磁性,饱和磁化强度为23.1 emu/g;对目标污染物双酚A具有良好的可见光降解能力,40分钟之内降解率达到96%;
所述磁性复合光催化材料由ZnFe2O4与Bi7O9I3以1:(2-6)的质量比例进行复合,所述ZnFe2O4为纳米颗粒,尺寸20-80 nm,所述Bi7O9I3为纳米片插成的微米级花状,构成Bi7O9I3花状结构的Bi7O9I3纳米片厚度为5-10 nm;所述ZnFe2O4纳米颗粒穿插于由Bi7O9I3纳米片构成的微米级花状结构中,形成颗粒插入微米花的复合结构;
所述磁性复合光催化材料通过以下步骤制备得到:
(1)将ZnFe2O4溶解于50-100 ml去离子水中,室温搅拌10-30 min得到产物溶液I;
(2)将Bi7O9I3溶解于50-100 ml去离子水中,室温搅拌10-30 min得到产物溶液J;
(3)将上述产物溶液I和J以1:(2-6)的质量比例混合后在40℃下搅拌2-5 h,将产物溶液离心处理5-9 min得到沉淀K,转速控制在7000-9000 r/min,洗涤所述沉淀K,干燥,所述沉淀K为ZnFe2O4/Bi7O9I3磁性复合光催化材料;
所述ZnFe2O4的制备包括以下步骤:
(1)将ZnCl2和FeCl3·6H2O按1:2~7的摩尔比例溶解于去离子水中,搅拌至完全溶解,得到溶液A;
(2)将一定量NaAc加入上述溶液A中,在室温下搅拌至完全溶解,得到溶液B,NaAc与ZnCl2摩尔比为1:6-16;
(3)将所述溶液B移入三口烧瓶中在80℃下保温8h得到产物溶液C;
(4)待所述溶液C静置2h后将所述产物溶液C通过离心的方式,将转速控制在7000-9000r/min离心处理5-9 min分离产物溶液C并得到沉淀D,洗涤并干燥所述沉淀D,所述沉淀D为ZnFe2O4;
所述Bi7O9I3通过以下步骤制备得到:
(1)将1-20 mmol的Bi(NO3)3·5H2O溶解于50-100 ml乙二醇中,在室温下搅拌10-50min,得到溶液E;
(2)向所述溶液E中加入1-10 mmol的KI,水浴50-100℃下搅拌2-6 h得到溶液F;
(3)将上述溶液F油浴150-250℃下保温2-6 h得到产物溶液G;
(4)待所述溶液G自然冷却至室温后取出,然后将所述产物溶液G通过离心的方式,将转速控制在7000-9000 r/min离心处理5-9 min分离产物溶液G并得到沉淀H,洗涤所述沉淀H,干燥,所述沉淀H为Bi7O9I3。
2.根据权利要求1所述的ZnFe2O4/Bi7O9I3磁性复合光催化材料在降解目标污染物双酚A中的应用,其特征在于,所述ZnFe2O4与Bi7O9I3按照1:4的质量比例进行复合,所述ZnFe2O4为球状纳米颗粒,尺寸为20-40 nm;所述Bi7O9I3纳米片厚度为5-8 nm。
3.根据权利要求1所述的ZnFe2O4/Bi7O9I3磁性复合光催化材料在降解目标污染物双酚A中的应用,其特征在于,所述ZnCl2与FeCl3·6H2O的摩尔比例为1:4,所述NaAc与ZnCl2的摩尔比为1:8。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010626388.1A CN111822010B (zh) | 2020-07-02 | 2020-07-02 | 一种ZnFe2O4/Bi7O9I3磁性复合光催化材料及其制备方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010626388.1A CN111822010B (zh) | 2020-07-02 | 2020-07-02 | 一种ZnFe2O4/Bi7O9I3磁性复合光催化材料及其制备方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN111822010A CN111822010A (zh) | 2020-10-27 |
CN111822010B true CN111822010B (zh) | 2022-11-15 |
Family
ID=73542964
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202010626388.1A Active CN111822010B (zh) | 2020-07-02 | 2020-07-02 | 一种ZnFe2O4/Bi7O9I3磁性复合光催化材料及其制备方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN111822010B (zh) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115420817B (zh) * | 2022-07-28 | 2023-11-14 | 众旺达(宁夏)技术咨询有限公司 | 污水中毒品及毒品代谢物的检测方法 |
CN116810760B (zh) * | 2023-07-20 | 2024-05-03 | 广西大学 | 一种Janus双驱动微纳米机器人及其制备方法 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104941671A (zh) * | 2015-05-29 | 2015-09-30 | 郑州大学 | 一种铁酸锌/碘氧化铋磁性复合可见光催化剂及其制备方法 |
CN105233845A (zh) * | 2015-10-09 | 2016-01-13 | 中国环境科学研究院 | 一种ZnFe2O4/BiOBr磁性光催化剂及其制备方法 |
CN108686684A (zh) * | 2017-04-12 | 2018-10-23 | 郑州大学 | 一种Bi4O5I2与磁性CuFe2O4复合可见光催化剂及其制备方法 |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8709262B2 (en) * | 2013-01-09 | 2014-04-29 | King Abdulaziz University | Synthesizing and utilizing solar light activated nano-particle photocatalyst |
CN106179262B (zh) * | 2016-07-08 | 2018-07-20 | 苏州大学 | 具有吸附-可见光催化降解协同作用的复合材料及其制备方法和用途 |
-
2020
- 2020-07-02 CN CN202010626388.1A patent/CN111822010B/zh active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104941671A (zh) * | 2015-05-29 | 2015-09-30 | 郑州大学 | 一种铁酸锌/碘氧化铋磁性复合可见光催化剂及其制备方法 |
CN105233845A (zh) * | 2015-10-09 | 2016-01-13 | 中国环境科学研究院 | 一种ZnFe2O4/BiOBr磁性光催化剂及其制备方法 |
CN108686684A (zh) * | 2017-04-12 | 2018-10-23 | 郑州大学 | 一种Bi4O5I2与磁性CuFe2O4复合可见光催化剂及其制备方法 |
Non-Patent Citations (3)
Title |
---|
Fabrication of novel ZnFe2O4/BiOI nanocomposites and its efficient photocatalytic activity under visible-light irradiation;Yawen Zhou et al.;《Journal of Alloys and Compounds》;20161123;第696卷;摘要、第355页右栏第3.3节FE-SEM图像部分和图3、第354页第2.3节ZnFe2O4/BiOI纳米复合材料的制备部分、第354页第2.2节ZnFe2O4的制备部分 * |
Rapid microwave irradiation synthesis and characterization of Bi7O9I3 photocatalyst for the degradation of bisphenol A;Dan Zhang et al.;《Materials Letters》;20180131;第218卷;摘要、第32页左栏第1段、第33页右栏最后1段至第34页左栏第1段和图3 * |
Various Bismuth Oxyiodide Hierarchical Architectures: Alcohothermal-Controlled Synthesis, Photocatalytic Activities, and Adsorption Capabilities for Phosphate in Water;Quan-Cheng Liu et al.;《ACS Appl. Mater. Interfaces》;20131018;第5卷;摘要、第11928-11929页第3.2节电镜观察部分和图2、第11933页左栏第4节结论部分、第11928页左栏第2-4段 * |
