CN111819652A - 漏电断路器 - Google Patents

漏电断路器 Download PDF

Info

Publication number
CN111819652A
CN111819652A CN201880091048.4A CN201880091048A CN111819652A CN 111819652 A CN111819652 A CN 111819652A CN 201880091048 A CN201880091048 A CN 201880091048A CN 111819652 A CN111819652 A CN 111819652A
Authority
CN
China
Prior art keywords
current
component
leakage current
ratio
leakage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201880091048.4A
Other languages
English (en)
Other versions
CN111819652B (zh
Inventor
尹载植
柳在荣
郑铉荣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
LS Electric Co Ltd
Original Assignee
LS Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by LS Electric Co Ltd filed Critical LS Electric Co Ltd
Publication of CN111819652A publication Critical patent/CN111819652A/zh
Application granted granted Critical
Publication of CN111819652B publication Critical patent/CN111819652B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/50Testing of electric apparatus, lines, cables or components for short-circuits, continuity, leakage current or incorrect line connections
    • G01R31/52Testing for short-circuits, leakage current or ground faults
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R19/00Arrangements for measuring currents or voltages or for indicating presence or sign thereof
    • G01R19/165Indicating that current or voltage is either above or below a predetermined value or within or outside a predetermined range of values
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R19/00Arrangements for measuring currents or voltages or for indicating presence or sign thereof
    • G01R19/165Indicating that current or voltage is either above or below a predetermined value or within or outside a predetermined range of values
    • G01R19/16528Indicating that current or voltage is either above or below a predetermined value or within or outside a predetermined range of values using digital techniques or performing arithmetic operations
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R19/00Arrangements for measuring currents or voltages or for indicating presence or sign thereof
    • G01R19/165Indicating that current or voltage is either above or below a predetermined value or within or outside a predetermined range of values
    • G01R19/16566Circuits and arrangements for comparing voltage or current with one or several thresholds and for indicating the result not covered by subgroups G01R19/16504, G01R19/16528, G01R19/16533
    • G01R19/16571Circuits and arrangements for comparing voltage or current with one or several thresholds and for indicating the result not covered by subgroups G01R19/16504, G01R19/16528, G01R19/16533 comparing AC or DC current with one threshold, e.g. load current, over-current, surge current or fault current
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R19/00Arrangements for measuring currents or voltages or for indicating presence or sign thereof
    • G01R19/25Arrangements for measuring currents or voltages or for indicating presence or sign thereof using digital measurement techniques
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R19/00Arrangements for measuring currents or voltages or for indicating presence or sign thereof
    • G01R19/25Arrangements for measuring currents or voltages or for indicating presence or sign thereof using digital measurement techniques
    • G01R19/2506Arrangements for conditioning or analysing measured signals, e.g. for indicating peak values ; Details concerning sampling, digitizing or waveform capturing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R19/00Arrangements for measuring currents or voltages or for indicating presence or sign thereof
    • G01R19/25Arrangements for measuring currents or voltages or for indicating presence or sign thereof using digital measurement techniques
    • G01R19/2506Arrangements for conditioning or analysing measured signals, e.g. for indicating peak values ; Details concerning sampling, digitizing or waveform capturing
    • G01R19/2509Details concerning sampling, digitizing or waveform capturing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H83/00Protective switches, e.g. circuit-breaking switches, or protective relays operated by abnormal electrical conditions otherwise than solely by excess current
    • H01H83/02Protective switches, e.g. circuit-breaking switches, or protective relays operated by abnormal electrical conditions otherwise than solely by excess current operated by earth fault currents
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H3/00Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection
    • H02H3/26Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection responsive to difference between voltages or between currents; responsive to phase angle between voltages or between currents
    • H02H3/32Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection responsive to difference between voltages or between currents; responsive to phase angle between voltages or between currents involving comparison of the voltage or current values at corresponding points in different conductors of a single system, e.g. of currents in go and return conductors
    • H02H3/33Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection responsive to difference between voltages or between currents; responsive to phase angle between voltages or between currents involving comparison of the voltage or current values at corresponding points in different conductors of a single system, e.g. of currents in go and return conductors using summation current transformers
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H3/00Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection
    • H02H3/26Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection responsive to difference between voltages or between currents; responsive to phase angle between voltages or between currents
    • H02H3/32Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection responsive to difference between voltages or between currents; responsive to phase angle between voltages or between currents involving comparison of the voltage or current values at corresponding points in different conductors of a single system, e.g. of currents in go and return conductors
    • H02H3/33Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection responsive to difference between voltages or between currents; responsive to phase angle between voltages or between currents involving comparison of the voltage or current values at corresponding points in different conductors of a single system, e.g. of currents in go and return conductors using summation current transformers
    • H02H3/332Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection responsive to difference between voltages or between currents; responsive to phase angle between voltages or between currents involving comparison of the voltage or current values at corresponding points in different conductors of a single system, e.g. of currents in go and return conductors using summation current transformers with means responsive to dc component in the fault current

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Breakers (AREA)
  • Emergency Protection Circuit Devices (AREA)
  • Testing Of Short-Circuits, Discontinuities, Leakage, Or Incorrect Line Connections (AREA)

Abstract

本发明提供一种漏电断路器,不仅能够可靠地检测电路上的交流分量的漏电流,还能够可靠地检测直流脉冲分量的漏电流,并且能够响应于所述检测而断开电路,本发明的漏电断路器包括:漏电流检测部,输出基于从电路泄漏的电流的漏电流检测信号;转换部,基于所述电流检测部输出的漏电流检测信号,输出基波分量的漏电流大小、三次谐波分量的比率以及阳极脉冲电流峰值和阴极脉冲电流峰值的比率;以及控制部,通过将所述转换部输出的所述基波分量的漏电流大小、所述三次谐波分量的比率以及所述阳极脉冲电流峰值和阴极脉冲电流峰值的比率与预设的对应基准值进行比较,来确定交流分量的漏电流的产生与否或直流分量的漏电流的产生与否,并且在确定产生了直流分量的漏电流或交流分量的漏电流时输出跳闸控制信号。

Description

漏电断路器
技术领域
本发明涉及一种漏电断路器。
背景技术
专利文献1:KR10-1616797B1
虽然现有技术能够检测电路上的交流分量的漏电流,并且对其响应而断开电路,但是没有公开能够可靠地检测电路上的直流分量(直流脉冲分量)漏电流,并对其响应而断开电路的漏电断路器。
发明内容
发明要解决的问题
本发明的目的在于,提供一种不仅能够可靠地检测电路上的交流分量的漏电流,还能够可靠地检测直流脉冲分量的漏电流,并且能够响应于其而断开电路的漏电断路器。
解决问题的技术方案
所述本发明的目的可以通过本发明的漏电断路器实现,所述漏电断路器包括:漏电流检测部,输出基于从电路泄漏的电流的漏电流检测信号;转换部,基于所述电流检测部输出的漏电流检测信号,输出基波分量的漏电流大小、三次谐波分量的比率以及阳极脉冲电流峰值和阴极脉冲电流峰值的比率;以及控制部,通过将所述转换部输出的所述基波分量的漏电流大小、所述三次谐波分量的比率以及所述阳极脉冲电流峰值和阴极脉冲电流峰值的比率与预设的对应基准值进行比较,来确定交流分量的漏电流的产生与否或直流脉冲分量的漏电流的产生与否,并且在确定产生了直流脉冲分量的漏电流或交流分量的漏电流时输出跳闸控制信号。
根据本发明优选的一方面,所述转换部包括:模拟-数字转换部,对作为模拟信号的所述漏电流检测信号进行采样,并转换为时域的数字信号;离散傅里叶变换部,对所转换的时域的数字信号进行离散傅里叶变换(Discrete Fourier Transform)后作为频域的数字信号输出;交流分量转换部,基于所述离散傅里叶变换后的数字信号,确定所述基波分量的漏电流大小和三次谐波分量的大小,并且算出作为所述三次谐波分量的大小相对于所述基波分量的漏电流大小的比率的三次谐波分量的比率;以及直流脉冲分量转换部,基于离散傅里叶变换后的数字数据,算出所述阳极脉冲电流峰值和阴极脉冲电流峰值的比率。
根据本发明优选另一方面,所述对应基准值包括:第一基准电流值,根据对漏电流的灵敏度来设定;以及第二基准电流值,设定为区分需要断开电路的所述漏电流,并且第二基准电流值超过所述第一基准电流值。
根据本发明优选另一方面,若所述基波分量的漏电流大小不小于所述第二基准电流值,则所述控制部计数产生次数,若所计数的产生次数达到预定的临界值,则所述控制部确定为产生了交流分量漏电流,并输出跳闸控制信号。
根据本发明优选另一方面,所述控制部将所述三次谐波分量的比率与预设的基准三次谐波分量的比率进行比较,若所述三次谐波分量的比率小于所述基准三次谐波分量的比率,则计数产生次数,若所计数的产生次数达到预定的临界值,则所述控制部确定为产生了交流分量漏电流,并输出跳闸控制信号。
根据本发明优选另一方面,若所述阳极脉冲电流峰值和阴极脉冲电流峰值的比率不小于预设的基准比率,则所述控制部计数产生次数,若所计数的产生次数达到预定的临界值,则所述控制部确定为产生了直流分量漏电流,并输出跳闸控制信号。
根据本发明优选另一方面,若所述阳极脉冲电流峰值和阴极脉冲电流峰值的比率小于预设的所述基准比率,则所述控制部初始化所计数的产生次数。
发明效果
根据本发明的漏电断路器包括:漏电流检测部,输出基于从电路泄漏的电流的漏电流检测信号;转换部,基于所述电流检测部输出的漏电流检测信号,输出基波分量的漏电流大小、三次谐波分量的比率以及阳极脉冲电流峰值和阴极脉冲电流峰值的比率;以及控制部,通过将所述转换部输出的所述基波分量的漏电流大小、所述三次谐波分量的比率以及所述阳极脉冲电流峰值和阴极脉冲电流峰值的比率与预设的对应基准值进行比较,来确定交流分量的漏电流的产生与否或直流分量的漏电流的产生与否,并且在确定产生了直流分量的漏电流或交流分量的漏电流时输出跳闸控制信号,从而能够提供如下效果,即不仅可以通过区分电路上产生的交流分量漏电流和平衡电流(三相平衡电流或正常电流)来进行可靠的检测并断开电路,还可以通过区分电路上产生的直流分量漏电流和平衡电流来进行可靠的检测并断开电路。
在本发明的漏电断路器中,所述转换部包括:模拟-数字转换部,对作为模拟信号的所述漏电流检测信号进行采样,并转换为时域的数字信号;离散傅里叶变换部,对转换后的数字信号进行离散傅里叶变换(Discrete Fourier Transform)并作为频域的数字信号输出;交流分量转换部,基于所述离散傅里叶变换后的数字信号,确定所述基波分量的漏电流大小和三次谐波分量漏电流大小,并且算出作为三次谐波分量漏电流大小相对于所述基波分量的漏电流大小的比率的所述三次谐波分量的比率;以及直流分量转换部,基于离散傅里叶变换后的数字信号,算出所述阳极脉冲电流峰值和阴极脉冲电流峰值的比率,因此能够算出基波分量的漏电流大小和三次谐波分量的比率提供给所述控制部,以区分电路上的交流分量漏电流或接地故障电流与不应该断开电路的平衡电流(三相平衡电流或正常电流),并且能够算出阳极脉冲电流峰值和阴极脉冲电流峰值的比率并提供给所述控制部,以区分电路上的直流分量漏电流与平衡电流。
在本发明的漏电断路器中,所述对应基准值包括:第一基准电流值,根据对漏电流的灵敏度来设定;以及第二基准电流值,设定为区分需要断开电路的所述漏电流,并且第二基准电流值超过所述第一基准电流值,因此可以通过将用于判定漏电流的基准电流值分为作为预备警戒级别的一级基准值(第一基准电流值)、和作为确定断开电路的基准的第二基准电流值,按级别对漏电流进行警告和断开的阶段性动作。
在本发明的漏电断路器中,若所述基波分量的漏电流大小不小于所述第二基准电流值,则所述控制部计数产生次数,若所计数的产生次数达到预定的临界值,则所述控制部确定为产生了交流分量漏电流,并输出跳闸控制信号,因此即使在电力系统的正常电流所泄漏的漏电流大小(基波分量的漏电流大小)超过了断开电路级别的情况下,也只有在所述超过状态持续时才会最终断开电路,从而能够防止由一时的漏电流所引起的误动作的发生。
在本发明的漏电断路器中,所述控制部将所述三次谐波分量的比率与预设的基准三次谐波分量的比率进行比较,若所述三次谐波分量的比率小于所述基准三次谐波分量的比率,则计数产生次数,若所计数的产生次数达到预定的临界值,则所述控制部确定为产生了交流分量漏电流,并输出跳闸控制信号,因此能够通过正确区分不应该断开电路的平衡电流(三相平衡电流或正常电流)与应该断开电路的电路上的交流分量漏电流或接地故障电流来断开电路,即使在产生漏电流的情况下,也只有在持续时才会最终断开电路,从而还能够防止由一时的漏电流所引起的误动作的发生。
在本发明的漏电断路器中,若所述阳极脉冲电流峰值和阴极脉冲电流峰值的比率不小于预设的基准比率,则所述控制部计数产生次数,若所计数的产生次数达到预定的临界值,则所述控制部确定为产生了直流分量漏电流,并输出跳闸控制信号,因此能够通过正确区分不应该断开电路的平衡电流(三相平衡电流或正常电流)与应该断开电路的电路上的直流分量漏电流来断开电路,并且,即使在产生直流漏电流的情况下,也只有在持续时才会最终断开电路,从而能够防止由一时的直流漏电流所引起的误动作的发生。
在本发明的漏电断路器中,若所述阳极脉冲电流峰值和阴极脉冲电流峰值的比率小于所述基准比率,则所述控制部初始化所计数的产生次数,因此若电路从发生一时的直流漏电流的状态变成正常状态时,能够通过立即初始化产生次数计数,来防止漏电断路器在正常状态下进行断开动作的误动作。
附图说明
图1是示出本发明优选的一实施例的漏电断路器的电气构成的框图。
图2是示出本发明优选的一实施例的漏电断路器的转换部的详细构成的框图。
图3是示出本发明优选的一实施例的漏电断路器的控制动作方法的流程图。
具体实施方式
通过以下参照附图对本发明优选实施例的说明,能够更加清楚地理解上述本发明的目的和实现该目的本发明的构成和作用效果。
图1是示出本发明优选的一实施例的漏电断路器的电气构成的框图,图2是示出本发明优选的一实施例的漏电断路器的控制动作的流程图。
参照图1,本发明的漏电断路器可以包括漏电流检测部140、转换部263以及控制部160。
本发明的漏电断路器还可以包括电源处理部110、供电部120、跳闸线圈部130和电流处理部150。
电源处理部110可以处理电路上供给的交流电源。在此,电源处理部110构成为整流电路,能够将所述交流电源的交流转换为直流。并且,电源处理部110可以向供电部120传输直流电源。
供电部120可以供给本发明的漏电断路器的电气构成部的动作所需的直流电源。为此,供电部120可以构成为直流-直流转换器电路,将从电源处理部110供给到的直流电源转换为漏电断路器的电气构成部的动作所需的直流电源,例如转换为直流5伏(V),并提供给跳闸线圈部130和控制部160。
如图1所示,跳闸线圈部130可以包括半导体开关(例如由晶闸管(thyristor)或SCR(silicon controlled rectifier:可控硅整流器)等构成)231和跳闸线圈(trip coil)233。
半导体开关231可以响应于控制部160的控制(跳闸控制信号)而接通(turn on)或关断(turn off)。即,可以是若跳闸控制信号从控制部160供给到栅极(gate),则半导体开关S231接通,若跳闸控制信号未从控制部160供给到栅极,则半导体开关S231关断。
当半导体开关231接通时,供电部120、半导体开关231和跳闸线圈233形成闭合电路,由此直流电源从供电部120供给到跳闸线圈233,从而跳闸线圈233被磁化(magnetizing)。
当半导体开关231关断时,供电部120、半导体开关231和跳闸线圈233的电路断开,由此直流电源不会从供电部120供给到跳闸线圈233,从而跳闸线圈233被消磁(demagnetizing)。
众所周知,当跳闸线圈233被磁化时,会触发(trigger)漏电断路器的未图示的电枢(armature),以使漏电断路器的通断机构(switching mechanism)进行跳闸动作,由此通断机构进行跳闸动作,未图示的可动触点从对应的固定触点分离,从而能够使电路断开。
漏电流检测部140根据从电路泄漏的电流而输出漏电流检测信号。为此,如图1所示,漏电流检测部140可以由包括芯(core)和二次绕组的公知的零相变流器240(ZCT:zerocurrent transformer)构成,所述芯设置为环(ring)形以使电路贯通,所述二次绕组缠绕于所述芯并输出漏电流检测信号。
电流处理部150设置于漏电流检测部140和控制部160之间,在模拟信号状态下处理漏电流检测部140检测到的所述漏电流检测信号。在此,所述处理包括转换为模拟电压信号和滤除高频噪声(high frequency noise)。为此,电流处理部150可以包括:分流电阻251(shunt resistor),用于将所述漏电流检测信号转换为模拟电压信号;以及低通滤波部253,用于滤除可能混入所述漏电流检测信号中的高频噪声。
控制部160可以由包括模拟-数字转换部、离散傅里叶变换部、负责运算和处理输入信号的中央处理装置、对预先存储的运算和处理程序进行存储的程序存储用存储器、存储预设的基准值或运算值的存储器等的微控制器单元(Micro Controller Unit)、微处理器(Micro Processor)或微型电脑(Micro Computer)等构成。
控制部160通过将所述转换部263输出的基波(fundamental wave)分量的漏电流大小、三次谐波分量的比率、以及阳极脉冲电流峰值和阴极脉冲电流峰值的比率与预设的对应基准值进行比较,来确定交流分量的漏电流的产生与否或直流分量的漏电流的产生与否,并在确定产生了直流或交流分量的漏电流时输出跳闸控制信号。
控制部160可以根据在漏电流检测部140检测到的漏电流检测信号,来判断电流是否为异常电流。在此,异常电流表示当在电路上产生泄漏(漏电)或接地故障(groundfault)时,在漏电流检测部140的零相变流器的二次绕组上作为所述漏电检测信号感应到的不平衡电流(三相电流之和不为0的不平衡电流),其可以区别于平衡电流(三相电流之和为0的平衡电流)。在此,控制部160可以基于从漏电流检测部140检测到的所述漏电检测信号以预设的时间间隔为周期,判断在电路上是否发生异常电流。例如,时间间隔可以是10毫秒(millisecond:ms)。此时,控制部160可以基于电流(所述漏电流检测信号)的基波分量(例如,正常电力系统的60Hz交流波形分量)的大小,判断(确定)在电路上是否产生漏电流(漏电产生与否)。
为此,如图1所示,控制部160可以包括设定部261、所述转换部263、判断部265以及指令部267。
设定部261是存储通过未图示的设定单元输入的设定数据的单元。在此,所述设定单元可以由未图示的多个设定开关或设定旋钮(knob)、与漏电断路器分开构成并可通过如输入/输出端口的连接单元而连接的键盘(key pad)、以及附设于漏电断路器并输入通过外部的有线或无线通信网络接收到的设定数据的通信部中的至少一种构成。
设定部261可以输入并存储至少一个对比参数的设定值。此时,对比参数可以包括用于确定基波分量的漏电流大小的正常与否的基准值(后述的第一基准电流值和第二基准电流值)、作为用于确定三次谐波分量的比率的正常与否的基准比率的临界分量比、作为用于确定阳极脉冲电流峰值和阴极脉冲电流峰值的比率的正常与否的基准比率的基准极性峰值比、以及通过与非正常状态的产生次数的累计计数值进行比较来确定所述跳闸控制信号的发送与否的临界发生次数。
在此,基波分量的漏电流大小的基准值可以包括:第一基准电流值,其根据对漏电流的灵敏度来设定;以及第二基准电流值,以能够区分异常电流的方式设定且超过第一基准电流值。
换言之,第一基准电流值表示在漏电断路器中对根据漏电流的大小来确定漏电流产生与否的灵敏度进行区分的基准值,例如,可以设定为0至10安培(A)中的任一值。例如,若漏电断路器为高灵敏度,则第一基准电流值可以设定为0至100毫安(mA)中的任一值,若漏电断路器为中灵敏度,则第一基准电流值可以设定为100毫安(mA)至2安培(A)中的任一值,若漏电断路器为低灵敏度,则第一基准电流值可以设定为2安培(A)至10安培(A)中的任一值。
在此,第二基准电流值可以表示用于对所述漏电流检测信号区分电路上的漏电流产生状态和电路上的平衡电流状态(正常状态)的基准值。例如,第二基准电流值可以设定为2.5安培(A)。
接下来,为了区分电路上的平衡电流状态和漏电流发生状态,三次谐波分量的临界分量比可以根据优选实施例设定为50%。在此,三次谐波分量的分量比可以表示在频域中三次谐波分量的大小与基波分量的大小(Amplitude:振幅,单位Volt)的比率(%)。因此,若基于所述转换部263提供的对所述漏电流检测信号进行了数字转换和离散傅里叶变换的数据而算出的三次谐波分量的比率小于50%,则控制部160可以确定电路上产生了漏电流。
另一方面,阳极脉冲电流峰值和阴极脉冲电流峰值的基准极性峰值比可以根据优选实施例设定为150%。在此,极性峰值比是阴极脉冲电流峰值与阳极脉冲电流峰值的比率(单位:%),在平衡电流状态的情况下,阴极脉冲电流峰值与阳极脉冲电流峰值的比率(单位:%)几乎接近100%。
因此,若基于所述转换部263提供的对所述漏电流检测信号进行了数字转换和离散傅里叶变换的数据而算出的三次谐波分量的比率不小于150%,则控制部160可以确定电路上产生了漏电流。
所述转换部263可以包括模拟-数字转换部(ADC:Analog to Digital Converter)263a、离散傅里叶变换部(DFT:Discrete Fourier Transformer)263b、交流分量转换部263c以及直流分量转换部263d。
在所述模拟-数字转换部263a中,可以将由漏电流检测部140检测并通过电流处理部150转换为模拟电压信号且滤除了高频噪声的所述漏电流检测信号从模拟信号转换为数字信号。
所述离散傅里叶变换部263b将由所述模拟-数字转换部263a转换的时域的数字信号通过傅里叶变换转换为频域的数字信号。
交流分量转换部263c可以基于所述进行了离散傅里叶变换的数字信号(数字数据),确定所述基波分量的漏电流大小(基波分量的大小)和所述三次谐波分量的大小,并算出作为所述三次谐波分量的大小与所述基波分量的漏电流大小(基波分量的大小)之比的所述三次谐波分量的比率。
直流分量转换部263d可以基于进行了离散傅里叶变换的数字信号,算出所述阳极脉冲电流峰值和阴极脉冲电流峰值的比率。
因此,所述转换部263可以基于通过所述离散傅里叶变换部转换的频域的数字信号,控制部160算出所述基波分量的大小、所述三次谐波分量的比、以及阳极脉冲电流峰值和阴极脉冲电流峰值的比。
判断部265可以基于所述基波分量的大小、所述三次谐波分量的比以及阳极脉冲电流峰值和阴极脉冲电流峰值的比,确定电路上是否产生了漏电流(或接地故障电流)。为此,判断部265可以将所述基波分量的大小、所述三次谐波分量的比、以及阳极脉冲电流峰值和阴极脉冲电流峰值的比与对应的基准参数进行比较。在此,基准参数是指上述的第一基准电流值、第二基准电流值、三次谐波分量的临界分量比、以及阳极脉冲电流峰值和阴极脉冲电流峰值的基准极性峰值比。
若经所述比较的结果判断为非正常,则判断部265可以增加发生次数的计数值。例如,若为首次产生,则判断部265可以将所述产生次数从0增加到1,或若之前产生过三次,则判断部265可以将所述产生次数从3增加到4,即增加1。
另一方面,若经所述比较的结果判断为正常(判断为电路的三相电流处于平衡状态),则判断部265可以将所述产生次数的计数值初始化为0。
指令部267可以基于判断部265的判断结果,向跳闸线圈部130输出跳闸控制信号。即,若判断部265确定为所述产生次数的计数值不小于预设的所述临界发生次数电流,则指令部267可以向跳闸线圈部130输出所述跳闸控制信号。
另一方面,主要参照图2并辅助地参照图1,对本发明优选实施例的漏电断路器的动作进行说明。
图3是示出一实施例的本发明的漏电断路器的动作方法的流程图。
首先,在步骤S1中,在本发明的漏电断路器中,随着在电路上产生漏电时不形成三相平衡而产生不平衡电流,漏电流检测部140通过零相变流器的二次绕组感应所述不平衡电流,并作为所述漏电流检测信号输出。
另外,在步骤S1中,本发明的漏电断路器的电流处理部150通过分流电阻251将漏电流检测部140检测到的所述漏电流检测信号转换为模拟电压信号,并通过低通滤波部253滤除可能混入所述漏电流检测信号的高频噪声之后提供给控制部160。
之后,在步骤S2中,控制部160的转换部263通过模拟-数字转换部将电流处理部150作为模拟电压信号提供的所述漏电流检测信号转换为数字信号,并通过离散傅里叶变换部将被转换的时域的数字信号再次转换为频域的数字信号。
之后,在步骤S3中,控制部160的转换部263基于转换为频域的所述数字信号,算出基波分量的大小(Amplitude:振幅,单位Volt)、三次谐波分量的比、以及阳极脉冲电流峰值和阴极脉冲电流峰值的比。
之后,在步骤S4中,控制部160的判断部265将转换部263提供的所述基波分量的大小与从设定部261读取到的所述第一基准电流值进行比较。
若在步骤S4中转换部263提供的所述基波分量的大小不小于从设定部261读取到的所述第一基准电流值,则控制部160的判断部265进入到步骤S5,若在步骤S4中所述基波分量的大小小于所述第一基准电流值,则控制部160的判断部265将控制动作返回到步骤S3。
在步骤S5中,控制部160的判断部265将转换部263提供的所述基波分量的大小与从设定部261读取到的所述第二基准电流值进行比较。
若在步骤S5中转换部263提供的所述基波分量的大小不小于从设定部261读取到的所述第二基准电流值,则控制部160的判断部265进入到步骤S8,若在步骤S5中所述基波分量的大小小于所述第二基准电流值,则进入到步骤S6。
若进入到步骤S6,则控制部160的判断部265将转换部263提供的作为所述三次谐波分量的大小与基波分量的漏电流大小(基波分量的大小)之比的所述三次谐波分量的比(比率),与从设定部261读取到的三次谐波分量的临界分量比(实施例中为50%)进行比较。
若在步骤S6中转换部263提供的所述三次谐波分量的比小于从设定部261读取到的三次谐波分量的临界分量比(实施例中为50%),则控制部160的判断部265进入到步骤S8,若在步骤S6中所述三次谐波分量的比不小于三次谐波分量的临界分量比(实施例中为50%),则进入到步骤S7。
若进入到步骤S7,则控制部160的判断部265将转换部263提供的所述阳极脉冲电流峰值和阴极脉冲电流峰值的比率,与从设定部261读取到的基准极性峰值比进行比较。
步骤S7的具体动作步骤可以分为步骤S7-1和S7-2进行。
在步骤S7-1中,控制部160的判断部265将转换部263中的直流分量转换部263d提供的所述阳极脉冲电流峰值和阴极脉冲电流峰值的比率与从设定部261读取到的基准极性峰值比进行比较。
若在步骤S7-1中所述阳极脉冲电流峰值和阴极脉冲电流峰值的比率小于所述基准极性峰值比,则控制部160的判断部265使控制动作步骤进入到步骤S8-1,若在步骤S7-1中所述阳极脉冲电流峰值和阴极脉冲电流峰值的比率不小于所述基准极性峰值比,则控制部160的判断部265使控制动作步骤进入到步骤S7-2,并确定直流分量漏电流的产生。
若在步骤S5中转换部263提供的所述基波分量的大小不小于从设定部261读取到的所述第二基准电流值,或在步骤S6中转换部263提供的所述三次谐波分量的比小于从设定部261读取到的三次谐波分量的临界分量比(实施例中为50%),则进入到步骤S8,控制部160的判断部265确定交流分量漏电流的产生,并进入到步骤S9。
在步骤S9中,控制部160的判断部265使产生次数的计数值增加“1”。
若在步骤S7-1中所述阳极脉冲电流峰值和阴极脉冲电流峰值的比率小于所述基准极性峰值比,则此状态为,基波分量的大小也不是需要断开的程度,也很难视为电路上产生了漏电流或接地故障电流,并且也不是产生了直流分量漏电流,因此,在步骤S8-1中,控制部160的判断部265视为电路上的三相电流是正常(三相平衡)状态,并将产生次数的计数值初始化为0。
之后,在步骤S10中,控制部160的判断部265判断产生次数的计数值是否达到预设的断开(跳闸)所需的基准次数。
在此,产生次数1可以表示在电路上产生了10毫秒(ms)期间的漏电流或接地故障电流,产生次数2可以表示产生了20毫秒(ms)期间的漏电流或接地故障电流,产生次数10可以表示产生了100毫秒(ms)期间的漏电流或接地故障电流。
例如,断开所需的基准次数可以设定为10。
另外,若在步骤S10中产生次数的计数值达到预设的断开(跳闸)所需的基准次数,即两个值相同,则控制部160的判断部265向指令部267通知产生次数的计数值达到了预设的基准次数的状态。
响应于所述通知,在步骤S11中,控制部160的指令部267最终输出跳闸控制信号。
该跳闸控制信号通过使半导体开关231接通,使直流电源从供电部120供给到跳闸线圈233,从而磁化(magnetizing)跳闸线圈233。通过跳闸线圈233的磁化,未图示的电枢(armature)移动并触发(trigger)通断机构(switching),以使其进行跳闸动作,由此漏电断路器进行跳闸(自动断开电路)动作,发生漏电或接地故障的电路被断开。
如上所述,本发明的漏电断路器包括:漏电流检测部,输出基于从电路泄漏的电流的漏电流检测信号;转换部,基于所述电流检测部输出的漏电流检测信号,输出基波分量的漏电流大小、三次谐波分量的比率、以及阳极脉冲电流峰值和阴极脉冲电流峰值的比率;以及控制部,通过将所述转换部输出的所述基波分量的漏电流大小、所述三次谐波分量比率以及所述阳极脉冲电流峰值和阴极脉冲电流峰值的比率与预设的对应基准值进行比较,来确定交流分量的漏电流的产生与否或直流分量的漏电流的产生与否,并且在确定产生了直流或交流分量的漏电流时输出跳闸控制信号,由此能够提供如下的效果:不仅可以通过区分电路上产生的交流分量漏电流和平衡电流(三相平衡电流或正常电流)来进行可靠的检测并断开电路,还可以通过区分电路上产生的直流分量漏电流和平衡电流来进行可靠的检测并断开电路。

Claims (7)

1.一种漏电断路器,其中,包括:
漏电流检测部,输出基于从电路泄漏的电流的漏电流检测信号;
转换部,基于所述电流检测部输出的漏电流检测信号,输出基波分量的漏电流大小、三次谐波分量的比率以及阳极脉冲电流峰值和阴极脉冲电流峰值的比率;以及
控制部,通过将所述转换部输出的所述基波分量的漏电流大小、所述三次谐波分量的比率以及所述阳极脉冲电流峰值和阴极脉冲电流峰值的比率与预设的对应基准值进行比较,来确定交流分量的漏电流的产生与否或直流分量的漏电流的产生与否,并且在确定产生了直流分量的漏电流或交流分量的漏电流时输出跳闸控制信号。
2.根据权利要求1所述的漏电断路器,其特征在于,
所述转换部包括:
模拟-数字转换部,对作为模拟信号的所述漏电流检测信号进行采样(sampling),并转换为时域的数字信号;
离散傅里叶变换部,对所转换的所述数字信号进行离散傅里叶变换(DiscreteFourier Transform)后作为频域的数字信号来输出;
交流分量转换部,基于所述离散傅里叶变换的数字信号,确定所述基波分量的漏电流大小和三次谐波分量的大小,并且算出作为所述三次谐波分量的大小相对于所述基波分量的漏电流大小的比率的三次谐波分量的比率;以及
直流分量转换部,基于离散傅里叶变换后的数字信号,算出所述阳极脉冲电流峰值和阴极脉冲电流峰值的比率。
3.根据权利要求1所述的漏电断路器,其特征在于,
所述对应基准值包括:
第一基准电流值,根据对漏电流的灵敏度来设定;以及
第二基准电流值,设定为区分需要断开电路的所述漏电流,并且第二基准电流值超过所述第一基准电流值。
4.根据权利要求3所述的漏电断路器,其特征在于,
若所述基波分量的漏电流大小不小于所述第二基准电流值,则所述控制部计数产生次数,
若所计数的产生次数达到预定的临界值,则所述控制部确定为产生了交流分量的漏电流,并输出跳闸控制信号。
5.根据权利要求2所述的漏电断路器,其特征在于,
所述控制部将所述三次谐波分量的比率与预设的基准三次谐波分量的比率进行比较,若所述三次谐波分量的比率小于所述基准三次谐波分量的比率,则计数产生次数,
若所计数的产生次数达到预定的临界值,则所述控制部确定为产生了交流分量的漏电流,并输出跳闸控制信号。
6.根据权利要求2所述的漏电断路器,其特征在于,
若所述阳极脉冲电流峰值和阴极脉冲电流峰值的比率不小于预设的基准比率,则所述控制部计数产生次数,
若所计数的产生次数达到预定的临界值,则所述控制部确定为产生了直流分量的漏电流,并输出跳闸控制信号。
7.根据权利要求6所述的漏电断路器,其特征在于,
若所述阳极脉冲电流峰值和阴极脉冲电流峰值的比率小于预设的所述基准比率,则所述控制部初始化所计数的产生次数。
CN201880091048.4A 2018-03-28 2018-11-21 漏电断路器 Active CN111819652B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
KR1020180036112A KR102017805B1 (ko) 2018-03-28 2018-03-28 누전 차단기
KR10-2018-0036112 2018-03-28
PCT/KR2018/014327 WO2019190018A1 (ko) 2018-03-28 2018-11-21 누전 차단기

Publications (2)

Publication Number Publication Date
CN111819652A true CN111819652A (zh) 2020-10-23
CN111819652B CN111819652B (zh) 2023-03-14

Family

ID=67951718

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201880091048.4A Active CN111819652B (zh) 2018-03-28 2018-11-21 漏电断路器

Country Status (6)

Country Link
US (1) US11307265B2 (zh)
EP (1) EP3780061A4 (zh)
JP (1) JP6964197B2 (zh)
KR (1) KR102017805B1 (zh)
CN (1) CN111819652B (zh)
WO (1) WO2019190018A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113296019A (zh) * 2021-05-08 2021-08-24 上海盛位电子技术有限公司 一种漏电检测装置、漏电检测方法和充电设备
CN114264972A (zh) * 2021-12-15 2022-04-01 浙江巨磁智能技术有限公司 一种具有双Tirp功能的漏电流传感器实现方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102344488B1 (ko) 2019-12-05 2021-12-28 (주)아이티공간 스마트 누전차단기
KR102468642B1 (ko) * 2020-07-09 2022-11-18 엘에스일렉트릭(주) 누전 차단기 및 그 누전 차단기의 제어 방법
CN112379153B (zh) * 2020-10-30 2023-05-26 阳光电源股份有限公司 一种直流振荡检测电路、直流电弧检测电路及逆变器

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4247879A (en) * 1978-04-19 1981-01-27 Westinghouse Electric Corp. People protecting ground fault circuit breaker utilizing waveform characteristics
JPH07312823A (ja) * 1994-05-16 1995-11-28 Toshiba Fa Syst Eng Kk 直流漏電検出保護装置
KR20030028670A (ko) * 2001-09-25 2003-04-10 이승재 전압-전류 추이를 이용한 변압기 보호 계전 방법
JP2011200024A (ja) * 2010-03-19 2011-10-06 Kansai Electric Power Co Inc:The 低圧配電系統の漏電検出装置
CN103430036A (zh) * 2011-03-23 2013-12-04 松下电器产业株式会社 漏电检测装置
JP2016144297A (ja) * 2015-02-02 2016-08-08 三菱電機株式会社 比率差動継電装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR0141823B1 (ko) * 1992-12-15 1998-08-17 김회수 차동계전기의 돌입 및 과여자시 오동작 방지방법
KR100638635B1 (ko) * 2005-06-02 2006-10-27 (주)갑진 누전차단기
KR20150081943A (ko) * 2014-01-07 2015-07-15 엘에스산전 주식회사 누전차단기
KR101616797B1 (ko) 2016-03-28 2016-04-29 엘에스산전 주식회사 누전차단기
JP6725104B2 (ja) * 2016-04-04 2020-07-15 新日本無線株式会社 漏電検出装置
JP6573571B2 (ja) * 2016-04-25 2019-09-11 三菱電機株式会社 漏電継電器、漏電遮断器及びそれらの制御方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4247879A (en) * 1978-04-19 1981-01-27 Westinghouse Electric Corp. People protecting ground fault circuit breaker utilizing waveform characteristics
JPH07312823A (ja) * 1994-05-16 1995-11-28 Toshiba Fa Syst Eng Kk 直流漏電検出保護装置
KR20030028670A (ko) * 2001-09-25 2003-04-10 이승재 전압-전류 추이를 이용한 변압기 보호 계전 방법
JP2011200024A (ja) * 2010-03-19 2011-10-06 Kansai Electric Power Co Inc:The 低圧配電系統の漏電検出装置
CN103430036A (zh) * 2011-03-23 2013-12-04 松下电器产业株式会社 漏电检测装置
JP2016144297A (ja) * 2015-02-02 2016-08-08 三菱電機株式会社 比率差動継電装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113296019A (zh) * 2021-05-08 2021-08-24 上海盛位电子技术有限公司 一种漏电检测装置、漏电检测方法和充电设备
CN114264972A (zh) * 2021-12-15 2022-04-01 浙江巨磁智能技术有限公司 一种具有双Tirp功能的漏电流传感器实现方法

Also Published As

Publication number Publication date
EP3780061A1 (en) 2021-02-17
JP6964197B2 (ja) 2021-11-10
WO2019190018A1 (ko) 2019-10-03
US20210035764A1 (en) 2021-02-04
CN111819652B (zh) 2023-03-14
EP3780061A4 (en) 2022-01-05
JP2021514102A (ja) 2021-06-03
US11307265B2 (en) 2022-04-19
KR102017805B1 (ko) 2019-09-03

Similar Documents

Publication Publication Date Title
CN111819652B (zh) 漏电断路器
CN108474819B (zh) 用于三相负载的短路监测的方法和装置
EP3496222B1 (en) Earth leakage circuit breaker based on the ratio of a specific harmonic current component to the fundamental wave current component
US9218905B2 (en) AC/DC current transformer
US20040264094A1 (en) Protective control method and apparatus for power devices
KR20080087654A (ko) 누전 검출 장치
JP2019009977A (ja) 保護ユニットの動作を試験する装置および方法、ならびにそのような試験装置を備える保護ユニット
AU2012259127A1 (en) AC/DC current transformer
EP2892121B1 (en) Earth leakage circuit breaker
CN111989839B (zh) 漏电检测装置及漏电断路器
AU2015359448B2 (en) Demagnetization device and method for demagnetizing a transformer core
CA3121141C (en) Method and device for monitoring operation of a switching device for controlled switching applications
GB2170367A (en) Residual current device
Hamouda et al. Numerical differential protection algorithm for power transformers
US11831152B2 (en) Short circuit test device
CN118693759A (zh) 用于检测直流电流的故障电流保护电路
EP3711129A1 (en) Ground fault current interrupter circuit
JPH0817532B2 (ja) 地絡検出装置
CN104851758A (zh) 一种漏电断路器

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant