CN111801087B - 含多氧金属氢氧化物的燃料 - Google Patents

含多氧金属氢氧化物的燃料 Download PDF

Info

Publication number
CN111801087B
CN111801087B CN201980014217.9A CN201980014217A CN111801087B CN 111801087 B CN111801087 B CN 111801087B CN 201980014217 A CN201980014217 A CN 201980014217A CN 111801087 B CN111801087 B CN 111801087B
Authority
CN
China
Prior art keywords
fuel
composition
aluminum
oxyhydroxide
engine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201980014217.9A
Other languages
English (en)
Other versions
CN111801087A (zh
Inventor
小J·W·伍德梅恩西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Helmotke Co ltd
Original Assignee
Helmotke Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Helmotke Co ltd filed Critical Helmotke Co ltd
Publication of CN111801087A publication Critical patent/CN111801087A/zh
Application granted granted Critical
Publication of CN111801087B publication Critical patent/CN111801087B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/12Inorganic compounds
    • C10L1/1233Inorganic compounds oxygen containing compounds, e.g. oxides, hydroxides, acids and salts thereof
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L2200/00Components of fuel compositions
    • C10L2200/02Inorganic or organic compounds containing atoms other than C, H or O, e.g. organic compounds containing heteroatoms or metal organic complexes
    • C10L2200/0204Metals or alloys
    • C10L2200/0218Group III metals: Sc, Y, Al, Ga, In, Tl
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L2200/00Components of fuel compositions
    • C10L2200/02Inorganic or organic compounds containing atoms other than C, H or O, e.g. organic compounds containing heteroatoms or metal organic complexes
    • C10L2200/0254Oxygen containing compounds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L2200/00Components of fuel compositions
    • C10L2200/04Organic compounds
    • C10L2200/0407Specifically defined hydrocarbon fractions as obtained from, e.g. a distillation column
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L2200/00Components of fuel compositions
    • C10L2200/04Organic compounds
    • C10L2200/0407Specifically defined hydrocarbon fractions as obtained from, e.g. a distillation column
    • C10L2200/0415Light distillates, e.g. LPG, naphtha
    • C10L2200/0423Gasoline
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L2200/00Components of fuel compositions
    • C10L2200/04Organic compounds
    • C10L2200/0407Specifically defined hydrocarbon fractions as obtained from, e.g. a distillation column
    • C10L2200/0438Middle or heavy distillates, heating oil, gasoil, marine fuels, residua
    • C10L2200/0446Diesel
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L2230/00Function and purpose of a components of a fuel or the composition as a whole
    • C10L2230/04Catalyst added to fuel stream to improve a reaction
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L2250/00Structural features of fuel components or fuel compositions, either in solid, liquid or gaseous state
    • C10L2250/06Particle, bubble or droplet size
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L2270/00Specifically adapted fuels
    • C10L2270/02Specifically adapted fuels for internal combustion engines

Landscapes

  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Solid Fuels And Fuel-Associated Substances (AREA)
  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)
  • Treating Waste Gases (AREA)

Abstract

一种包括多氧金属氢氧化物材料的组合物,其包含含有氧气(O2)分子和燃料的包合物。多氧金属氢氧化物材料,例如OX66TM材料,被添加到燃料中,例如但不限于汽油、酒精和柴油等燃料,能够在发动机中燃烧,以产生显著提高的马力和扭矩。OX66TM材料以不同的比例添加到燃料中以产生改善的性能。不同的比率基于几个因素,包括发动机的类型和设计、燃料的类型以及环境参数。

Description

含多氧金属氢氧化物的燃料
技术领域
本发明涉及具有增加的氧的燃料,例如具有增加的氧气(O2)的燃料,其产生内燃机的增加的马力和扭矩。
背景技术
市场上销售的一种称为OX66TM的多氧金属氢氧化物材料,包括含有氧气(O2)分子的包合物,由得克萨斯州普莱诺的Hemotek LLC制造并提供。OX66TM材料是可溶的,并具有将氧气(O2)分子保持在包合物中的独特特性,当添加到包括流体的其他材料中时,这些氧气分子可以自由释放。OX66TM材料是白色粉末,且在本公开中也称为粉末。
内燃发动机(ICE)是一种热力发动机,其中燃料在燃烧室中与氧化剂(通常是空气)一起燃烧,燃烧室是工作流体流动回路的组成部分。在内燃发动机中,由燃烧产生的高温和高压气体的膨胀将直接力施加到发动机的某些部件上。力通常施加到活塞、涡轮叶片、转子或喷嘴上。该力使部件移动一段距离,将化学能转化为有用的机械能。
术语内燃发动机通常是指间歇燃烧的发动机,例如更熟悉的四冲程和二冲程活塞发动机,以及变型,例如六冲程活塞发动机和汪克尔转子发动机(Wankel rotary engine)。第二类内燃发动机使用连续燃烧:燃气轮机、喷气发动机和大多数火箭发动机,它们中的每个都是内燃发动机,其原理与前述相同。枪支也是内燃发动机的一种形式。
相反,在外燃发动机中,诸如蒸汽发动机或斯特林发动机,能量被传递到工作流体,该工作流体不由燃烧产物构成、不与燃烧产物混合或受其污染。工作流体可以是在锅炉中加热的空气、热水、加压水甚至液态钠。ICE通常由诸如汽油或柴油等的能量密集型燃料以及源自化石燃料的液体提供动力。尽管有许多固定式的应用,但大多数ICE用于移动式的应用,并且是诸如汽车、飞机和船只等交通工具的主要动力源。
通常,采用像天然气或石油产品(例如汽油、柴油燃料或燃油)等化石燃料为ICE供料。用于CI(压缩点火)发动机的生物柴油以及用于SI(火花点火)发动机的生物乙醇或甲醇等可再生燃料的使用在不断增长。氢气有时会使用,并且可以从化石燃料或可再生能源获得。
期望具有增加的氧合作用的更节能和更高能量的燃料。
发明内容
一种组合物,包括多氧金属氢氧化物材料和燃料,所述多氧金属氢氧化物材料包括包合物,所述包合物含有氧气(O2)分子。所述多氧金属氢氧化物材料,例如OX66TM材料,被添加到燃料中,例如但不限于汽油、酒精和柴油等燃料,能够在发动机中燃烧,以产生显著增加的马力和扭矩。OX66TM材料以不同的比例添加到燃料中以产生改善的性能。不同的比率基于几个因素,包括发动机的类型和设计、燃料的类型以及环境参数。
附图说明
图1示出了根据本公开的方法和系统,燃烧包括OX66TM材料的燃料的典型内燃机;
图2示出了马力的提升以及两个测力计运行之间的AFR的运动;
图3示出了扭矩的提升以及两个测力计运行之间的AFR的运动;
图4示出了过滤器,通过该过滤器,气体或多余的废气经过包含包合物的多氧金属氢氧化物,从而使NOx附着在包合物上并保持静态;
图5示出了包括OX66TM材料的可替换芯;
图6示出了收集以及可能的对废气残余物装袋和锥底单元;以及
图7示出了在催化转化器之后将OX66TM材料添加到再注入流中。
具体实施方式
OX66TM材料通常具有白色粉末的形状,在本文档中也称为粉末。OX66TM材料是一种多氧氢氧化铝,其包括含有氧气分子(O2)的包合物。OX66TM材料在美国专利和专利申请中有所描述并已获得授权,包括美国专利9,801,906B2和美国专利9,980,909B2,其内容通过引用并入本申请。如美国专利9,980,909中所述,OX66TM材料是可溶的,并且可以不含氯。由于材料的每个颗粒的形状,OX66TM材料的表面积非常大。这种巨大的表面积会吸收周围的材料,例如氧气、水等,是材料中固有的任何氧气含量的数倍(multiplier)。
申请人已经发现,当与燃料结合/混合时,OX66TM材料的新的有利的用途,所述燃料例如但不限于汽油、酒精和柴油。包合物的可自由释放的氧气分子O2显著增加了燃烧燃料时释放的能量。仅需要一小部分OX66TM材料即可显著增大产生的能量,例如增大内燃发动机的马力和扭矩。例如,燃料与OX66TM材料的体积混合比可以为大约100:1,或更小,例如200:1。
在车辆发动机中尝试包含OX66TM材料的燃料之前进行的测试中,发现一定量的OX66TM材料溶于液体燃料,包括汽油、酒精和柴油等。大量的OX66TM材料与燃料混合后,粉末的吸收或悬浮似乎达到没有明显反应的程度,且结果是粉末和燃料混合物变成了凝胶状泥。在试管中,在较低的体积组合下,发现似乎存在一个最佳点,在该点上,粉末和燃料非常活跃地相互作用,产生气体反应,使燃料几乎像碳酸水一样起泡。已经发现,在一限定范围内,燃料和粉末的混合物对于粉末的吸收和充氧作用是最佳的。发现以大约100:1的燃料与粉末体积比有反应的可见证据。一个重要的发现是,在某些情况下,粉末过多会导致残余物过多或产生凝胶状泥。随着粉末量减少,即随着比率增大,所得化合物似乎达到了释放出最大量的燃料的最佳饱和度。OX66TM材料可溶于流体,并且发现该材料也可溶于燃料。氧气量的精确测量以及固态和液态组分之间的交点仅是体积的近似值。
对于车辆发动机测试,使用的粉末与燃料相比非常少,按体积计约100:1的混合物,或约每加仑91辛烷汽油一满套管粉末。粉末溶解在燃料中。如图1所示,将1933福特发动机10连接到测力计12,发动机燃烧按100:1的体积比混合的91辛烷汽油与粉末。一个最初的发现是利用粉末材料使燃料空气混合物中空气比例更高。由于没有测量或分析所得化合物和混合物成分的方法,我们继续对混合物进行测力计测试,通过调整空气燃料混合物来调节发动机化油器。
图2-3中的图表显示,在测试过程中,从为10的十分丰富的空气燃料比(AFR)混合物到为11.9的较稀混合物,增大了约1.9个单位。图2-3表示开始和结束时的运行情况,以说明通过在大约100:1的混合物下的测试测得的发动机10性能的变化。图2-3清楚地表明,马力、扭矩在整个rpm范围内、特别是在较低rpm的一端显著改善,以及两个测力运转之间的AFR的运动。
有多种将粉末输送到燃料的方法,例如,将水或甲基丙烯酸与粉末混合的甲基喷雾套件。
如图2所示,与使用不含OX66TM材料的相同燃油相比,发动机马力(hp)显著增大。如图所示,在3200rpm时,当燃烧包含粉末的燃料时,发动机马力从约90hp增大到160h p。增大了70hp,约77%。在约3600rpm下,当燃烧包括粉末的燃料时,马力从约125hp增大到180hp,增大约44%。在约4150rpm下,马力从约200hp增大到260hp,增大约30%。如图2所示,使用包括OX66TM材料的燃料所产生的马力显著增加,尤其是在从0到5000rpm的发动机转速下。值得注意的是,与仅使用燃料相比,使用包括粉末的燃料在整个rpm范围内马力都增加了。
如图3所示,对应于图2的相同测试,与燃烧不含OX66TM材料的燃料相比,当燃烧包括粉末的燃料时,发动机扭矩显著增大。如图所示,在3200rpm下,当燃烧包括粉末的燃料时,与燃烧不使用粉末的燃料相比,发动机扭矩从约150ft-lbs增大到240ft-lbs,增大约60%,很大。在3600rpm下,发动机扭矩从约200ft-lbs增大到290ft-lbs,增大约45%。在约4800rpm下,当燃烧含有和不含OX66TM材料的燃料时产生的扭矩约相等。如图3所示,使用包括OX66TM材料的燃油,发动机扭矩显著增大,尤其是在发动机转速为0到4300rpm时。
在一些应用中,OX66TM材料的颗粒尺寸可以受到尺寸和/或均质的限制。例如,颗粒尺寸可以都小于特定极限,例如小于200微米、100微米和50微米。该尺寸可以帮助增大在燃料中的溶解度,还可以避免在设备(例如发动机)中产生残留物或堵塞某些组件或通道。
燃料与粉末的比例可以高于100:1,例如200:1或更高。该比率可以小于100:1,例如80:1,但是油泥因素成为一个问题。该比率可以取决于许多因素,例如所需的功率增大与成本,以及粉末对特定发动机的影响。
实施例2
在存在未完全燃烧的氧气的情况下释放的氮气产生大量的氮气-氧气废气,通常被称为“NOx”气体。
二氧化氮和一氧化氮一起称为氮氧化物(NOx)。NOx气体反应形成烟雾和酸雨,并且是形成细颗粒物(PM)和地面臭氧的关键,而这两者都对健康产生不利影响。
废气在柴油发动机、燃气轮机、发电厂锅炉和工艺炉中特别普遍。但是,如果以汽油为燃料的内燃发动机具有后燃器以破坏污染物CO和碳氢化合物,那么该组合系统由于另外加热废气,必然使用过量的空气和热量,产生了NOx气体。
根据本公开,从废气流中去除NOx的一种方法如下。使气体或多余的废气经过包含包合物的多氧金属氢氧化物,使NOx附着在包合物上并保持静止状态,如图4中40所示。NO x在超过1200℃的宽温度范围内都保持静止状态,这是因为包合物在100℃时释放出少量水并且在超过1200℃时仍保持可溶和反应性。多氧金属氢氧化物可包含多氧氢氧化铝,例如得克萨斯州普莱诺的Hemotek LLC制造的OX66TM。当萃取介质(OX66TM)被消耗或污染到低于所需饱和点时,此类过滤系统可能需要清洁。
解决该问题的一个简单方法是使用包括OX66TM材料的可替换芯,如图5中50所示。
应当理解,在本领域中,较高的温度对于特别是柴油发动机的性能是有用的。但是,由于这种升高的温度导致NOx的量升高,迫使操作人员在满足环境限制的情况下降低温度。已知在升高的温度下不可能使用其他方法,例如氨或胺提取法。有利地,OX66TM包合物是稳定的,吸收和保持从-25摄氏度到有害发动机的操作上限以上的NOx气体。
处理方法包括芯式装置,其装有多氧金属包合物,但通过设计允许气体通过、收集氮气且不会因泄漏而超出操作量。
一个实施例包括废气和包合物在其中发生反应的云室,然后残余气体可以通过膜式过滤器以允许包合物被捕获并再利用至饱和。饱和点将影响设计。芯设计是完成这项工作的一种简便方法。在某个时刻,芯将充满氮,因此易拆卸是设计需要。
当芯饱和时,保留的氮材料可以用作相当重要的肥料,将为作物提供所需的氮,但不会像各种硝酸盐那样处于爆炸状态。此外,芯很轻并易于分发、处理和使用。
在OX66TM的情况下,富氮包合物可以动态使用。收集并可能装袋废气残留物,如图6中60所示的锥底装置可以用于收集和装袋残余物和其他用途。
过滤后的氮富氧粉末的输送方式之一可以是空气滴,并滴入积云中,在此处“播种(seeding)”,并且由于包合物的氧气会将其保持在稳定的雨滴溶液中,因此产生的雨不会变成酸雨。
将纳米级的多氧金属氢氧化物颗粒添加到发动机的燃料流中是另一种用途。
如图7中70所示,另一种方法是在催化转化器之后在再注入流中添加相同的材料。
如果目标仅是歧管级处的废气,针对发动机本身的背压考虑,需要为工程设计留出余地。
纳米级多氧金属氢氧化物颗粒可具有深潜呼吸和生存装置方面的用途,以防止血液渗氮(潜水病)。
其他实质用途包括长期太空飞行中的用途。它的吸引力在于非常轻,且重量始终是空间提举/重量限制方面的考虑因素。(美国宇航局目前使用每磅10,000美元的费用提升到地球轨道。)
宇宙中第二常见的元素是氦。包合物可容纳大量氦气,氦气是天然气燃烧产生的天然副产物。随着电力工业越来越多地转化为甲烷,使用新型氦洗涤器/捕集机构的潜力成为可能,提取氦的方法可能只是热法。从包合物释放的气体都可以是可热控制的。
OX66TM材料也可用作发酵剂,以帮助生产无发酵面包。该材料可以清除面糊中或烹饪或预烹饪阶段的氧气,朝着备受追捧和重视的完全无发酵面包的方向迈进。
特别是纳米级OX66TM材料的机械用途是作为人造纤维甚至丝绸的超级抛光剂。这解决了当前使用低级激光完成这一工作的问题,超光滑的基础材料在生物计算机方面具有发展前景,生物计算机将不再基于硅或将需要具有硅表面的可靠生物内表面。现在,考虑推进晶体管“摩尔定律”的方向正转向具有生物基础设施的基于量子的单元。
使用纳米颗粒基础的OX66TM材料具有多种用途。一种用途是作为机械研磨剂来抛光表面,并且不会因使用蒸汽或激光珩磨而有烧伤或热点的风险。另一个用途是作为有机层之间的非导电绝缘体,以为光伏和热电基体产生N-P轨道结构。
对前述公开内容的陈述仅仅是为了说明本公开内容,而不在于进行限制。将理解,在不脱离本公开的精神和预期范围的情况下,以上教导涵盖了修改、变化和另外的实施例,并且落入所附权利要求的范围内。由于包含本公开的精神和实质的公开实施例的修改对于本领域技术人员而言是可能的,因此本公开应解释为包括落入所附权利要求及其等同物的范围内的所有内容。

Claims (18)

1.一种组合物,包括:
燃料;和
多氧氢氧化铝材料,其包括包合物,所述包合物包含置于燃料中的氧气分子,其中所述多氧氢氧化铝材料可溶于流体。
2.根据权利要求1所述的组合物,其中,所述燃料为流体。
3.根据权利要求1所述的组合物,其中,所述燃料是可燃的。
4.一种组合物,包括:燃料;和多氧氢氧化铝材料,其包括包合物,所述包合物包含置于燃料中的氧气分子,其中所述燃料能够通过内燃发动机燃烧。
5.根据权利要求1所述的组合物,其中,所述燃料包括基于石油的燃料。
6.一种组合物,包括:燃料;和多氧氢氧化铝材料,其包括包合物,所述包合物包含置于燃料中的氧气分子,其中,所述多氧氢氧化铝材料溶解在燃料中。
7.根据权利要求1所述的组合物,其中,所述多氧氢氧化铝材料的颗粒尺寸均小于或等于200微米。
8.根据权利要求4所述的组合物,其中,所述多氧氢氧化铝材料不含氯。
9.根据权利要求1的组合物,其中,燃料与多氧氢氧化铝的体积比为至少100∶1。
10.根据权利要求1的组合物,其中,燃料与多氧氢氧化铝的体积比为至少200∶1。
11.一种方法,包括:燃烧包括燃料和多氧氢氧化铝材料的组合物,所述多氧氢氧化铝材料包含包合物,所述包合物包含置于所述燃料中的氧气分子。
12.根据权利要求11的方法,其中,燃料与多氧氢氧化铝的体积比为至少100∶1。
13.根据权利要求11的方法,其中,燃料与多氧氢氧化铝的体积比为至少200∶1。
14.根据权利要求11所述的方法,其中,所述燃料为流体。
15.根据权利要求11所述的方法,其中,所述燃料包括基于石油的燃料。
16.根据权利要求11所述的方法,其中,所述多氧氢氧化铝材料溶解在燃料中。
17.根据权利要求11所述的方法,其中,所述多氧氢氧化铝材料的颗粒尺寸均小于或等于200微米。
18.根据权利要求11所述的方法,其中,所述多氧氢氧化铝材料不含氯。
CN201980014217.9A 2018-02-19 2019-02-18 含多氧金属氢氧化物的燃料 Expired - Fee Related CN111801087B (zh)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US201862632126P 2018-02-19 2018-02-19
US62/632,126 2018-02-19
US16/259,426 2019-01-28
US16/259,426 US10344234B1 (en) 2018-02-19 2019-01-28 Fuel including poly-oxygenated metal hydroxide
PCT/US2019/018397 WO2020013888A2 (en) 2018-02-19 2019-02-18 Fuel including poly-oxygenated metal hydroxide

Publications (2)

Publication Number Publication Date
CN111801087A CN111801087A (zh) 2020-10-20
CN111801087B true CN111801087B (zh) 2021-06-25

Family

ID=67106447

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201980014217.9A Expired - Fee Related CN111801087B (zh) 2018-02-19 2019-02-18 含多氧金属氢氧化物的燃料

Country Status (8)

Country Link
US (4) US10344234B1 (zh)
EP (1) EP3752124B1 (zh)
KR (1) KR102171305B1 (zh)
CN (1) CN111801087B (zh)
AU (1) AU2019302301B2 (zh)
CA (1) CA3091648C (zh)
ES (1) ES2906717T3 (zh)
WO (1) WO2020013888A2 (zh)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10344234B1 (en) * 2018-02-19 2019-07-09 Hemotek, Llc Fuel including poly-oxygenated metal hydroxide
KR20220117901A (ko) 2019-12-23 2022-08-24 셰브런 유.에스.에이.인크. 원유 및 이성질체화 탈왁스 장치를 통한 플라스틱 폐기물의 폴리에틸렌 및 윤활유로의 순환 경제
MX2022007306A (es) 2019-12-23 2022-10-21 Chevron Usa Inc Economia circular para residuos plasticos en polietileno y productos quimicos a traves de unidad de crudo de refineria.
JP2023508350A (ja) 2019-12-23 2023-03-02 シェブロン ユー.エス.エー. インコーポレイテッド 精製fcc及び異性化脱ろうユニットを介したポリプロピレン及び潤滑油への廃プラスチックのサーキュラーエコノミー
WO2021133889A1 (en) 2019-12-23 2021-07-01 Chevron U.S.A. Inc. Circular economy for plastic waste to polypropylene via refinery fcc unit
MX2022007242A (es) 2019-12-23 2022-10-27 Chevron Usa Inc Economia circular para residuos plasticos en polietileno a traves de craqueo catalitico de fluidos (fcc) de refineria y unidades de alquilacion.
WO2021133875A1 (en) 2019-12-23 2021-07-01 Chevron U.S.A. Inc. Circular economy for plastic waste to polythylene via refinery crude unit
US11566182B2 (en) 2020-03-30 2023-01-31 Chevron U.S.A. Inc. Circular economy for plastic waste to polyethylene via refinery FCC feed pretreater and FCC units
US11306253B2 (en) 2020-03-30 2022-04-19 Chevron U.S.A. Inc. Circular economy for plastic waste to polyethylene via refinery FCC or FCC/alkylation units
EP4139420A4 (en) 2020-04-22 2024-05-29 Chevron U.S.A. Inc. CIRCULAR ECONOMY FOR PLASTIC WASTE TO POLYPROPYLENE VIA OIL REFINERY WITH FILTRATION AND METAL OXIDE TREATMENT OF PYROLYSIS OIL
CA3177034A1 (en) 2020-04-22 2021-10-28 Chevron U.S.A. Inc. Circular economy for plastic waste to polyethylene via oil refinery with filtering and metal oxide treatment of pyrolysis oil

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106995730A (zh) * 2017-04-28 2017-08-01 周磊 一种混合柴油燃料
WO2017172898A1 (en) * 2016-03-30 2017-10-05 Baylor University Solution comprising poly-oxygenated metal hydroxide

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4093707A (en) 1971-09-01 1978-06-06 Merkl George Process for preparing peroxide group containing aluminum complex
US4032623A (en) 1973-02-12 1977-06-28 Merkl George Hydroperoxy group-containing aluminum compound and method of making the same
US4034071A (en) * 1976-01-26 1977-07-05 Allegheny General Hospital Immunoassay procedures
GB2002332B (en) * 1977-06-27 1982-02-17 Humatec Resources Inc Fuel containing activated aluminium compounds
US5997590A (en) * 1996-11-13 1999-12-07 Quantum Energy Technologies Corp. Stabilized water nanocluster-fuel emulsions designed through quantum chemistry
US10137146B2 (en) * 2016-03-30 2018-11-27 Baylor University Oxygen-enabled composition
US10272105B2 (en) * 2016-03-30 2019-04-30 Hemotek, Llc Plant medium including an oxygen-enabled composition
US10780110B2 (en) * 2002-05-01 2020-09-22 Hemotek, Llc Plant medium including an oxygen-enabled composition
US9980909B2 (en) * 2016-03-30 2018-05-29 Baylor University Oxygen-enabled composition
US9950006B2 (en) * 2016-03-30 2018-04-24 Baylor University Nutraceutical containing an oxygen-enabled composition
US7164051B2 (en) * 2002-09-03 2007-01-16 Baker Hughes Incorporated Gas hydrate inhibitors
GB0813650D0 (en) * 2008-07-25 2008-09-03 Ulive Entpr Ltd Clathrates for gas storage
US9649335B1 (en) * 2016-03-30 2017-05-16 Baylor University Intravenous administration of an oxygen-enabled fluid
IT201600130556A1 (it) * 2016-12-23 2018-06-23 Lamberti Spa Inibitori di idrati di gas
US10344234B1 (en) * 2018-02-19 2019-07-09 Hemotek, Llc Fuel including poly-oxygenated metal hydroxide

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017172898A1 (en) * 2016-03-30 2017-10-05 Baylor University Solution comprising poly-oxygenated metal hydroxide
CN106995730A (zh) * 2017-04-28 2017-08-01 周磊 一种混合柴油燃料

Also Published As

Publication number Publication date
US20210189269A1 (en) 2021-06-24
US20190330548A1 (en) 2019-10-31
AU2019302301A1 (en) 2020-09-17
EP3752124B1 (en) 2021-11-10
AU2019302301B2 (en) 2020-10-15
US10344234B1 (en) 2019-07-09
US11274259B2 (en) 2022-03-15
CA3091648A1 (en) 2020-01-16
WO2020013888A3 (en) 2020-04-02
WO2020013888A2 (en) 2020-01-16
US20220186131A1 (en) 2022-06-16
KR102171305B1 (ko) 2020-10-28
US10941363B2 (en) 2021-03-09
KR20200113003A (ko) 2020-10-05
CA3091648C (en) 2022-05-31
EP3752124A2 (en) 2020-12-23
CN111801087A (zh) 2020-10-20
ES2906717T3 (es) 2022-04-20

Similar Documents

Publication Publication Date Title
CN111801087B (zh) 含多氧金属氢氧化物的燃料
Mei et al. Role of cerium oxide nanoparticles as diesel additives in combustion efficiency improvements and emission reduction
Hasannuddin et al. Durability studies of single cylinder diesel engine running on emulsion fuel
Ithnin et al. Combustion performance and emission analysis of diesel engine fuelled with water-in-diesel emulsion fuel made from low-grade diesel fuel
Lin et al. Diesel engine performance and emission characteristics of biodiesel produced by the peroxidation process
Thakur et al. An overview of butanol as compression ignition engine fuel
WO2010039315A2 (en) Nano-dispersions of coal in water as the basis of fuel related tecfinologies and methods of making same
Jiao et al. Stabilization performance of methanol-diesel emulsified fuel prepared using an impinging stream-rotating packed bed
WO2002059238A9 (en) Sub-critical water-fuel composition and combustion system
JP2011526572A (ja) 水素を発生するコロイド懸濁液
JP2013524077A (ja) ロー・スペシフィック・エミッション分解
Raheman et al. Performance and emissions of emulsified biodiesel operated diesel engine
Makarevičienė et al. The exploitation and environmental characteristics of diesel fuel containing rapeseed butyl esters
Iwai et al. Study on performance of diesel engine applied with emulsified diesel fuel: the influence of fuel injection timing and water contents
US11634653B2 (en) Droplet for fuels
JP2004091625A (ja) ボイラ用乳化植物油燃料
Khan et al. Physicochemical and FTIR study of diesel-hydrogen peroxide fuel blend
Sambaeva et al. Water is an effective additive to fuel oil to reduce the concentration of soot in the gas phase
Mukhopadhyay et al. Experimental investigations of metal oxide nano-additives on working characteristics of CI engine
Hussien et al. Enhancement of diesel engine performance and emissions burning biodiesel with cerium oxide nanoparticles additive
Singh et al. Evaluate the Effectiveness of Aqueous Alumina Nano-Fluid on the Engine load and Speed test of CI Engine under Ambient conditions
Krishnaiah et al. Performance and emission analysis of porous media combustion chamber in diesel engines for different fuel blends
Singh et al. Experimental investigation of performance analysis of Lubricating oil mixed with Gasoline B3 under Ambient conditions
Rajeshkumar et al. Experimental investigation of emission control in IC Engines By introducing various techniques
Arya et al. Review of performance analysis of green engine fueled with gasoline blended bio-fuel

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20210625