Also Published As
Publication number | Publication date |
---|---|
CN111822010A (zh) | 2020-10-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Shi et al. | Onion-ring-like g-C3N4 modified with Bi3TaO7 quantum dots: A novel 0D/3D S-scheme heterojunction for enhanced photocatalytic hydrogen production under visible light irradiation | |
Zhu et al. | Novel multifunctional NiFe2O4/ZnO hybrids for dye removal by adsorption, photocatalysis and magnetic separation | |
Cao et al. | A novel Z-scheme CdS/Bi4O5Br2 heterostructure with mechanism analysis: Enhanced photocatalytic performance | |
Lei et al. | 3D/2D direct Z-scheme photocatalyst Zn2SnO4/CdS for simultaneous removal of Cr (VI) and organic pollutant | |
Li et al. | A novel binary visible-light-driven photocatalyst type-I CdIn2S4/g-C3N4 heterojunctions coupling with H2O2: synthesis, characterization, photocatalytic activity for Reactive Blue 19 degradation and mechanism analysis | |
Xiao et al. | Construction of core–shell CeO2 nanorods/SnIn4S8 nanosheets heterojunction with rapid spatial electronic migration for effective wastewater purification and H2O2 production | |
Chen et al. | Preparation, characterization and activity evaluation of p–n junction photocatalyst p-ZnO/n-TiO2 | |
Zhao et al. | PH-controlled MnFe2O4@ SnS2 nanocomposites for the visible-light photo-Fenton degradation | |
Xu et al. | Photocatalytic degradation of organic dyes under solar light irradiation combined with Er3+: YAlO3/Fe-and Co-doped TiO2 coated composites | |
Zhao et al. | Synergetic effect of carbon sphere derived from yeast with magnetism and cobalt oxide nanochains towards improving photodegradation activity for various pollutants | |
Liu et al. | Simple synthesis of BiOAc/BiOBr heterojunction composites for the efficient photocatalytic removal of organic pollutants | |
Sun et al. | Hierarchical heterostructures of p-type bismuth oxychloride nanosheets on n-type zinc ferrite electrospun nanofibers with enhanced visible-light photocatalytic activities and magnetic separation properties | |
Xin et al. | Synthesis of ZnS@ CdS–Te composites with p–n heterostructures for enhanced photocatalytic hydrogen production by microwave-assisted hydrothermal method | |
Taufik et al. | Synthesis of iron (II, III) oxide/zinc oxide/copper (II) oxide (Fe3O4/ZnO/CuO) nanocomposites and their photosonocatalytic property for organic dye removal | |
Ma et al. | Construction of dual Z-scheme NiO/NiFe2O4/Fe2O3 photocatalyst via incomplete solid state chemical combustion reactions for organic pollutant degradation with simultaneous hydrogen production | |
Chen et al. | Efficient photocatalytic dye degradation by flowerlike MoS2/SrFe12O19 heterojunction under visible light | |
Zhang et al. | Z-scheme TiO2− x@ ZnIn2S4 architectures with oxygen vacancies-mediated electron transfer for enhanced catalytic activity towards degradation of persistent antibiotics | |
CN107469804A (zh) | 一种纳米颗粒铋负载的二氧化钛基复合光催化材料及其制备方法和应用 | |
CN108355669B (zh) | 一种磁性纳米洋葱碳负载Bi2WO6的光催化剂及其制备方法和应用 | |
CN111822010B (zh) | 一种ZnFe2O4/Bi7O9I3磁性复合光催化材料及其制备方法 | |
Zhu et al. | Coating BiOCl@ g-C3N4 nanocomposite with a metal organic framework: enhanced visible light photocatalytic activities | |
Yao et al. | Construction of a np type Bi12O15Cl6@ BiOI-CQDs junction with core-shell structure for boosting photocatalytic degradation and antibacterial performance | |
CN106693996B (zh) | 硫化铋-铁酸铋复合可见光催化剂的制备方法及其应用 | |
Liu et al. | Enhanced photo-Fenton activity of Sm2O3–NiO heterojunction under visible light irradiation | |
Qiu et al. | The formation of Z-scheme AgI/BiOBr heterojunction and its excellent photocatalytic performance |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |