CN111808217B - 温敏环糊精聚轮烷、凝胶及其制备方法 - Google Patents

温敏环糊精聚轮烷、凝胶及其制备方法 Download PDF

Info

Publication number
CN111808217B
CN111808217B CN202010483462.9A CN202010483462A CN111808217B CN 111808217 B CN111808217 B CN 111808217B CN 202010483462 A CN202010483462 A CN 202010483462A CN 111808217 B CN111808217 B CN 111808217B
Authority
CN
China
Prior art keywords
gel
temperature
polyrotaxane
cyclodextrin
sensitive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202010483462.9A
Other languages
English (en)
Other versions
CN111808217A (zh
Inventor
闫家涛
陈佩芸
朱丽
郑书东
刘坤
张阿方
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Shanghai for Science and Technology
Original Assignee
University of Shanghai for Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Shanghai for Science and Technology filed Critical University of Shanghai for Science and Technology
Priority to CN202010483462.9A priority Critical patent/CN111808217B/zh
Publication of CN111808217A publication Critical patent/CN111808217A/zh
Application granted granted Critical
Publication of CN111808217B publication Critical patent/CN111808217B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B37/00Preparation of polysaccharides not provided for in groups C08B1/00 - C08B35/00; Derivatives thereof
    • C08B37/0006Homoglycans, i.e. polysaccharides having a main chain consisting of one single sugar, e.g. colominic acid
    • C08B37/0009Homoglycans, i.e. polysaccharides having a main chain consisting of one single sugar, e.g. colominic acid alpha-D-Glucans, e.g. polydextrose, alternan, glycogen; (alpha-1,4)(alpha-1,6)-D-Glucans; (alpha-1,3)(alpha-1,4)-D-Glucans, e.g. isolichenan or nigeran; (alpha-1,4)-D-Glucans; (alpha-1,3)-D-Glucans, e.g. pseudonigeran; Derivatives thereof
    • C08B37/0012Cyclodextrin [CD], e.g. cycle with 6 units (alpha), with 7 units (beta) and with 8 units (gamma), large-ring cyclodextrin or cycloamylose with 9 units or more; Derivatives thereof
    • C08B37/0015Inclusion compounds, i.e. host-guest compounds, e.g. polyrotaxanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/02Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques
    • C08J3/03Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques in aqueous media
    • C08J3/075Macromolecular gels
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/24Crosslinking, e.g. vulcanising, of macromolecules
    • C08J3/246Intercrosslinking of at least two polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2305/00Characterised by the use of polysaccharides or of their derivatives not provided for in groups C08J2301/00 or C08J2303/00
    • C08J2305/16Cyclodextrin; Derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2371/00Characterised by the use of polyethers obtained by reactions forming an ether link in the main chain; Derivatives of such polymers
    • C08J2371/02Polyalkylene oxides

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Dispersion Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Materials Engineering (AREA)
  • Biochemistry (AREA)
  • Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Medicinal Preparation (AREA)
  • Polyethers (AREA)
  • Polysaccharides And Polysaccharide Derivatives (AREA)

Abstract

本发明公开了一种温敏环糊精聚轮烷、凝胶及其制备方法,刺激降解的温度敏感型环糊精聚轮烷凝胶,采用烷氧醚改性环糊精聚轮烷为基体,通过环糊精基元之间的交联反应形成凝胶网络,并结合封端基团的刺激断裂设计,实现凝胶的可控连锁降解。烷氧醚修饰的环糊精基元可沿聚合物主链进行动态滑移,并在加热条件现发生LCST相转变,使得凝胶发生体积收缩。同时,在特定刺激源作用下聚轮烷的封端基团发生裂解,环糊精基元从链中脱落,使得凝胶网络解离,产生凝胶‑溶液转变。基于优异的温度响应性和可控的降解性质,该类聚轮烷凝胶将在药物输送、智能生物材料和驱动器等方面具有重要的应用价值。

Description

温敏环糊精聚轮烷、凝胶及其制备方法
技术领域
本发明属仿生智能响应型材料技术领域,具体涉及了一种基于刺激解离的温度敏感型聚轮烷凝胶及其制备方法。
背景技术
环糊精聚轮烷是一类由聚合物为轴穿过环糊精内腔,大环主体分子在聚合物链两端封端所组成的超分子体系,具有制备简单、低毒性、尺寸可控性等特点。目前已有pH值、温度、离子响应等各种功能化的环糊精聚轮烷得以报道,可用于可注射型水凝胶、微/纳米胶束、分子机器、滑移凝胶、高强度弹性体、本体材料和生物医药材料等。
Yui等利用PEI-PEG-PEI三嵌段共聚物作为主链制备pH响应型聚轮烷(Yui,N.etal.Macromolecules.2005,38(23),9878.),pH值变化时α-CD可在嵌段链上选择性包络。同时该课题组制备了甲基化β-环糊精聚轮烷(Nishida,K.;Tamura,A.;Yui,N.Macromolecules.2016,49,6021),该聚轮烷具有温度响应特性,在升高温度时聚轮烷溶液发生相变。Higashi等利用甲基化环糊精的温敏特性一锅法制备聚轮烷(Higashi,T.;Li,J.;Song,X.etal.ACSMacro Letters.2016,5(2),158.)。
Okumura与Ito等首次将聚轮烷中环糊精基元进行化学交联制备了一类拓扑交联的滑移凝胶(Okumura,Y.;Ito,K.Adv.Mater.2001,13,48.)。环糊精交联点可沿聚合物主链方向自由地转动和滑移,发生滑轮效应,产生独特的能量耗散机制,使得凝胶材料具有低模量、高强度、高溶胀率和耐疲劳性,其力学行为也表现出类似于生物组织的应力-硬化特征。
Ito等通过对聚轮烷的修饰制备了一类温敏响应迅速的滑移凝胶(Ito,K.;Yasumoto,A.;Gotoh,H.;Takeok,Y.etal.Macromolecules.2017,50,364.),该凝胶温度响应速率快,并且具有较好的柔软性和高拉伸性,可以应用在致动器和药物输送系统的阻力容器等方面。Yui等利用紫外光降解的封端基团制备在紫外光照后可降解的聚轮烷(Yui,N.;Seo,J.;Fushimi,M.etal.ACSMacro Lett.2015,4,1154.),通过聚合反应制备光固化塑料,可以通过紫外光照来调节光固化塑料的机械强度。然而,环糊精聚轮烷由于强氢键作用,轮子的滑移和转动运动受阻,且材料的溶解性较差。同时,其智能行为主要受轮烷的超分子结构控制,环糊精基元并不具备智能响应特征,材料的响应能力较弱。因此,聚轮烷材料的其它性能如多重响应性、可控降解性等也需要进一步的完善,这成为亟待解决的技术问题。
发明内容
为了解决现有技术问题,本发明的目的在于克服已有技术存在的不足,提供一种温敏环糊精聚轮烷、凝胶及其制备方法,具有独特的温敏性能以及刺激解离性能,采用刺激降解的温度敏感型环糊精聚轮烷为基体,通过官能团反应环糊精基元之间形成交联,以此来构筑滑移凝胶。通过环糊精上的烷氧醚基元实现凝胶的温敏性能,通过刺激解离的封端基团实现凝胶网络的解离。
为达到上述发明创造目的,本发明采用如下技术方案:
温敏环糊精聚轮烷,其化学结构式为:
Figure BDA0002517979920000021
作为本发明优选的技术方案,利用N-[(4-硝基苯基)亚甲基氨基]氨基甲酸甲酯作为封端基团制备了紫外光照解离型聚轮烷PRXUV-DEG9.6-N1.4;在主链上修饰二硫键来制备了还原解离型聚轮烷PRXred-DEG9.3-N0.6;以及非降解型聚轮烷PRXnon-DEG8.4-N0.7。并在环糊精上修饰烷氧醚赋予其温敏性特性以及酰肼基元为其提供交联位点,制备了温度响应性环糊精聚轮烷。
一种刺激降解的温度敏感型环糊精聚轮烷凝胶,能进行可逆的热致收缩,同时在光、硫醇的特定外界刺激作用下发生可控的连锁降解,从而实现刺激降解的温度敏感响应;所述刺激降解的温度敏感型环糊精聚轮烷凝胶以改性后的本发明温敏环糊精聚轮烷作为基体,通过环糊精基元之间的交联反应,形成凝胶网络;烷氧醚修饰的环糊精基元可沿聚合物主链进行动态滑移,并在加热条件下发生脱水聚集行为,从而发生LCST相转变,使得凝胶产生体积收缩;同时,在特定刺激源作用下聚轮烷的封端基团发生裂解,环糊精基元从链中脱落,使得凝胶网络解离,产生凝胶-溶液转变。
