Detailed Description
A steam generator comprising an electric heating device 10, a tank 11, said electric heating device 10 being arranged in the tank 11, said tank 11 comprising a water inlet tube 5 and a steam outlet 6. The steam outlet 6 is arranged at the upper part of the box body.
Preferably, the housing is of cylindrical configuration.
Fig. 1 shows a top view of an electric heating apparatus 10, as shown in fig. 1, the electric heating apparatus 10 includes a first pipe box 2, a second pipe box 8 and a coil 1, the coil 1 is communicated with the first pipe box 2 and the second pipe box 8, a fluid circulates in the first pipe box 2, the second pipe box 8 and the coil 1 in a closed manner, an electric heater 13 is disposed in the electric heating apparatus 10, and the electric heater 13 is used for heating the fluid in the electric heating apparatus 10 and then heating water in the tank body by the heated fluid.
As shown in fig. 1-2, an electric heater 13 is disposed in the first header tank 2; the first channel box 2 is filled with phase-change fluid; the number of the coil pipes 1 is one or more, each coil pipe 1 comprises a plurality of circular arc-shaped pipe bundles 12, the central lines of the circular arc-shaped pipe bundles 12 are circular arcs taking the first pipe box 2 as a concentric circle, the end parts of the adjacent pipe bundles 12 are communicated, and fluid forms serial flow between the first pipe box 2 and the second pipe box 8, so that the end parts of the pipe bundles form free ends 3 and 4 of the pipe bundles; the fluid is phase-change fluid, vapor-liquid phase-change liquid, the electric heating device is in data connection with the controller, and the controller controls the heating power of the electric heating device to periodically change along with the change of time.
Preferably, the first and second headers 2 and 8 are provided along a height direction.
It has been found in research and practice that continuous power-stable heating of the electric heater results in a stable fluid formation of the internal electric heating means, i.e. the fluid is not flowing or has little fluidity, or the flow is stable, resulting in a greatly reduced vibrational performance of the coil 1, thereby affecting the efficiency of descaling and heating of the coil 1. There is therefore a need for an improvement to the electrical heating coil described above as follows.
It has been found in research and practice that continuous power-stable heating of the electric heater results in a stable fluid formation of the internal electric heating means, i.e. the fluid is not flowing or has little fluidity, or the flow is stable, resulting in a greatly reduced vibrational performance of the coil 1, thereby affecting the efficiency of descaling and heating of the coil 1. There is therefore a need for an improvement to the electrical heating coil described above as follows.
In the prior application of the inventor, a periodic heating mode is provided, and the vibration of the coil is continuously promoted through the periodic heating mode, so that the heating efficiency and the descaling effect are improved. However, adjusting the vibration of the tube bundle with a fixed periodic variation can lead to hysteresis and too long or too short a period. Therefore, the invention improves the previous application and intelligently controls the vibration, so that the fluid in the fluid can realize frequent vibration, and good descaling and heating effects can be realized.
Aiming at the defects in the technology researched in the prior art, the invention provides a novel electric heating water heater capable of intelligently controlling vibration. This water heater can improve heating efficiency to realize fine scale removal and heating effect.
Self-regulation vibration based on pressure
Preferably, a pressure sensing element is arranged in the electric heating device and used for detecting the pressure in the electric heating device, the pressure sensing element is in data connection with the controller, and the controller controls whether the electric heater heats or not according to the detected pressure.
Preferably, the controller controls the electric heater to stop heating if the pressure detected by the pressure sensing element is higher than a certain value, and controls the electric heater to heat if the pressure detected by the pressure sensing element is lower than a certain value.
Through the pressure that pressure sensing element detected, can satisfy under certain pressure condition, the evaporation of inside fluid has basically reached saturation, and the volume of inside fluid also basically changes little, and under this kind of condition, inside fluid is relatively stable, and the tube bank vibratility at this moment worsens, therefore needs to adjust, makes it vibrate to stop heating. So that the fluid undergoes volume reduction to thereby realize vibration. When the pressure is reduced to a certain degree, the internal fluid starts to enter a stable state again, and at the moment, the fluid needs to be heated so as to evaporate and expand again, so that the electric heater needs to be started for heating.
Preferably, the pressure sensing element is arranged within the first header tank 2 and/or the second header tank 8.
Preferably, the pressure sensing elements are disposed within the first and second header tanks 2 and 8. The average of the pressures of the two headers can be selected as regulating data.
Preferably, the pressure sensing element is disposed at the free end. Through setting up at the free end, can perceive the pressure variation of free end to realize better control and regulation.
Independently adjusting vibration based on temperature
Preferably, a temperature sensing element is arranged in the electric heating device and used for detecting the temperature in the electric heating device, the temperature sensing element is in data connection with the controller, and the controller controls whether the electric heater performs heating according to the detected temperature.
Preferably, the controller controls the electric heater to stop heating if the temperature detected by the temperature sensing element is higher than a certain value, and controls the electric heater to heat if the temperature detected by the temperature sensing element is lower than a certain value.
The pressure detected by the temperature sensing element can basically reach saturation when the certain temperature is met, and the volume of the internal fluid is not changed greatly basically. So that the fluid undergoes volume reduction to thereby realize vibration. When the temperature is reduced to a certain degree, the internal fluid starts to enter a stable state again, and the fluid needs to be heated to evaporate and expand again, so that the electric heater needs to be started for heating.
Preferably, the temperature sensing element is disposed at an upper end inside the first header and/or the second header.
Preferably, the temperature sensing member is disposed at an upper end inside the first and second header tanks.
Preferably, the temperature sensing element is disposed at the free end. Through setting up at the free end, can perceive the temperature variation of free end to realize better control and regulation.
Thirdly, automatically adjusting vibration based on liquid level
Preferably, a liquid level sensing element is arranged in the first channel box and used for detecting the liquid level of the fluid in the first channel box, the liquid level sensing element is in data connection with the controller, and the controller controls whether the electric heater heats or not according to the detected liquid level of the fluid.
Preferably, the controller controls the electric heater to stop heating if the liquid level detected by the liquid level sensing element is lower than a certain value. The liquid level detected by the liquid level sensing element is higher than a certain value, and the controller controls the electric heater to heat.
The liquid level detected by the liquid level sensing element can basically reach saturation of evaporation of the internal fluid and basically does not change much in volume of the internal fluid under the condition of meeting a certain liquid level (such as the lowest limit). So that the fluid undergoes volume reduction to thereby realize vibration. When the liquid level rises to a certain degree, the internal fluid starts to enter a stable state again, and at the moment, the fluid needs to be heated so as to evaporate and expand again, so that the electric heater needs to be started for heating.
Fourthly, automatically adjusting vibration based on speed
Preferably, a speed sensing element is arranged in the free end of the tube bundle and used for detecting the flow speed of the fluid in the free end of the tube bundle, the speed sensing element is in data connection with the controller, and the controller controls whether the electric heater heats or not according to the detected speed of the fluid.
Preferably, the controller controls the electric heater to stop heating if the speed sensed by the speed sensing element is higher than a certain value. The liquid level detected by the speed sensing element is lower than a certain value, and the controller controls the electric heater to heat.
The speed detected by the speed sensor element can substantially saturate the evaporation of the internal fluid to form a stable flow and the speed of the internal fluid does not substantially change when a certain speed (for example, the highest upper limit) is satisfied. So that the fluid undergoes volume reduction to thereby realize vibration. When the speed drops to a certain degree, the internal fluid starts to enter a stable state again, and at the moment, the fluid needs to be heated so as to evaporate and expand again, so that the electric heater needs to be started for heating.
As an option, the box body is internally provided with medicines, the medicines are soaked in water, when the medicine box is used, water is heated in the box body through the heat pipe, the medicines are heated through the water, and therefore liquid medicine is generated in the box body. The evaporator is a liquid medicine fumigation-washing evaporator.
As another option, the steam generator further comprises a liquid medicine evaporation tank, the liquid medicine evaporation tank is communicated with the tank body through a pipeline, an atomizer is arranged in the liquid medicine evaporation tank, and the steam outlet 6 is arranged at the upper part of the liquid medicine evaporation tank.
The generated liquid medicine enters the liquid medicine evaporation tank through a pipeline, is atomized in the liquid medicine evaporation tank and is discharged through the steam outlet. The vapor outlet may be discharged directly against the patient's diseased site for treatment.
Preferably, the pipe diameter of the first pipe box 2 is smaller than that of the second pipe box 8, and the pipe diameter of the first pipe box 2 is 0.5-0.8 times of that of the second pipe box 8. Through the pipe diameter change of first pipe case and second pipe case, can guarantee that the fluid carries out the phase transition and in the internal time of first box short, get into the coil pipe fast, fully get into the heat transfer of second box.
Preferably, the connection position 9 of the coil pipe at the first header is lower than the connection position of the second header and the coil pipe. This ensures that steam can rapidly enter the second header upwards.
Preferably, the first and second headers are provided with return lines at their bottoms to ensure that condensed fluid in the second header can enter the first line.
Preferably, the first and second headers are arranged in a height direction, the coil pipe is provided in plural numbers in the height direction of the first header, and a pipe diameter of the coil pipe is gradually reduced from top to bottom.
Preferably, the pipe diameter of the coil pipe is gradually decreased and gradually increased along the direction from the top to the bottom of the first pipe box.
The pipe diameter range through the coil pipe increases, can guarantee that more steam passes through upper portion and gets into the second box, guarantees that the distribution of steam is even in all coil pipes, further reinforces the heat transfer effect for whole vibration effect is even, and the heat transfer effect increases, further improves heat transfer effect and scale removal effect. Experiments show that better heat exchange effect and descaling effect can be achieved by adopting the structural design.
Preferably, the plurality of coils are arranged along the height direction of the first tube box, and the distance between the adjacent coils is increased from the top to the bottom.
Preferably, the distance between the coils increases along the height direction of the first header.
The interval range through the coil pipe increases, can guarantee that more steam passes through upper portion and gets into the second box, guarantees that the distribution of steam is even in all coil pipes, further reinforces the heat transfer effect for whole vibration effect is even, and the heat transfer effect increases, further improves heat transfer effect and scale removal effect. Experiments show that better heat exchange effect and descaling effect can be achieved by adopting the structural design.
Preferably, as shown in fig. 5, the box body is a box body with a circular cross section, and a plurality of electric heating devices are arranged in the box body.
Preferably, as shown in fig. 5, one of the plurality of electric heating devices disposed in the box body is disposed at the center of the box body to serve as a central electric heating device, and the other electric heating devices are distributed around the center of the box body to serve as peripheral electric heating devices. Through the structural design, the fluid in the box body can fully achieve the vibration purpose, and the heat exchange effect is improved.
Preferably, the heating power of the single peripheral electric heating means is smaller than the heating power of the central electric heating means. Through the design, the center reaches higher vibration frequency to form a central vibration source, so that the periphery is influenced, and better heat transfer enhancement and descaling effects are achieved.
Preferably, on the same horizontal heat exchange section, the fluid needs to achieve uniform vibration, and uneven heat exchange distribution is avoided. It is therefore necessary to distribute the amount of heating power among the different electric heating devices reasonably. Experiments show that the heating power ratio of the central electric heating device to the peripheral tube bundle electric heating device is related to two key factors, wherein one of the two key factors is the distance between the peripheral electric heating device and the center of the box body (namely the distance between the circle center of the peripheral electric heating device and the circle center of the central electric heating device) and the diameter of the box body. Therefore, the invention optimizes the optimal proportional distribution of the pulsating flow according to a large number of numerical simulations and experiments.
Preferably, the radius of the inner wall of the box is B, the center of the central electric heating device is arranged at the center of the circular section of the box, the distance from the center of the peripheral electric heating device to the center of the circular section of the box is S, the centers of adjacent peripheral electric heating devices are respectively connected with the center of the circular section, the included angle formed by the two connecting lines is a, the heating power of the peripheral electric heating device is W2, and the heating power of a single central electric heating device is W1, so that the following requirements are met:
W1/W2 ═ a-B Ln (B/S); ln is a logarithmic function;
a, b are coefficients, wherein 1.9819< a <1.9823,0.5258< b < 0.5264;
1.25<B/S<2.1;
1.6<W1/W2<1.9。
wherein 35 ° < a <80 °.
Preferably, the number of the four-side distribution is 4-5.
Preferably, B is 1600-2400 mm, preferably 2000 mm; s is 1200-2000 mm, preferably 1700 mm; the diameter of the heat exchange tube is 12-20 mm, preferably 16 mm; the outermost diameter of the pulsating coil is 300-. The diameter of the riser is 100-116 mm, preferably 108 mm, the height of the first header and the second header is 1.8-2.2 m, preferably 2 m, and the distance between adjacent pulse tubes is 65-100 mm. Preferably around 80 mm.
The total heating power is preferably 6000-14000W, and more preferably 7500W.
More preferably, a is 1.9821 and b is 0.5261.
The steam outlet is arranged in the middle of the upper wall of the box body.
Preferably, the box body has a circular cross section, and is provided with a plurality of electric heating devices, wherein one electric heating device is arranged at the center of the circular cross section and the other electric heating devices are distributed around the center of the circular cross section.
The coils 1 are in one or more groups, each group of coils 1 comprises a plurality of circular arc-shaped tube bundles 12, the central lines of the circular arc-shaped tube bundles 12 are circular arcs of concentric circles, and the ends of the adjacent tube bundles 12 are communicated, so that the ends of the coils 1 form tube bundle free ends 3, 4, such as the free ends 3, 4 in fig. 2.
Preferably, the heating fluid is a vapor-liquid phase-change fluid.
Preferably, the first header 2, the second header 8, and the coil 1 are all of a circular tube structure.
Preferably, the tube bundle of the coil 1 is an elastic tube bundle.
The heat exchange coefficient can be further improved by arranging the tube bundle of the coil 1 with an elastic tube bundle.
Preferably, the concentric circles are circles centered on the center of the first header 2. I.e. the tube bundle 12 of the coil 1 is arranged around the centre line of the first tube box 2.
As shown in fig. 4, the tube bundle 12 is not a complete circle, but rather leaves a mouth, thereby forming the free end of the tube bundle. The angle of the arc of the mouth part is 65-85 degrees, namely the sum of included angles b and c in figure 4 is 65-85 degrees.
Preferably, the ends of the tube bundle on the same side are aligned in the same plane, with the extension of the ends (or the plane in which the ends lie) passing through the median line of the first tube box 2.
Further preferably, the electric heater 13 is an electric heating rod.
Preferably, the first end of the inner tube bundle of the coil 1 is connected to the first tube box 2, the second end is connected to one end of the adjacent outer tube bundle, one end of the outermost tube bundle of the coil 1 is connected to the second tube box 8, and the ends of the adjacent tube bundles are connected to form a serial structure.
The plane in which the first end is located forms an angle c of 40-50 degrees with the plane in which the centre lines of the first and second headers 2, 8 are located.
The plane of the second end forms an angle b of 25-35 degrees with the plane of the centre lines of the first and second headers 2, 8.
Through the design of the preferable included angle, the vibration of the free end is optimal, and therefore the heating efficiency is optimal.
As shown in fig. 4, there are 4 tube bundles of coil 1, with tube bundles A, B, C, D in communication. Of course, the number is not limited to four, and a plurality of the connecting structures are the same as that in fig. 4.
The number of the coil pipes 1 is multiple, and the plurality of coil pipes 1 are respectively and independently connected with the first pipe box 2 and the second pipe box 8, that is, the plurality of coil pipes 1 are in a parallel structure.
Preferably, the electric heater is provided in a plurality of stages in the height direction, each stage is independently controlled, and the electric heater is sequentially activated from the lower end in the height direction until all the stages are activated as time passes.
Preferably, the heating power is the same for each section. The electric heater is started from the lower part upwards gradually, so that the fluid at the lower part is fully heated, a good natural convection is formed, the flow of the fluid is further promoted, and the elastic vibration effect is increased. Through the change of the heating power with time variability, the fluid can be frequently evaporated, expanded and contracted in the elastic tube bundle, so that the vibration of the elastic tube bundle is continuously driven, and the heating efficiency and the descaling operation can be further realized.
Although the present invention has been described with reference to the preferred embodiments, it is not limited thereto. Various changes and modifications may be effected therein by one skilled in the art without departing from the spirit and scope of the invention as defined in the appended claims.