作为本发明优选的技术方案,刺激降解的温度敏感型环糊精聚轮烷凝胶,由环糊精聚轮烷基体和交联剂进行化学合成而来,所述交联剂为PEG-CHO,其化学结构式如下:
Figure BDA0002517979920000031
一种本发明刺激降解的温度敏感型环糊精聚轮烷凝胶的制备方法,将环糊精聚轮烷基体和交联剂,在THF与pH不高于4.53的醋酸-醋酸钠缓冲溶液的混合溶液中,利用酰肼与醛基形成席傅碱键来制备刺激降解的温度敏感型环糊精聚轮烷凝胶。
作为本发明优选的技术方案,刺激降解的温度敏感型环糊精聚轮烷凝胶的制备包括如下步骤:
a.以双端胺基聚乙二醇和α-环糊精为原料,在水相中通过主客体作用形成准聚轮烷,进一步准聚轮烷在DMF中与封端剂反应,反应结束后加入DMSO溶解,在水沉淀至少3次,并在甲醇中沉淀至少1次,从而得到PRXs;
b.采用羰基二咪唑活化聚轮烷中环糊精基元,然后与端胺基低聚烷氧醚进行偶联反应,制备烷氧醚化环糊精聚轮烷;
c.烷氧醚改性的PRXs在CDI、DMAP的活化后,与NH2-NH2反应,合成了酰肼基元修饰的烷氧醚化环糊精聚轮烷;
d.以刺激解离的温度敏感型聚轮烷为主体,以双醛基聚乙二醇(PEG-CHO)为交联剂,在pH不高于4.53的醋酸-醋酸钠缓冲溶液与THF的混合溶剂中,得到刺激降解的温度敏感型环糊精聚轮烷凝胶。
作为本发明优选的技术方案,在所述步骤d中,按照酰肼:醛基的摩尔比为1:1的比例,分别称取刺激解离的温度敏感型聚轮烷以及交联剂;混合溶剂为醋酸-醋酸钠缓冲溶液和THF的体积比为1:1的混合溶液;将聚轮烷、双醛基聚乙二醇分别溶于混合溶剂中,其中固含量不高于15wt%。将两个物质的混合溶液在冰浴中混合,用振荡仪使之充分混合均匀,放入不高于5℃冰箱中静置过夜;将制备的凝胶的玻璃样品瓶敲碎后取出制备好的凝胶,再置于THF以及去离子水溶液中,一天置换3-4次溶剂,去除未反应的聚合物,最后凝胶变为透明状,并使凝胶中溶剂全部置换为水,从而得到刺激降解的温度敏感型环糊精聚轮烷凝胶。
本发明与现有技术相比较,具有如下显而易见的突出实质性特点和显著优点:
1.本发明制备方法简单、生物相容性好且易于功能化;
2.本发明凝胶兼顾稳定性和动态性,轮烷互锁结构可赋予良好的稳定性,同时,环糊精基元可沿主链发生转动或滑移,引起聚轮烷构象的变化;
3.本发明凝胶具有可控降解性,通过控制封端基团的裂解反应,可使环糊精基元从聚合物主链上滑落以实现聚轮烷的快速降解;同时,相同的聚轮烷载体通过不同封端基团的设计,可实现对不同刺激源的专一降解,制备简单,灵活多变
4.本发明凝胶具有信号放大特征,单个封端基团的裂解可触发众多环糊精基元发生类似“多米诺”效应的解离。这种连锁降解行为具有典型的信号放大特征,低浓度或低剂量的外在刺激即可触发聚轮烷彻底的降解。放大能力一般取决于被穿环糊精的数目。
附图说明
图1为本发明实施例三不同滑移凝胶在25℃下流变力学性能曲线图。
图2为本发明实施例四Gel 1,Gel 2,Gel 3凝胶形貌随着温度变化的图像。
图3为本发明实施例四Gel 1,Gel 2,Gel 3的质量随温度变化曲线。
图4为本发明实施例五凝胶形貌变化图像。其中图4(a)Gel 1与Gel 3在紫外光照下凝胶形貌变化图像,图4(b)Gel 2与Gel 3在DTT溶液中凝胶形貌变化图像。
具体实施方式
以下结合具体的实施例子对上述方案做进一步说明,本发明的优选实施例详述如下:
实施例一:
在本实施例中,参见图1,利用不同的封端基团制备在特定外界刺激下发生可控的连锁降解的聚轮烷,并在环糊精上修饰烷氧醚以及酰肼基元,聚轮烷中环糊精个数、每个环糊精上烷氧醚基元、酰肼基元个数如表1所示,其中PRXUV-DEG9.6-N1.4为紫外光照解离型聚轮烷,PRXred-DEG9.3-N0.6为还原解离型聚轮烷,PRXnon-DEG8.4-N0.7为非降解型聚轮烷。
表1.PRXs的表征
Figure BDA0002517979920000041
实施例二:
在本实施例中,一种刺激解离的温度敏感型滑移凝胶的制备方法,步骤如下:
利用酰肼与醛基之间的酰腙键联反应来制备滑移凝胶,聚乙二醇二苄基醛(PEG-CHO)作为交联剂。具体的实验步骤如下:首先,配制pH=4.53的醋酸钠与醋酸的缓冲溶剂,再分别称取实例1得到的聚轮烷PRX-DEG-N以及PEG-CHO,其中酰肼:醛基=1:1(摩尔比),加入pH=4.53:THF=1:1的混合溶剂至完全溶解(固含量为15wt%),最后将两个物质的溶液在冰浴中混合,用振荡仪使之充分混合,放入5℃冰箱中静置过夜。将制备的凝胶的玻璃样品瓶敲碎后取出制备好的凝胶,再置于THF以及去离子水溶液中,一天置换3-4次溶剂,去除未反应的聚合物,最后凝胶变为透明状,并保证凝胶中溶剂全部置换为水。其中凝胶的成胶条件如表2所示。
交联剂PEG-CHO的结构示意图:
Figure BDA0002517979920000051
表2.滑移凝胶成胶条件
Figure BDA0002517979920000052
实施例三:
在本实施例中,进行滑移凝胶流变性能测试:
将实例二制得不同类型的聚轮烷凝胶进行流变测试。制备的滑移凝胶平均样品直径为10mm厚度为4mm。使用旋转流变仪对凝胶样品进行频率扫描,固定应变为0.5%,频率范围在0.1-100rad/s之间,流变性能如图1所示,其中Gel 1与Gel 2的储能模量G’均为960Pa左右,而Gel 3的储能模量较高为2870Pa。
实施例四:
在本实施例中,进行滑移凝胶温敏性能测试:
实例二制备凝胶样品的温敏测试范围为25-50℃,首先将凝胶样品在25℃水浴条件下平衡过夜,并记录在25℃条件下的湿胶重量,选择八个温度点升高温度并平衡30分钟,并记录对应温度时凝胶的重量并对流变性能进行测试。凝胶形貌变化如图2所示,质量变化如图3所示,在升高温度的过程中,由于烷氧醚的作用凝胶中的水分离开凝胶网络体系,使得凝胶的体积发生收缩质量减轻,Gel 1的直径从0.76cm收缩到0.59cm(1个格子为5mm),Gel 2的直径从1.05cm收缩到0.73cm,Gel 3的直径从0.92cm收缩到0.80cm。凝胶的质量也有所减少,Gel 1、3都减少到大概初始状态的50%,而Gel 2降低的幅度最大,降低至原来的33%。
实施例五:
在本实施例中,进行滑移凝胶解离性能测试:
紫外光照降解实验:将样品浸泡在水溶液中,并放置紫外灯下进行光照,每五分钟对凝胶的力学性能进行测试;还原降解实验:将凝胶浸泡在DTT(50mmol/L)的溶液中,每2小时对凝胶的力学性能进行测试。凝胶形貌变化如图4所示,从图(a)可以看出在紫外光照下,Gel 1聚轮烷发生解离,使得凝胶交联体系被破坏,在20min后Gel 1变为溶液;从图(b)可以看出在加入DTT后,Gel 2体系也发生降解,24h后变为溶液,而无响应型的对照组Gel 3在紫外光照以及DTT的溶液中都未发生变化。Gel 1、Gel 2均由刺激降解型聚轮烷构筑而成,当聚轮烷在刺激源下发生解离,环糊精从链中脱落则使得凝胶网络被破坏,发生凝胶-溶液的转变,并可利用不同刺激响应性的聚轮烷来调控凝胶的降解行为。
综合上述实施例可知,刺激降解的温度敏感型环糊精聚轮烷凝胶,是以刺激解离型温敏环糊精聚轮烷为基体,利用双醛基交联剂制备相应的滑移凝胶。基于其机械互锁的结构,聚轮烷在凝胶网络中保持稳定,并且环糊精作为交联点可在链中移动,使凝胶具有独特的力学性能。其中,烷氧醚修饰的环糊精基元可沿聚合物主链进行动态滑移,并在加热条件现发生LCST相转变,使得凝胶发生体积收缩。并在烷氧醚改性环糊精的基础上修饰酰肼基元,为环糊精基元之间的交联反应提供反应位点。并结合封端基团的刺激断裂设计,当封端基团在刺激源的作用下发生裂解,环糊精从链中脱落,实现凝胶的可控连锁降解。
综上所述,本发明一种温敏环糊精聚轮烷、凝胶及其制备方法,刺激降解的温度敏感型环糊精聚轮烷凝胶,采用烷氧醚改性环糊精聚轮烷为基体,通过环糊精基元之间的交联反应形成凝胶网络,并结合封端基团的刺激断裂设计,实现凝胶的可控连锁降解。烷氧醚修饰的环糊精基元可沿聚合物主链进行动态滑移,并在加热条件现发生LCST相转变,使得凝胶发生体积收缩。同时,在特定刺激源作用下聚轮烷的封端基团发生裂解,环糊精基元从链中脱落,使得凝胶网络解离,产生凝胶-溶胶转变。基于优异的温度响应性和可控的降解性质,该类聚轮烷凝胶将在药物输送、智能生物材料和驱动器等方面具有重要的应用价值。
上面对本发明实施例结合附图进行了说明,但本发明不限于上述实施例,还可以根据本发明的发明创造的目的做出多种变化,凡依据本发明技术方案的精神实质和原理下做的改变、修饰、替代、组合或简化,均应为等效的置换方式,只要符合本发明的发明目的,只要不背离本发明温敏环糊精聚轮烷、凝胶及其制备方法的技术原理和发明构思,都属于本发明的保护范围。

Claims (5)

1.一种刺激降解的温度敏感型环糊精聚轮烷凝胶,其特征在于:能进行可逆的热致收缩,同时在光、硫醇的外界刺激作用下发生可控的连锁降解,从而实现刺激降解的温度敏感响应;所述刺激降解的温度敏感型环糊精聚轮烷凝胶以温敏环糊精聚轮烷作为基体,通过环糊精基元之间的交联反应,形成凝胶网络;
所述温敏环糊精聚轮烷是在环糊精基元上修饰具有温敏特性的烷氧醚基元以及酰肼基元,利用N-[(4-硝基苯基)亚甲基氨基]氨基甲酸甲酯作为封端基团制备的紫外光照解离型聚轮烷PRXUV-DEG9.6-N1.4
或者,所述温敏环糊精聚轮烷是在环糊精基元上修饰具有温敏特性的烷氧醚基元以及酰肼基元,在主链上修饰二硫键来制备的还原解离型聚轮烷PRXred-DEG9.3-N0.6
所述温敏环糊精聚轮烷PRX-DEG-N,其化学结构式为:
Figure FDA0003527390940000011
PRXUV-DEG9.6-N1.4:m=68,y=9.6,z=1.4:
Figure FDA0003527390940000012
PRXred-DEG9.3-N0.6:m=74,y=9.3,z=0.6:
Figure FDA0003527390940000013
Figure FDA0003527390940000014
烷氧醚修饰的环糊精基元可沿聚合物主链进行动态滑移,并在加热条件下发生脱水聚集行为,从而发生LCST相转变,使得凝胶产生体积收缩;同时,在刺激源作用下聚轮烷的封端基团发生裂解,环糊精基元从链中脱落,使得凝胶网络解离,产生凝胶-溶液转变;刺激降解的温度敏感型环糊精聚轮烷凝胶由温敏环糊精聚轮烷基体和交联剂通过酰腙键反应制备得到。
2.根据权利要求1所述刺激降解的温度敏感型环糊精聚轮烷凝胶,其特征在于:所述交联剂为PEG-CHO,其化学结构式如下:
Figure FDA0003527390940000021
3.一种权利要求1所述刺激降解的温度敏感型环糊精聚轮烷凝胶的制备方法,其特征在于:将温敏环糊精聚轮烷基体和交联剂,在THF与pH不高于4.53的醋酸-醋酸钠缓冲溶液的混合溶液中,利用酰肼与醛基形成席夫碱键来制备滑移凝胶,从而交联合成刺激降解的温度敏感型环糊精聚轮烷凝胶。
4.根据权利要求3所述刺激降解的温度敏感型环糊精聚轮烷凝胶的制备方法,其特征在于,利用酰肼与醛基形成席夫碱键来制备滑移凝胶,步骤如下:
以温敏环糊精聚轮烷为基体,以双醛基聚乙二醇为交联剂,在THF与pH不高于4.53的醋酸-醋酸钠缓冲溶液的混合溶液中,将温敏环糊精聚轮烷、双醛基聚乙二醇溶于混合溶液中,将包含温敏环糊精聚轮烷、双醛基聚乙二醇两个物质的混合溶液在冰浴中混合,用振荡仪使之充分混合均匀,放入不高于5℃冰箱中静置过夜;将制备凝胶的玻璃样品瓶敲碎后取出制备好的凝胶,再置于THF以及去离子水溶液中,一天置换3-4次溶剂,去除未反应的聚合物,最后凝胶变为透明状,并使凝胶中溶剂全部置换为水,从而得到刺激降解的温度敏感型环糊精聚轮烷凝胶。
5.根据权利要求4所述刺激降解的温度敏感型环糊精聚轮烷凝胶的制备方法,其特征在于:按照酰肼:醛基的摩尔比为1:1的比例,分别称取温敏环糊精聚轮烷以及交联剂PEG-CHO;所述交联剂PEG-CHO化学结构式如下:
Figure FDA0003527390940000022
混合溶液中醋酸-醋酸钠缓冲溶液和THF的体积比为1:1;将温敏环糊精聚轮烷、PEG-CHO溶于混合溶液中,其中固含量不高于15wt%。
CN202010483462.9A 2020-06-01 2020-06-01 温敏环糊精聚轮烷、凝胶及其制备方法 Active CN111808217B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010483462.9A CN111808217B (zh) 2020-06-01 2020-06-01 温敏环糊精聚轮烷、凝胶及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010483462.9A CN111808217B (zh) 2020-06-01 2020-06-01 温敏环糊精聚轮烷、凝胶及其制备方法

Publications (2)

Publication Number Publication Date
CN111808217A CN111808217A (zh) 2020-10-23
CN111808217B true CN111808217B (zh) 2022-06-14

Family

ID=72848608

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010483462.9A Active CN111808217B (zh) 2020-06-01 2020-06-01 温敏环糊精聚轮烷、凝胶及其制备方法

Country Status (1)

Country Link
CN (1) CN111808217B (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103342824A (zh) * 2013-06-28 2013-10-09 华南理工大学 一种环糊精多醛交联剂的应用方法
CN104262648A (zh) * 2014-09-18 2015-01-07 四川大学 一种以双醛聚乙二醇为交联剂的胶原基生物医用材料及其制备方法
EP3310847A1 (en) * 2015-06-17 2018-04-25 Universität des Saarlandes Method of preparing a polyrotaxane and polyrotaxane

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103342824A (zh) * 2013-06-28 2013-10-09 华南理工大学 一种环糊精多醛交联剂的应用方法
CN104262648A (zh) * 2014-09-18 2015-01-07 四川大学 一种以双醛聚乙二醇为交联剂的胶原基生物医用材料及其制备方法
EP3310847A1 (en) * 2015-06-17 2018-04-25 Universität des Saarlandes Method of preparing a polyrotaxane and polyrotaxane

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
"Calix[4]arene-Based Dynamic Covalent Gels: Marriage of Robustness, Responsiveness, and Self-Healing";Hui Yang等;《Macromolecular Rapid Communications》;20171218;第39卷;第1-6页 *
"Dual pH-responsive 5-aminolevulinic acid pseudopolyrotaxane prodrug micelles for enhanced photodynamic therapy";Hongxin Tong等;《Chemical Communications》;20160208;第52卷;第3966-3969页 *
"OEGylated Cyclodextrin-Based Polyrotaxanes Showing Remarkable hermoresponsive Behavior and Photocontrolled Degradation";Apan Qian等;《Macromolecules》;20190430;第52卷;第3454-3461页 *
"Self-Assembled Stimuli-Responsive Polyrotaxane Core-Shell Particles";Blaise L.Tardy等;《Biomacromolecules》;20131213;第15卷;第53-59页 *
"含有酰腙键的滑动轮凝胶的制备及其自愈合性能研究";李美花;《中国优秀博硕士学位论文全文数据库(硕士) 工程科技Ⅰ辑》;20150115(第01期);第21-26页 *

Also Published As

Publication number Publication date
CN111808217A (zh) 2020-10-23

Similar Documents

Publication Publication Date Title
CN110951096B (zh) 一种GelMA-氧化葡聚糖双网络水凝胶及其制备方法
CN108310460B (zh) 可注射高强度温敏性改性甲壳素基水凝胶及其制备方法和应用
Tang et al. Self-healing stimuli-responsive cellulose nanocrystal hydrogels
CA2562179C (en) Polymeric material having polyrotaxane and process for producing the same
Sun et al. Self-assembled supermolecular hydrogel based on hydroxyethyl cellulose: Formation, in vitro release and bacteriostasis application
US6828378B2 (en) Compound comprising crosslinked polyrotaxane
Maia et al. Synthesis and characterization of new injectable and degradable dextran-based hydrogels
Guo et al. pH-Switchable and self-healable hydrogels based on ketone type acylhydrazone dynamic covalent bonds
Karim et al. Design of a micellized α-cyclodextrin based supramolecular hydrogel system
Uliniuc et al. New approaches in hydrogel synthesis—Click chemistry: A review
Zhou et al. A super-stretchable, self-healing and injectable supramolecular hydrogel constructed by a host–guest crosslinker
Fiamingo et al. Structure, morphology and properties of genipin-crosslinked carboxymethylchitosan porous membranes
Yan et al. Controlled release of curcumin from gelatin hydrogels by the molecular-weight modulation of an oxidized dextran cross-linker
Yang et al. A fluorescent, self-healing and pH sensitive hydrogel rapidly fabricated from HPAMAM and oxidized alginate with injectability
CN109796606A (zh) 一种基于多重动态化学键的自愈合水凝胶及其制备方法
Yang et al. In situ formation of poly (thiolated chitosan-co-alkylated β-cyclodextrin) hydrogels using click cross-linking for sustained drug release
Wang et al. Imidazolidinyl urea reinforced polyacrylamide hydrogels through the formation of multiple hydrogen bonds
Cui et al. Mechanical, microstructural, and rheological characterization of gelatin-dialdehyde starch hydrogels constructed by dual dynamic crosslinking
CN111592618A (zh) 一种透明质酸水凝胶及其制备方法和应用
Wei et al. Injectable poly (γ-glutamic acid)-based biodegradable hydrogels with tunable gelation rate and mechanical strength
Huang et al. A novel dual crosslinked polysaccharide hydrogel with self-healing and stretchable properties
Imran et al. Fabrication of mechanically improved hydrogels using a movable cross-linker based on vinyl modified polyrotaxane
Ma et al. Fabrication of thermo and pH-dual sensitive hydrogels with optimized physiochemical properties via host-guest interactions and acylhydrazone dynamic bonding
Yu et al. Cu+-containing physically crosslinked chitosan hydrogels with shape memory.
CN111808217B (zh) 温敏环糊精聚轮烷、凝胶及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant