CN111800797B - 一种测量、发送测量配置信息的方法及设备 - Google Patents

一种测量、发送测量配置信息的方法及设备 Download PDF

Info

Publication number
CN111800797B
CN111800797B CN201910275793.0A CN201910275793A CN111800797B CN 111800797 B CN111800797 B CN 111800797B CN 201910275793 A CN201910275793 A CN 201910275793A CN 111800797 B CN111800797 B CN 111800797B
Authority
CN
China
Prior art keywords
value
measurement gap
cell
terminal device
duration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910275793.0A
Other languages
English (en)
Other versions
CN111800797A (zh
Inventor
韩磊
程金能
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Huawei Technologies Co Ltd
Original Assignee
Huawei Technologies Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Huawei Technologies Co Ltd filed Critical Huawei Technologies Co Ltd
Priority to CN201910275793.0A priority Critical patent/CN111800797B/zh
Priority to PCT/CN2020/082491 priority patent/WO2020207300A1/zh
Publication of CN111800797A publication Critical patent/CN111800797A/zh
Application granted granted Critical
Publication of CN111800797B publication Critical patent/CN111800797B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/02Arrangements for optimising operational condition
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/08Testing, supervising or monitoring using real traffic
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/001Synchronization between nodes

Abstract

本申请涉及一种测量、发送测量配置信息的方法及设备。其中的测量方法包括:终端设备确定测量间隙的配置信息,所述配置信息包括所述测量间隙的时长,所述时长大于或等于第一值;所述终端设备在所述测量间隙内进行测量。测量间隙的时长较长,从而通过较长的测量间隙可以尽量将终端设备待测量的小区的同步信号块的时域位置都包括在内,则终端设备可以尽量完成对于所有的待测量的小区的同步信号块的测量,以获得较为完善及准确的SFTD。

Description

一种测量、发送测量配置信息的方法及设备
技术领域
本申请涉及通信技术领域,尤其涉及一种测量、发送测量配置信息的方法及设备。
背景技术
长期演进(long term evolution,LTE)系统和新空口(new radio,NR)系统的无线帧的编号的范围均为0~1023,无线帧的帧长均为10ms。因此,对于主小区和NR小区来说,只要能够获得主小区和NR小区的系统帧号和帧定时差(system frame number and frametiming difference,SFTD),就能知道这两个小区的相对时间位置。主小区可以是LTE小区,也可以是NR小区。
要获得小区间的SFTD,一般是靠终端设备对同步信号的测量获得。例如,有些终端设备具备多通道并发能力,即,这样的终端设备在不影响服务小区业务的情况下,可以并发进行邻区的同步信号测量,但这种测量方式对终端设备的能力要求较高。因此更为一般的方式是,对于另外一些终端设备,基站可以为这些终端设备分配测量间隙(measurementGAP),在测量间隙期间,终端设备可以切换到异系统(例如从LTE系统切换到NR系统)或异频(与服务小区的频率不同的其他频率),对同步信号进行测量,并根据测量结果计算各个邻区相对于终端设备的服务小区的SFTD,以及将得到的SFTD发送给网络设备。
以终端设备待测量的小区是NR小区为例。在NR系统中,同步信号一般为同步信号/物理广播信道块(synchronization signal/physical broadcast channel block,SSB)。SSB的周期可能有多种,例如有5ms,20m,或160ms等。不同的小区发送SSB的周期可能是不一样的,并且各个小区之间不一定存在无线帧同步关系,这就导致不同的小区发送的SSB的时域位置不一样。对于依赖测量间隙进行SFTD测量的终端设备,可能需要在基站所配置的测量间隙里测量各个小区的SSB。而目前的测量间隙有规定好的类型,每种类型对应有相应的时长以及周期。按照目前的测量间隙的类型和时长,以及SSB在时域位置上的特点,可能会存在这样的问题:在测量间隙内,终端设备可能完全无法测量到邻区发送的SSB,或者只能测到部分邻区发送的SSB,从而终端设备所获得的SFTD也可能是不完善或不准确的。
发明内容
本申请实施例提供一种测量、发送测量配置信息的方法及设备,用于提高所获得的SFTD的准确性和完善程度。
第一方面,提供一种测量方法,该方法包括:终端设备确定测量间隙的配置信息,所述配置信息包括所述测量间隙的时长,所述时长大于或等于第一值;所述终端设备在所述测量间隙内进行测量。
该方法可由第一通信装置执行,第一通信装置可以是通信设备或能够支持通信设备实现该方法所需的功能的通信装置,例如芯片系统。示例性地,所述通信设备为终端设备。
在本申请实施例中,测量间隙的时长可以大于或等于第一值,可以理解为,测量间隙的时长较长,从而通过较长的测量间隙可以尽量将终端设备待测量的小区的同步信号块的时域位置都包括在内,则终端设备可以尽量完成对于所有的待测量的小区的同步信号块的测量,以获得较为完善及准确的SFTD,提高网络设备后续根据SFTD进行操作的精度和可靠性。
结合第一方面,在第一方面的一种可能的实施方式中,所述时长与同步信号块的周期的最大值存在映射关系;或,所述时长与所述第一小区的邻区发送的同步信号块的周期的最大值存在映射关系;或,所述时长是个常数。
测量间隙的时长可以根据不同的因素确定,至于究竟根据何种因素确定,本申请实施例不做限制。同步信号块例如为SSB,或者也可能是其他的用于实现同步功能的信号块,具体的不做限制。
结合第一方面,在第一方面的一种可能的实施方式中,所述时长是根据同步信号块的周期的最大值所确定的;或,所述时长是根据所述第一小区的邻区发送的同步信号块的周期的最大值所确定的;或,所述时长是根据常数所确定的。
结合第一方面,在第一方面的一种可能的实施方式中,所述时长与同步信号块的周期的最大值存在映射关系,所述第一值为同步信号块的周期的最大值,或所述第一值为同步信号块的周期的最大值与第二值之和;或,所述时长与所述第一小区的邻区发送的同步信号块的周期的最大值存在映射关系,所述第一值为所述第一小区的邻区发送的同步信号块的周期的最大值,或所述第一值为所述第一小区的邻区发送的同步信号块的周期的最大值与第二值之和;或,所述时长是个常数,所述第一值为所述常数,或所述第一值为所述常数与第二值之和;其中,所述第二值是所述终端设备的开销。
其中,同步信号块的周期的最大值,可以是协议规定的同步信号块的周期的最大值。根据协议规定的同步信号块的周期的最大值来确定测量间隙的时长,使得测量间隙能够尽量将所有的周期的同步信号块都包括在内,从而终端设备在测量时可以尽量能够测量到各个邻区所发送的同步信号块。或者,根据第一小区的邻区发送的同步信号块的周期的最大值来确定测量间隙的时长,使得所确定的测量间隙的时长更为符合实际的邻区的情况,既可以使得测量间隙能够尽量将终端设备需测量的同步信号块都包括在内,从而终端设备在测量时可以尽量能够测量到各个邻区所发送的同步信号块,也无需将测量间隙的时长确定的过长,尽量保证终端设备有足够的时间在第一小区进行正常的业务。或者,根据常数来确定测量间隙的时长,网络设备在确定测量间隙的时长时无需获得较多的信息,确定方式较为简单。而且常数也可以是经验值或典型值等,使得所确定的测量间隙的时长可以较为符合实际的邻区的情况,既可以使得测量间隙能够尽量将终端设备需测量的同步信号块都包括在内,从而终端设备在测量时可以尽量能够测量到各个邻区所发送的同步信号块,也无需将测量间隙的时长确定的过长,尽量保证终端设备有足够的时间在第一小区进行正常的业务。
结合第一方面,在第一方面的一种可能的实施方式中,所述配置信息还包括如下信息中的一种或它们的任意组合:所述测量间隙的周期;待测量的频率信息;待测量的小区信息;待测量的频率信息或小区信息对应的无线接入技术的信息;或,所述测量间隙的时域起始位置。
配置信息除了包括测量间隙的时长之外,还可以包括其他的一些信息,例如包括如上所述的至少一种信息,或者还可以包括如上未列举的其他的信息,具体的不做限制。
结合第一方面,在第一方面的一种可能的实施方式中,所述方法还包括:所述终端设备向所述网络设备发送测量结果。
终端设备在得到测量结果之后,可以将测量结果发送给网络设备。测量结果例如包括SFTD,网络设备获得SFTD后可以进行相应的操作,例如可以添加双连接结构,或者可以为终端设备配置更为准确的测量间隙等。本申请实施例对于网络设备获得SFTD之后的具体操作不做限制。
结合第一方面,在第一方面的一种可能的实施方式中,所述方法还包括:所述终端设备在所述测量间隙内停止接收来自所述网络设备的业务数据。
在测量间隙内,因为终端设备是要对异频或异系统进行测量,因此网络设备在测量间隙内可以停止发送对应于该终端设备的业务数据,则终端设备在测量间隙内也停止接收对应于该终端设备的业务数据,从而减小终端设备错过接收业务数据的可能性。或者,网络设备在测量间隙内可以是停止发送对应于该终端设备的信号,则终端设备在测量间隙内也停止接收对应于该终端设备的信号。对应于该终端设备的信号可以包括业务数据,还可以包括其他的信号,例如同步信号等,从而减小终端设备错过接收信号的可能性。
第二方面,提供一种发送测量配置信息的方法,该方法包括:网络设备确定测量间隙的配置信息,所述配置信息包括所述测量间隙的时长,所述时长大于或等于第一值;所述网络设备在第一小区向终端设备发送所述配置信息。
该方法可由第二通信装置执行,第二通信装置可以是通信设备或能够支持通信设备实现该方法所需的功能的通信装置,例如芯片系统。示例性地,所述通信设备为网络设备。
结合第二方面,在第二方面的一种可能的实施方式中,所述时长与同步信号块的周期的最大值存在映射关系;或,所述时长与所述第一小区的邻区发送的同步信号块的周期的最大值存在映射关系;或,所述时长是个常数。
结合第二方面,在第二方面的一种可能的实施方式中,所述时长是根据同步信号块的周期的最大值所确定的;或,所述时长是根据所述第一小区的邻区发送的同步信号块的周期的最大值所确定的;或,所述时长是根据常数所确定的。
结合第二方面,在第二方面的一种可能的实施方式中,所述时长与同步信号块的周期的最大值存在映射关系,所述第一值为同步信号块的周期的最大值,或所述第一值为同步信号块的周期的最大值与第二值之和;或,所述时长与所述第一小区的邻区发送的同步信号块的周期的最大值存在映射关系,所述第一值为所述第一小区的邻区发送的同步信号块的周期的最大值,或所述第一值为所述第一小区的邻区发送的同步信号块的周期的最大值与第二值之和;或,所述时长是个常数,所述第一值为所述常数,或所述第一值为所述常数与第二值之和;其中,所述第二值是所述终端设备的开销。
结合第二方面,在第二方面的一种可能的实施方式中,所述配置信息还包括如下信息中的一种或它们的任意组合:所述测量间隙的周期;待测量的频率信息;待测量的小区信息;待测量的频率信息或小区信息对应的无线接入技术的信息;或,所述测量间隙的时域起始位置。
结合第二方面,在第二方面的一种可能的实施方式中,所述方法还包括:所述网络设备接收来自所述终端设备的测量结果。
结合第二方面,在第二方面的一种可能的实施方式中,所述方法还包括:所述网络设备在所述测量间隙内停止发送对应于所述终端设备的业务数据。
关于第二方面或第二方面的各种实施方式所带来的技术效果,可以参考对于第一方面或第一方面的各种实施方式的技术效果的介绍,不多赘述。
第三方面,提供第一种通信装置,例如该通信装置为如前所述的第一通信装置。所述通信装置用于执行上述第一方面或第一方面的任一可能的实现方式中的方法。具体地,所述通信装置可以包括用于执行第一方面或第一方面的任一可能的实现方式中的方法的模块,例如包括处理模块和存储模块,例如存储模块可以用于存储处理器执行任务所需的指令。可选的,所述通信装置还包括与所述处理模块相互耦合的收发模块。示例性地,所述通信装置为终端设备。其中,
所述处理模块,用于确定测量间隙的配置信息,所述配置信息包括所述测量间隙的时长,所述时长大于或等于第一值;
所述处理模块,还用于在所述测量间隙内进行测量。
结合第三方面,在第三方面的一种可能的实施方式中,所述时长与同步信号块的周期的最大值存在映射关系;或,所述时长与所述第一小区的邻区发送的同步信号块的周期的最大值存在映射关系;或,所述时长是个常数。
结合第三方面,在第三方面的一种可能的实施方式中,所述时长是根据同步信号块的周期的最大值所确定的;或,所述时长是根据所述第一小区的邻区发送的同步信号块的周期的最大值所确定的;或,所述时长是根据常数所确定的。
结合第三方面,在第三方面的一种可能的实施方式中,所述时长与同步信号块的周期的最大值存在映射关系,所述第一值为同步信号块的周期的最大值,或所述第一值为同步信号块的周期的最大值与第二值之和;或,所述时长与所述第一小区的邻区发送的同步信号块的周期的最大值存在映射关系,所述第一值为所述第一小区的邻区发送的同步信号块的周期的最大值,或所述第一值为所述第一小区的邻区发送的同步信号块的周期的最大值与第二值之和;或,所述时长是个常数,所述第一值为所述常数,或所述第一值为所述常数与第二值之和;其中,所述第二值是所述通信设备的开销。
结合第三方面,在第三方面的一种可能的实施方式中,所述配置信息还包括如下信息中的一种或它们的任意组合:所述测量间隙的周期;待测量的频率信息;待测量的小区信息;待测量的频率信息或小区信息对应的无线接入技术的信息;或,所述测量间隙的时域起始位置。
结合第三方面,在第三方面的一种可能的实施方式中,所述收发模块,用于向所述网络设备发送测量结果。
结合第三方面,在第三方面的一种可能的实施方式中,所述收发模块,用于在所述测量间隙内停止接收来自所述网络设备的业务数据。
关于第三方面或第三方面的任一种可能的实现方式的技术效果,可参考对第一方面或第一方面的各种可能的实现方式的介绍。
第四方面,提供第二种通信装置,例如该通信装置为如前所述的第二通信装置。所述通信装置用于执行上述第二方面或第二方面的任一可能的实现方式中的方法。具体地,所述通信装置可以包括用于执行第二方面或第二方面的任一可能的实现方式中的方法的模块,例如包括相互耦合的处理模块和收发模块。示例性地,所述通信装置为网络设备。其中,
所述处理模块,用于确定测量间隙的配置信息,所述配置信息包括所述测量间隙的时长,所述时长大于或等于第一值;
所述收发模块,用于在第一小区向终端设备发送所述配置信息。
结合第四方面,在第四方面的一种可能的实施方式中,所述时长与同步信号块的周期的最大值存在映射关系;或,所述时长与所述第一小区的邻区发送的同步信号块的周期的最大值存在映射关系;或,所述时长是个常数。
结合第四方面,在第四方面的一种可能的实施方式中,所述时长是根据同步信号块的周期的最大值所确定的;或,所述时长是根据所述第一小区的邻区发送的同步信号块的周期的最大值所确定的;或,所述时长是根据常数所确定的。
结合第四方面,在第四方面的一种可能的实施方式中,所述时长与同步信号块的周期的最大值存在映射关系,所述第一值为同步信号块的周期的最大值,或所述第一值为同步信号块的周期的最大值与第二值之和;或,所述时长与所述第一小区的邻区发送的同步信号块的周期的最大值存在映射关系,所述第一值为所述第一小区的邻区发送的同步信号块的周期的最大值,或所述第一值为所述第一小区的邻区发送的同步信号块的周期的最大值与第二值之和;或,所述时长是个常数,所述第一值为所述常数,或所述第一值为所述常数与第二值之和;其中,所述第二值是所述终端设备的开销。
结合第四方面,在第四方面的一种可能的实施方式中,所述配置信息还包括如下信息中的一种或它们的任意组合:所述测量间隙的周期;待测量的频率信息;待测量的小区信息;待测量的频率信息或小区信息对应的无线接入技术的信息;或,所述测量间隙的时域起始位置。
结合第四方面,在第四方面的一种可能的实施方式中,所述收发模块,还用于接收来自所述终端设备的测量结果。
结合第四方面,在第四方面的一种可能的实施方式中,所述收发模块,还用于在所述测量间隙内停止发送对应于所述终端设备的业务数据。
关于第四方面或第四方面的各种实施方式所带来的技术效果,可以参考对于第二方面或第二方面的各种实施方式的技术效果的介绍,不多赘述。
第五方面,提供第三种通信装置,该通信装置例如为如前所述的第一通信装置。该通信装置包括处理器和存储器,可选的,还包括收发器,处理器、存储器和收发器用于实现上述第一方面或第一方面的各种可能的设计所描述的方法。示例性地,所述通信装置为设置在通信设备中的芯片。示例性的,所述通信设备为终端设备。其中,收发器例如通过通信设备中的天线、馈线和编解码器等实现,或者,如果所述通信装置为设置在通信设备中的芯片,那么收发器例如为芯片中的通信接口,该通信接口与通信设备中的射频收发组件连接,以通过射频收发组件实现信息的收发。其中,
所述存储器,用于存储指令;
所述处理器,用于执行所述存储器所存储的指令,确定测量间隙的配置信息,并在所述测量间隙内进行测量,所述配置信息包括所述测量间隙的时长,所述时长大于或等于第一值。
结合第五方面,在第五方面的一种可能的实施方式中,所述时长与同步信号块的周期的最大值存在映射关系;或,所述时长与所述第一小区的邻区发送的同步信号块的周期的最大值存在映射关系;或,所述时长是个常数。
结合第五方面,在第五方面的一种可能的实施方式中,所述时长是根据同步信号块的周期的最大值所确定的;或,所述时长是根据所述第一小区的邻区发送的同步信号块的周期的最大值所确定的;或,所述时长是根据常数所确定的。
结合第五方面,在第五方面的一种可能的实施方式中,所述时长与同步信号块的周期的最大值存在映射关系,所述第一值为同步信号块的周期的最大值,或所述第一值为同步信号块的周期的最大值与第二值之和;或,所述时长与所述第一小区的邻区发送的同步信号块的周期的最大值存在映射关系,所述第一值为所述第一小区的邻区发送的同步信号块的周期的最大值,或所述第一值为所述第一小区的邻区发送的同步信号块的周期的最大值与第二值之和;或,所述时长是个常数,所述第一值为所述常数,或所述第一值为所述常数与第二值之和;其中,所述第二值是所述通信设备的开销。
结合第五方面,在第五方面的一种可能的实施方式中,所述配置信息还包括如下信息中的一种或它们的任意组合:所述测量间隙的周期;待测量的频率信息;待测量的小区信息;待测量的频率信息或小区信息对应的无线接入技术的信息;或,所述测量间隙的时域起始位置。
结合第五方面,在第五方面的一种可能的实施方式中,所述收发器,用于向所述网络设备发送测量结果。
结合第五方面,在第五方面的一种可能的实施方式中,所述收发器,用于在所述测量间隙内停止接收来自所述网络设备的业务数据。
关于第五方面或第五方面的任一种可能的实现方式的技术效果,可参考对第一方面或第一方面的各种可能的实现方式的介绍。
第六方面,提供第四种通信装置,该通信装置例如为如前所述的第二通信装置。该通信装置包括处理器和收发器,用于实现上述第二方面或第二方面的各种可能的设计所描述的方法。示例性地,所述通信装置为设置在通信设备中的芯片。示例性的,所述通信设备为网络设备。其中,收发器例如通过通信设备中的天线、馈线和编解码器等实现,或者,如果所述通信装置为设置在通信设备中的芯片,那么收发器例如为芯片中的通信接口,该通信接口与通信设备中的射频收发组件连接,以通过射频收发组件实现信息的收发。其中,
所述处理器,用于确定测量间隙的配置信息,所述配置信息包括所述测量间隙的时长,所述时长大于或等于第一值;
所述收发器,用于在第一小区向终端设备发送所述配置信息。
结合第六方面,在第六方面的一种可能的实施方式中,所述时长与同步信号块的周期的最大值存在映射关系;或,所述时长与所述第一小区的邻区发送的同步信号块的周期的最大值存在映射关系;或,所述时长是个常数。
结合第六方面,在第六方面的一种可能的实施方式中,所述时长是根据同步信号块的周期的最大值所确定的;或,所述时长是根据所述第一小区的邻区发送的同步信号块的周期的最大值所确定的;或,所述时长是根据常数所确定的。
结合第六方面,在第六方面的一种可能的实施方式中,所述时长与同步信号块的周期的最大值存在映射关系,所述第一值为同步信号块的周期的最大值,或所述第一值为同步信号块的周期的最大值与第二值之和;或,所述时长与所述第一小区的邻区发送的同步信号块的周期的最大值存在映射关系,所述第一值为所述第一小区的邻区发送的同步信号块的周期的最大值,或所述第一值为所述第一小区的邻区发送的同步信号块的周期的最大值与第二值之和;或,所述时长是个常数,所述第一值为所述常数,或所述第一值为所述常数与第二值之和;其中,所述第二值是所述终端设备的开销。
结合第六方面,在第六方面的一种可能的实施方式中,所述配置信息还包括如下信息中的一种或它们的任意组合:所述测量间隙的周期;待测量的频率信息;待测量的小区信息;待测量的频率信息或小区信息对应的无线接入技术的信息;或,所述测量间隙的时域起始位置。
结合第六方面,在第六方面的一种可能的实施方式中,所述收发器,还用于接收来自所述终端设备的测量结果。
结合第六方面,在第六方面的一种可能的实施方式中,所述收发器,还用于在所述测量间隙内停止发送对应于所述终端设备的业务数据。
关于第六方面或第六方面的各种实施方式所带来的技术效果,可以参考对于第二方面或第二方面的各种实施方式的技术效果的介绍,不多赘述。
第七方面,提供一种通信系统,该通信系统包括网络设备和终端设备。示例性地,所述网络设备为接入网设备,例如基站。其中,
所述网络设备,用于确定测量间隙的配置信息,并在第一小区向所述终端设备发送所述配置信息,所述配置信息包括所述测量间隙的时长,所述时长大于或等于第一值;
所述终端设备,用于确定测量间隙的配置信息,并在所述测量间隙内进行测量,所述配置信息包括所述测量间隙的时长,所述时长大于或等于第一值。
结合第七方面,在第七方面的一种可能的实施方式中,所述时长与同步信号块的周期的最大值存在映射关系;或,所述时长与所述第一小区的邻区发送的同步信号块的周期的最大值存在映射关系;或,所述时长是个常数。
结合第七方面,在第七方面的一种可能的实施方式中,所述时长是根据同步信号块的周期的最大值所确定的;或,所述时长是根据所述第一小区的邻区发送的同步信号块的周期的最大值所确定的;或,所述时长是根据常数所确定的。
结合第七方面,在第七方面的一种可能的实施方式中,所述时长与同步信号块的周期的最大值存在映射关系,所述第一值为同步信号块的周期的最大值,或所述第一值为同步信号块的周期的最大值与第二值之和;或,所述时长与所述第一小区的邻区发送的同步信号块的周期的最大值存在映射关系,所述第一值为所述第一小区的邻区发送的同步信号块的周期的最大值,或所述第一值为所述第一小区的邻区发送的同步信号块的周期的最大值与第二值之和;或,所述时长是个常数,所述第一值为所述常数,或所述第一值为所述常数与第二值之和;其中,所述第二值是所述终端设备的开销。
结合第七方面,在第七方面的一种可能的实施方式中,所述配置信息还包括如下信息中的一种或它们的任意组合:所述测量间隙的周期;待测量的频率信息;待测量的小区信息;待测量的频率信息或小区信息对应的无线接入技术的信息;或,所述测量间隙的时域起始位置。
结合第七方面,在第七方面的一种可能的实施方式中,所述终端设备,还用于向所述网络设备发送测量结果;所述网络设备,还用于接收来自所述终端设备的测量结果。
结合第七方面,在第七方面的一种可能的实施方式中,所述终端设备,还用于在所述测量间隙内停止接收来自所述网络设备的业务数据;所述网络设备,还用于在所述测量间隙内停止发送对应于所述终端设备的业务数据。
关于第七方面或第七方面的各种实施方式所带来的技术效果,可以参考对于第一方面或第一方面的各种实施方式的技术效果的介绍,或参考对于第二方面或第二方面的各种实施方式的技术效果的介绍,不多赘述。
第八方面,提供第五种通信装置。该通信装置可以为上述方法设计中的第一通信装置。示例性地,所述通信装置为设置在终端设备中的芯片。该通信装置包括:存储器,用于存储计算机可执行程序代码;以及处理器,处理器与存储器耦合。其中存储器所存储的程序代码包括指令,当处理器执行所述指令时,使第八种通信装置执行上述第一方面或第一方面的任意一种可能的实施方式中的方法。
其中,第八种通信装置还可以包括通信接口,该通信接口可以是终端设备中的收发器,例如通过所述通信装置中的天线、馈线和编解码器等实现,或者,如果第八种通信装置为设置在终端设备中的芯片,则通信接口可以是该芯片的输入/输出接口,例如输入/输出管脚等。
第九方面,提供第六种通信装置。该通信装置可以为上述方法设计中的第二通信装置。示例性地,所述通信装置为设置在网络设备中的芯片。该通信装置包括:存储器,用于存储计算机可执行程序代码;以及处理器,处理器与存储器耦合。其中存储器所存储的程序代码包括指令,当处理器执行所述指令时,使第六种通信装置执行上述第二方面或第二方面的任意一种可能的实施方式中的方法。
其中,第六种通信装置还可以包括通信接口,该通信接口可以是网络设备中的收发器,例如通过所述通信装置中的天线、馈线和编解码器等实现,或者,如果第六种通信装置为设置在网络设备中的芯片,则通信接口可以是该芯片的输入/输出接口,例如输入/输出管脚等。
第十方面,提供一种计算机存储介质,所述计算机可读存储介质中存储有指令,当其在计算机上运行时,使得计算机执行上述第一方面或第一方面的任意一种可能的设计中所述的方法。
第十一方面,提供一种计算机存储介质,所述计算机可读存储介质中存储有指令,当其在计算机上运行时,使得计算机执行上述第二方面或第二方面的任意一种可能的设计中所述的方法。
第十二方面,提供一种包含指令的计算机程序产品,所述计算机程序产品中存储有指令,当其在计算机上运行时,使得计算机执行上述第一方面或第一方面的任意一种可能的设计中所述的方法。
第十三方面,提供一种包含指令的计算机程序产品,所述计算机程序产品中存储有指令,当其在计算机上运行时,使得计算机执行上述第二方面或第二方面的任意一种可能的设计中所述的方法。
在本申请实施例中,测量间隙的时长较长,从而通过较长的测量间隙可以尽量将终端设备待测量的小区的同步信号块的时域位置都包括在内,则终端设备可以尽量完成对于所有的待测量的小区的同步信号块的测量,以获得较为完善及准确的SFTD。
附图说明
图1为终端设备无法在测量间隙内测量所有待测的SSB的示意图;
图2~图6为本申请实施例提供的几种应用场景的示意图;
图7为本申请实施例提供的一种发送测量信息以及测量的方法的流程图;
图8为本申请实施例提供的第一种终端设备的示意性框图;
图9为本申请实施例提供的第一种终端设备的另一示意性框图;
图10为本申请实施例提供的第一种网络设备的示意性框图;
图11为本申请实施例提供的第一种网络设备的另一示意性框图;
图12为本申请实施例提供的通信装置的示意性框图;
图13为本申请实施例提供的通信装置的另一示意性框图;
图14为本申请实施例提供的通信装置的再一示意性框图。
具体实施方式
为了使本申请实施例的目的、技术方案和优点更加清楚,下面将结合附图对本申请实施例作进一步地详细描述。
以下,对本申请实施例中的部分用语进行解释说明,以便于本领域技术人员理解。
1)终端设备,包括向用户提供语音和/或数据连通性的设备,例如可以包括具有无线连接功能的手持式设备、或连接到无线调制解调器的处理设备。该终端设备可以经无线接入网(radio access network,RAN)与核心网进行通信,与RAN交换语音和/或数据。该终端设备可以包括用户设备(user equipment,UE)、无线终端设备、移动终端设备、设备到设备通信(device-to-device,D2D)终端设备、车到一切(vehicle-to-everything,V2X)终端设备、机器到机器/机器类通信(machine-to-machine/machine-type communications,M2M/MTC)终端设备、物联网(internet of things,IoT)终端设备、订户单元(subscriberunit)、订户站(subscriber station),移动站(mobile station)、远程站(remotestation)、接入点(access point,AP)、远程终端(remote terminal)、接入终端(accessterminal)、用户终端(user terminal)、用户代理(user agent)、或用户装备(userdevice)等。例如,可以包括移动电话(或称为“蜂窝”电话),具有移动终端设备的计算机,便携式、袖珍式、手持式、计算机内置的移动装置等。例如,个人通信业务(personalcommunication service,PCS)电话、无绳电话、会话发起协议(session initiationprotocol,SIP)话机、无线本地环路(wireless local loop,WLL)站、个人数字助理(personal digital assistant,PDA)、等设备。还包括受限设备,例如功耗较低的设备,或存储能力有限的设备,或计算能力有限的设备等。例如包括条码、射频识别(radiofrequency identification,RFID)、传感器、全球定位系统(global positioning system,GPS)、激光扫描器等信息传感设备。
作为示例而非限定,在本申请实施例中,该终端设备还可以是可穿戴设备。可穿戴设备也可以称为穿戴式智能设备或智能穿戴式设备等,是应用穿戴式技术对日常穿戴进行智能化设计、开发出可以穿戴的设备的总称,如眼镜、手套、手表、服饰及鞋等。可穿戴设备即直接穿在身上,或是整合到用户的衣服或配件的一种便携式设备。可穿戴设备不仅仅是一种硬件设备,更是通过软件支持以及数据交互、云端交互来实现强大的功能。广义穿戴式智能设备包括功能全、尺寸大、可不依赖智能手机实现完整或者部分的功能,例如:智能手表或智能眼镜等,以及只专注于某一类应用功能,需要和其它设备如智能手机配合使用,如各类进行体征监测的智能手环、智能头盔、智能首饰等。
而如上介绍的各种终端设备,如果位于车辆上(例如放置在车辆内或安装在车辆内),都可以认为是车载终端设备,车载终端设备例如也称为车载单元(on-board unit,OBU)。
2)网络设备,例如包括接入网(access network,AN)设备,例如基站(例如,接入点),可以是指接入网中在空口通过一个或多个小区与无线终端设备通信的设备,或者例如,一种车到一切(vehicle-to-everything,V2X)技术中的接入网设备为路侧单元(roadside unit,RSU)。基站可用于将收到的空中帧与网际协议(IP)分组进行相互转换,作为终端设备与接入网的其余部分之间的路由器,其中接入网的其余部分可包括IP网络。RSU可以是支持V2X应用的固定基础设施实体,可以与支持V2X应用的其他实体交换消息。接入网设备还可协调对空口的属性管理。例如,接入网设备可以包括LTE系统或高级长期演进(longterm evolution-advanced,LTE-A)中的演进型基站(NodeB或eNB或e-NodeB,evolutionalNode B),或者也可以包括第五代移动通信技术(the 5th generation,5G)NR系统中的下一代节点B(next generation node B,gNB),或者也可以包括云接入网(cloud radio accessnetwork,Cloud RAN)系统中的集中式单元(centralized unit,CU)和分布式单元(distributed unit,DU),本申请实施例并不限定。
当然网络设备还可以包括核心网设备,但因为本申请实施例提供的技术方案主要涉及的是接入网设备,因此在后文中,如无特殊说明,则后文所描述的“网络设备”均是指接入网设备。
3)测量间隙,在测量间隙的时长内,终端设备可以切换接收通道,以离开当前的频率(也就是终端设备的服务小区所在的频率),而到其他频率进行测量。测量间隙可用于异频测量,也可以用于异系统测量。可以理解为,在测量间隙里,终端设备所测量的频率与服务小区所在的频率所属的无线接入技术(radio access technology,RAT)可以相同,或者也可以不同。另外,终端设备的服务小区会在测量间隙内停止向该终端设备发送业务数据。
4)邻区,可以包括同频邻区或邻频邻区,或者包括同频邻区和邻频邻区。其中,同频邻区,是指频率与该终端设备的服务小区的频率相同的邻区;邻频,是指与该终端设备的服务小区的频率相邻的频率;邻频邻区,是指与该终端设备的服务小区的频率相邻的频率下的小区。
例如,终端设备的服务小区的频率为f1,所谓同频邻区为在该终端设备的服务小区的覆盖范围内,终端设备在频率f1上可能搜索或检测到的小区;所谓邻频,为在该终端设备的服务小区的覆盖范围内,与该服务小区的频率不同,但终端设备可能搜索或检测到的小区的频率;所谓邻频邻区,是指在该终端设备的服务的小区的覆盖范围内,与该服务小区的频率不同,但终端设备可能搜索或检测到的所有频率下的小区。
另外,邻频也可以称为异频。
5)多接入技术双连接(multi-RAT dual connectivity,MR-DC)。
在LTE系统中,终端设备支持同时接入到两个网络设备,这种接入方式称为双连接(dualconnectivity,DC),这两个网络设备中的一个网络设备为主网络设备,另一个网络设备为辅网络设备。在无线通信系统的发展演进过程中,运营商会同时部署NR系统和LTE系统,终端设备也支持同时接入到LTE的网络设备和NR的网络设备。因为LTE又被称为演进的通用陆面无线接入(evolved universal terrestrial radio access,E-UTRA),所以这种接入方式被称为演进的通用陆面无线接入与新空口双连接(E-UTRA NR dualconnectivity,EN-DC)。在EN-DC模式下,LTE的网络设备为主网络设备,NR的网络设备为辅网络设备,当然随着系统的演进,未来也可以支持新空口与演进的通用陆面无线接入双连接(NR E-UTRA dual connectivity,NE-DC),即NR的网络设备为主网络设备,LTE的网络设备为辅网络设备。由于EN-DC和NE-DC的终端设备都会接入到两个不同的无线接入技术的网络设备,所以这些DC模式也可以统称为MR-DC。
6)“至少一个”是指一个或者多个,“多个”是指两个或两个以上。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B的情况,其中A,B可以是单数或者复数。字符“/”一般表示前后关联对象是一种“或”的关系。“以下至少一项(个)”或其类似表达,是指的这些项中的任意组合,包括单项(个)或复数项(个)的任意组合。例如,a,b,或c中的至少一项(个),可以表示:a,b,c,a-b,a-c,b-c,或a-b-c,其中a,b,c可以是单个,也可以是多个。
以及,除非有相反的说明,本申请实施例提及“第一”、“第二”等序数词是用于对多个对象进行区分,不用于限定多个对象的顺序、时序、优先级或者重要程度。例如,第一值和第二值,只是为了区分不同的取值,而并不是表示这两种取值的内容、优先级或者重要程度等的不同。
如上介绍了本申请实施例涉及的一些概念,下面介绍本申请实施例的技术特征。
LTE系统和NR系统的无线帧的编号的范围均为0~1023,无线帧的帧长均为10ms。因此,对于主小区和NR小区,只要能够获得SFTD,就能知道这两个小区的相对时间位置。主小区例如为LTE小区,或者为NR小区。两个小区的相对时间位置,这个时间同步信息对某些场景是必须的(不限于下述场景)。
场景一:服务小区配置测量间隙。
终端设备可在测量间隙内对服务小区的邻区进行测量。其中,服务小区例如为LTE小区,邻区例如为NR小区,或者,服务小区例如为NR小区,邻区例如也为NR小区。
无线通信系统中的测量,服务小区的基站需要配置测量间隙,终端设备在测量间隙内对服务小区的邻区进行测量。终端设备能够测量到邻区的关键点是,测量间隙时长(measurement GAP length,MGL)内,要包含邻区发送的同步信号。
在LTE系统中,同步信号的周期是固定的,无论是哪个LTE小区,发送的同步信号的周期都相同。
在NR系统中,同步信号为SSB。而在协议定义上,SSB在时域上是稀疏的,并不像LTE一样会持续并固定周期的发送。也就是说,SSB的周期有多种,根据目前的协议,SSB的周期可以是5ms,10ms,20ms,40ms,80ms,或160ms等,不同的小区可能按照不同的周期发送SSB,因此SSB在时域上可能并不是固定周期来发送。
无论LTE小区是主小区还是NR小区是主小区,如果邻区是NR小区,则主小区如果要测量邻区发送的SSB,就需要知道邻区发送的SSB的时域位置。在无线通信系统中,主小区可以获得SFTD,以及主小区还可以获得邻区发送的SSB相对于邻区的时间的时域位置,则主小区就可以获得邻区发送的SSB的具体时域位置,从而可以根据邻区发送的SSB的具体时域位置配置测量间隙,以在测量间隙内对邻区发送的SSB进行测量。
场景二:非独立组网(non-standalone,NSA)场景。
NR系统中还引入了NR和LTE的NSA组网方式,这种场景是双连接方式。以EN-DC场景为例,即,LTE基站为主基站,NR基站为辅基站。如果作为主小区的LTE小区要启动LTE的异频或异系统测量,按照协议规定,LTE小区会配置测量间隙,且在该测量间隙内,不但LTE小区停止向终端设备发送业务数据,作为辅小区的NR小区也要停止向该终端设备发送业务数据。那么NR小区也就需要知道测量间隙的信息以及SFTD,以能够在该测量间隙内停止向终端设备发送业务数据。
当然,如上只是举例,SFTD还可以应用在多种场景下,而不限于如上的两种场景。
要获得SFTD,一般是靠终端设备对同步信号的测量获得。例如,基站可以为终端设备分配测量间隙,在测量间隙内,终端设备可以切换到异系统(例如从LTE系统切换到NR系统)或异频,对同步信号进行测量,根据测量结果计算各个邻区相对于终端设备的服务小区的SFTD,并将得到的SFTD发送给基站。基站接收SFTD后,接收的SFTD对基站来说可以生效一段时间,而基站在确定SFTD可能发生变化时,可以重新配置终端设备进行SFTD的测量。例如,基站可以设置定时器,在定时器超时时,基站认为SFTD发生了变化;或者,在发生小区重建或基站重启等动作时,基站认为SFTD发生了变化。
基站利用终端设备发送的SFTD,可以进一步对该终端设备或者该终端设备的服务小区内的其他的终端设备进行较为精确的测量间隙的配置或邻区的测量配置等,以满足小区内终端设备的移动性需求。
目前,为了防止对业务数据造成影响,例如防止业务数据的时延增大或长时间中断等,测量间隙的种类是有限的,可参考表1:
表1
GAP类型(pattern)ID MGL(ms) MGRP(ms) GAP pattern ID MGL(ms) MGRP(ms)
0 6 40 12 5.5 20
1 6 80 13 5.5 40
2 3 40 14 5.5 80
3 3 80 15 5.5 160
4 6 20 16 3.5 20
5 6 160 17 3.5 40
6 4 20 18 3.5 80
7 4 40 19 3.5 160
8 4 80 20 1.5 20
9 4 160 21 1.5 40
10 3 20 22 1.5 80
11 3 160 23 1.5 160
表1中,GAP类型标识号(ID)表示测量间隙的类型的编号,MGL表示对应的测量间隙的时长,测量间隙重复周期(measurement gap repetition period,MGRP)表示对应的测量间隙的周期。以GAP类型0为例,表示在周期为40的测量间隙内,测量间隙的时长只有6ms,也就是说,在一个周期为40的测量间隙内,终端设备只能在6ms的测量间隙内进行测量。表1中共有24种测量间隙的类型,这是目前所提供的测量间隙的所有类型。
如果终端设备待测量的邻区是NR小区,则终端设备在测量间隙内对邻区进行测量时,可能需要测量多个邻区发送的SSB。而在前文也介绍了,不同的小区发送的SSB的周期可能有所不同,例如有的小区发送的SSB的周期可能是5ms,而有的小区发送的SSB的周期可能是160ms,而且各个小区之间也不一定存在无线帧同步关系,这就导致SSB在时域上的分布较为稀疏,也就是说,不同的小区发送的SSB的时域位置可能不一样。而又可以看到,表1中的所有类型所对应的MGL都是比较短的,最长也只有6ms。因此,通过目前的测量间隙对应的MGL,很难将终端设备需测量的各个小区的SSB的时域位置都包括在一个测量间隙内。那么,终端设备在进行测量时,很可能在测量间隙内无法测量到一部分小区所发送的SSB,甚至有可能在测量间隙内无法测量到任何一个小区发送的SSB。例如请参考图1,在测量间隙的周期内,测量间隙的时长是有限的。可以看到,在图1所示的测量间隙的时长内只能测量到SSB1,而SSB2和SSB3都位于测量间隙的时长之外,因此终端设备是无法测量到SSB2和SSB3的。因此,终端设备所获得的SFTD可能是不完善或不准确的,基站如果根据这样的SFTD再进行配置测量间隙等操作,显然会影响基站操作的准确性和可靠性,也会影响终端设备的移动性。
或者,要获得SFTD,也可以无需通过测量间隙。例如可以利用终端设备的多通道并发能力,即,终端设备在不影响在服务小区的通信的情况下,可以用多通道能力并发进行对异频或异系统的测量,以获得SFTD。这种方案不需要基站配置测量间隙,也就不存在因为测量间隙的MGL不合适而导致终端设备无法获得较为完善或准确的SFTD。
但这种方式对终端设备的能力有较高的要求。如果小区内的终端设备都不具备这种多通道工作的能力,网络设备将无法获得SFTD。
再或者,终端设备可以牺牲在服务小区的通信,而直接切换通道到异频或异系统进行测量,以获得SFTD。在这种方式下,终端设备和网络设备将无法同步,即,存在网络设备在发送对应于终端设备的业务数据,而该终端设备却切换通道去做SFTD的测量,造成业务的损失。
鉴于此,提供本申请实施例的技术方案。在本申请实施例中,测量间隙的时长可以大于或等于第一值,可以理解为,测量间隙的时长较长,从而通过较长的测量间隙可以尽量将终端设备待测量的小区的SSB的时域位置都包括在内,则终端设备可以尽量完成对于所有的待测量的小区的SSB的测量,以获得较为完善及准确的SFTD,提高网络设备后续操作的精度和可靠性。
本申请实施例提供的技术方案可以应用于5G系统中,例如NR系统,或者应用于LTE系统中,或者还可以应用于下一代移动通信系统或其他类似的通信系统,具体的不做限制。
下面介绍本申请实施例所应用的一种场景,在该场景下,终端设备只连接一个网络设备,请参考图2。
图2中包括网络设备和终端设备,终端设备与一个网络设备连接。当然图2中的终端设备的数量只是举例,在实际应用中,网络设备可以为多个终端设备提供服务。该网络设备可以按照本申请实施例提供的方法来配置测量间隙,多个终端设备中的部分终端设备或全部终端设备中的每个终端设备都可以通过本申请实施例提供的方案来获得SFTD。另外,图2中的终端设备以手机为例,在实际应用中不限于此。
图2中的网络设备例如为接入网设备,例如基站。其中,接入网设备在不同的系统对应不同的设备,例如在第四代移动通信技术(the 4th generation,4G)系统中可以对应eNB,在5G系统中对应5G中的接入网设备,例如gNB。当然本申请实施例所提供的技术方案也可以应用于未来的移动通信系统中,因此图2中的网络设备也可以对应未来的移动通信系统中的接入网设备。
除此之外,本申请实施例还可以应用于双连接场景,终端设备同时接入到LTE网络设备和NR网络设备。需要说明的是,LTE网络设备和NR网络设备可以部署在同一个站点上,如图3和图4所示。其中,图3是对于网络设备和终端设备的硬件结构的示意。或者,LTE网络设备和NR网络设备也可以部署在不同的站点上,如图5和图6所示。其中,图5是对于网络设备和终端设备的硬件结构的示意。并且,当LTE网络设备和NR网络设备部署在同一个站点上时,LTE网络设备和NR网络设备可以共享同一套硬件设备,如图4所示,为LTE网络设备和NR网络设备共享部分硬件设备的示意图,图4中,LTE网络设备和NR网络设备可以共享收发器。或者,当LTE网络设备和NR网络设备部署在同一个站点上时,LTE网络设备和NR网络设备也可以分别使用不同的硬件设备。
下面结合附图介绍本申请实施例提供的技术方案。
本申请实施例提供一种发送测量信息以及测量的方法,请参见图7,为该方法的流程图。在下文的介绍过程中,以该方法应用于图2~图6中的任意一个附图所示的网络架构为例。另外,该方法可由两个通信装置执行,这两个通信装置例如为第一通信装置和第二通信装置,其中,第一通信装置可以是网络设备或能够支持网络设备实现该方法所需的功能的通信装置,或者第一通信装置可以是终端设备或能够支持终端设备实现该方法所需的功能的通信装置,当然还可以是其他通信装置,例如芯片系统。对于第二通信装置也是同样,第二通信装置可以是网络设备或能够支持网络设备实现该方法所需的功能的通信装置,或者第二通信装置可以是终端设备或能够支持终端设备实现该方法所需的功能的通信装置,当然还可以是其他通信装置,例如芯片系统。且对于第一通信装置和第二通信装置的实现方式均不做限制,例如第一通信装置可以是网络设备,第二通信装置是终端设备,或者第一通信装置和第二通信装置都是网络设备,或者第一通信装置和第二通信装置都是终端设备,或者第一通信装置是网络设备,第二通信装置是能够支持终端设备实现该方法所需的功能的通信装置,等等。其中,网络设备例如为基站。
为了便于介绍,在下文中,以该方法由网络设备和终端设备执行为例,也就是说,以第一通信装置是网络设备、第二通信装置是终端设备为例。因为本实施例是以应用在图2~图6中的任意一个附图所示的网络架构为例,因此,如果将本实施例应用在图2所示的网络架构,则下文中所述的网络设备可以是图2所示的网络架构中的网络设备,下文中所述的终端设备可以是图2所示的网络架构中的终端设备;或者,如果将本实施例应用在图3~图6中的任一个附图所示的网络架构,则下文中所述的网络设备可以是图3~图6所示的网络架构中的主网络设备,下文中所述的终端设备可以是图3~图6所示的网络架构中的终端设备。而图3~图6所示的网络架构中的主网络设备,可以是LTE网络设备,也可以是NR网络设备。
S71、网络设备确定测量间隙的配置信息,所述配置信息包括所述测量间隙的时长,所述时长大于或等于第一值。
网络设备可以触发该网络设备覆盖的全部的终端设备或部分终端设备进行SFTD的测量流程。例如,网络设备可以周期性触发,或者,也可以由于小区重建或者基站重启等原因而触发,本申请实施例对于网络设备的触发原因不做限制。
网络设备究竟触发哪些终端设备进行SFTD的测量流程,也取决于网络设备的实现。例如,网络设备可以在需要的时候对该网络设备的某个小区内的处于连接态的全部终端设备进行触发,或者也可以根据终端设备的方位或终端设备与网络设备之间的距离等因素触发,例如触发距离网络设备较近的终端设备等。具体触发哪些终端设备,本申请实施例亦不做限制。
网络设备要触发SFTD的测量,就需要配置测量间隙,也就是需要确定用于测量的测量间隙的配置信息。
在本申请实施例中,测量间隙的时长,可以理解为MGL,是大于或等于第一值的。对于测量间隙的时长究竟如何确定,可以有不同的方式,下面分别介绍。
1、第一种确定测量间隙的时长的方式。
测量间隙的时长与同步信号块的周期的最大值存在映射关系,或者说,测量间隙的时长是根据同步信号块的周期的最大值所确定的。
在本申请的各个实施例中,同步信号块例如为SSB,或者也可以是其他用于实现同步信号的功能的信号块。在下文中,主要以同步信号块是SSB为例。
同步信号块的周期的最大值,可以理解为是协议规定的同步信号块的周期的最大值。例如同步信号块为SSB,则SSB的周期的最大值可以表示为SSBPERIODmax。根据目前的协议,SSB的周期可以是5ms,10ms,20ms,40ms,80ms,或160ms,可见,目前的协议规定的SSB的周期的最大值是160,那么本申请实施例中的测量间隙的时长就可以根据160ms来确定,或者说本申请实施例中的测量间隙的时长可以与160ms具有映射关系。或者,如果协议有所改动,例如今后的协议可能规定的SSB的周期的最大值大于160,那么本申请实施例中的测量间隙的时长又可以根据改变后的协议所规定的SSB的周期的最大值来确定。
例如,第一值可以等于同步信号块的周期的最大值,则测量间隙的时长可以大于或等于同步信号块的周期的最大值。例如将测量间隙的时长用MeaLen表示,将SSB的周期的最大值用SSBPERIODmax表示,则MeaLen≥SSBPERIODmax。
或者,终端设备在进入测量间隙进行测量时,需要切换通道等,因此需要一定的准备时间,该准备时间可以认为是终端设备的开销(或者说是终端设备的时间开销)。在该准备时间内,终端设备是无法正常进行测量的,因此在确定测量间隙的时长时,也可以考虑终端设备的开销(或者说是终端设备的时间开销),从而使得终端设备在测量间隙内能够有充分的时间测量同步信号块。例如终端设备的开销为第二值,那么,第一值可以等于同步信号块的周期的最大值与第二值之和,则测量间隙的时长可以大于或等于同步信号块的周期的最大值与第二值之和。例如将测量间隙的时长用MeaLen表示,将SSB的周期的最大值用SSBPERIODmax表示,将第二值用Tproc表示,则MeaLen≥SSBPERIODmax+Tproc
其中,第二值可以由终端设备切换新的通道的软件处理以及硬件稳定等时间决定。对于网络设备来说,可以根据经验值或默认值等直接确定终端设备的开销,而无需终端设备专门通知。
根据协议规定的同步信号块的周期的最大值来确定测量间隙的时长,使得测量间隙能够尽量将所有的周期的同步信号块都包括在内,从而终端设备在测量时可以尽量能够测量到各个邻区所发送的同步信号块。
另外,配置信息还可以包括测量间隙的周期,也就是MGRP。因为根据第一种确定测量间隙的时长所确定的测量间隙的时长可能较长,如果测量间隙的周期也较小,则终端设备可能有较多的时间处于测量间隙内,这可能会影响终端设备对正常业务的接收。因此,如果采用第一种确定测量间隙的时长的方式来确定测量间隙的时长,则测量间隙的周期可以相对较长,以尽量保证终端设备能有较为充足的时间在服务小区进行正常的业务。例如,测量间隙的时长等于同步信号块的周期的最大值与第二值之和,同步信号块的周期的最大值为160ms,第二值为2ms,则测量间隙的时长等于162ms,在这种情况下,可以将测量间隙的周期确定为1280ms。
当然,在确定测量间隙的周期时还可以考虑其他的一些因素,也有可能在考虑了各种因素后所确定的测量间隙的周期是较短的。本申请实施例并不限制究竟如何确定测量间隙的周期,也不限制测量间隙的周期的长短。
2、第二种确定测量间隙的时长的方式。
测量间隙的时长与第一小区的邻区发送的同步信号块的周期的最大值存在映射关系,或者说,测量间隙的时长是根据第一小区的邻区发送的同步信号块的周期的最大值所确定的。
例如网络设备是要配置第一小区内的终端设备进行SFTD的测量流程,第一小区就是这些终端设备的服务小区,因此终端设备要测量的就是第一小区的邻区。
例如,具有邻区关系的网络设备,或者具有基站间接口(例如X2接口)的网络设备,可以彼此之间传输同步信号块的周期的信息。例如对于所述的网络设备来说,可以确定该网络设备提供的除了第一小区之外的其他小区所发送的同步信号块的周期,也可以接收其他网络设备发送的通知信息,该通知信息用于指示其他网络设备所提供的小区发送的同步信号块的周期,那么对于所述的网络设备来说,就可以知道第一小区的邻区所发送的同步信号块的周期。以同步信号块是SSB为例,不同的小区发送的SSB的周期可能各不相同,则网络设备可以选择第一小区的邻区发送的SSB的周期的最大值,根据该最大值来确定测量间隙的时长。例如第一小区共有3个邻区,其中的邻区1发送的SSB的周期为5ms,其中的邻区2发送的SSB的周期为20ms,其中的邻区3发送的SSB的周期为80ms,那么网络设备就可以根据80ms来确定测量间隙的时长,或者说网络设备确定80ms与测量间隙的时长具有映射关系。
例如,第一值可以等于第一小区的邻区发送的同步信号块的周期的最大值,则测量间隙的时长可以大于或等于第一小区的邻区发送的同步信号块的周期的最大值。例如将测量间隙的时长用MeaLen表示,将第一小区的邻区发送的同步信号块的周期的最大值用SSBPERIODCellMax表示,则MeaLen≥SSBPERIODCellMax。
或者,与第一种确定测量间隙的时长的方式所介绍的类似的,在根据第二种确定测量间隙的时长的方式确定测量间隙的时长时,也可以考虑终端设备的开销,从而使得终端设备在测量间隙内能够有充分的时间测量同步信号块。例如终端设备的开销为第二值,那么,第一值可以等于第一小区的邻区发送的同步信号块的周期的最大值与第二值之和,则测量间隙的时长可以大于或等于第一小区的邻区发送的同步信号块的周期的最大值与第二值之和。例如将测量间隙的时长用MeaLen表示,将第一小区的邻区发送的同步信号块的周期的最大值用SSBPERIODCellMax表示,将第二值用Tproc表示,则MeaLen≥SSBPERIODCellMax+Tproc
其中,关于第二值的介绍可参考第一种确定测量间隙的时长的方式下的相关介绍,不多赘述。
根据第一小区的邻区发送的同步信号块的周期的最大值来确定测量间隙的时长,使得所确定的测量间隙的时长更为符合实际的邻区的情况,既可以使得测量间隙能够尽量将终端设备需测量的同步信号块都包括在内,从而终端设备在测量时可以尽量能够测量到各个邻区所发送的同步信号块,也无需将测量间隙的时长确定的过长,尽量保证终端设备有足够的时间在第一小区进行正常的业务。
另外,配置信息还可以包括测量间隙的周期,也就是MGRP。与第一种确定测量间隙的时长的方式类似的,在第二种确定测量间隙的时长的方式下,也不限制究竟如何确定测量间隙的周期,以及不限制测量间隙的周期的长短。
3、第三种确定测量间隙的时长的方式。
测量间隙的时长是个常数,或者说,测量间隙的时长可以根据常数确定。
该常数例如为经验值或典型值,所谓的经验值或典型值,可以是网络设备根据经验所确定的值。
例如,网络设备确定有M个小区发送的同步信号块的周期都是N,M为正整数,且M大于阈值,则N就可以作为该常数。例如,网络设备确定有10个小区发送的同步信号块的周期都是20ms,阈值为8,则20就可以作为该常数。
或者,网络设备确定在第一时长内有M个小区发送的同步信号块的周期都是N,M为正整数,且M大于阈值,则N就可以作为该常数。例如,网络设备确定在第一时长内有10个小区发送的同步信号块的周期都是20ms,阈值为8ms,则20ms就可以作为该常数。第一时长可以由网络设备设置,或者由协议规定,具体的不做限制。
如果该常数为经验值或典型值,则该常数在设置后可以是固定不变的,或者该常数也可以随时间变化,例如该常数由网络设备设置,那么网络设备可以周期性地更新该常数。另外,不同的区域所适用的用于确定测量间隙的时长的常数可以是相同的,或者也可能不同。对于这些均不做限制。
或者,该常数也可以是协议所规定的值,例如协议规定该常数为20ms或40ms等。那么,协议所规定的适用于不同的区域的用于确定测量间隙的时长的常数可以是相同的,例如协议只规定了一个常数,所有的区域均适用该常数;或者,协议所规定的适用于不同的区域的用于确定测量间隙的时长的常数也可能不同,例如协议规定,适用于区域1的常数为20,适用于区域2的常数为40ms,那么网络设备如果要配置区域1内的终端设备进行SFTD的测量流程,就根据20ms来确定测量时长的间隙,而如果要配置区域2内的终端设备进行SFTD的测量流程,就根据40ms来确定测量时长的间隙。
例如,第一值可以等于该常数,则测量间隙的时长可以大于或等于该常数。例如将测量间隙的时长用MeaLen表示,将该常数用SSBPERIODtypical表示,则MeaLen≥SSBPERIODtypical。
或者,与第一种确定测量间隙的时长的方式所介绍的类似的,在根据第二种确定测量间隙的时长的方式确定测量间隙的时长时,也可以考虑终端设备的开销,从而使得终端设备在测量间隙内能够有充分的时间测量同步信号块。例如终端设备的开销为第二值,那么,第一值可以等于该常数与第二值之和,则测量间隙的时长可以大于或等于该常数与第二值之和。例如将测量间隙的时长用MeaLen表示,将该常数用SSBPERIODtypical表示,将第二值用Tproc表示,则MeaLen≥SSBPERIODtypical+Tproc
其中,关于第二值的介绍可参考第一种确定测量间隙的时长的方式下的相关介绍,不多赘述。
根据常数来确定测量间隙的时长,网络设备在确定测量间隙的时长时无需获得较多的信息,确定方式较为简单。而且常数也可以是经验值或典型值等,使得所确定的测量间隙的时长可以较为符合实际的邻区的情况,既可以使得测量间隙能够尽量将终端设备需测量的同步信号块都包括在内,从而终端设备在测量时可以尽量能够测量到各个邻区所发送的同步信号块,也无需将测量间隙的时长确定的过长,尽量保证终端设备有足够的时间在第一小区进行正常的业务。
另外,配置信息还可以包括测量间隙的周期,也就是MGRP。与第一种确定测量间隙的时长的方式类似的,在第三种确定测量间隙的时长的方式下,也不限制究竟如何确定测量间隙的周期,以及不限制测量间隙的周期的长短。
如上的三种确定测量间隙的时长的方式只是举例,本申请实施例并不限制如何确定测量间隙的时长,只要所确定的测量间隙的时长能够尽量使得终端设备较为完整地测量待测量的同步信号块即可。另外,究竟选择如上的哪种方式来确定测量间隙的时长,可以由网络设备自行选择,例如网络设备可以随机选择,或者网络设备也可以根据某些因素选择,例如网络设备能够实现与其他网络设备之间的通信,则网络设备就可以选择如上的第二种方式来确定测量间隙的时长;或者,究竟选择如上的哪种方式来确定测量间隙的时长,也可以通过协议规定。本申请实施例对于具体的如何选择确定测量间隙的时长的方式不做限制。
另外,配置信息除了包括测量间隙的时长外,还可以包括其他的一些信息。例如,配置信息还可以包括如下信息中的一种或它们的任意组合:所述的测量间隙的周期,待测量的频率信息,待测量的小区信息,待测量的频率信息或小区信息对应的无线接入技术的信息,或,所述的测量间隙的时域起始位置。例如,配置信息除了包括测量间隙的时长外,还可以包括该测量间隙的周期,待测量的频率信息,待测量的小区信息,待测量的频率信息或小区信息对应的无线接入技术的信息,以及该测量间隙的时域起始位置;或者,配置信息除了包括测量间隙的时长外,还可以包括该测量间隙的周期,待测量的频率信息,待测量的频率信息对应的无线接入技术的信息,以及该测量间隙的时域起始位置;或者,配置信息除了包括测量间隙的时长外,还可以包括该测量间隙的周期,待测量的小区信息,待测量的小区信息对应的无线接入技术的信息,以及该测量间隙的时域起始位置,等等。
例如,配置信息包括测量间隙的时长以及测量间隙的周期,那么终端设备就可以确定测量间隙的位置。为了使得终端设备所确定的测量间隙的位置更为准确,配置信息还可以包括测量间隙的时域起始位置,其中,测量间隙是周期性出现的,那么配置信息可以只需包括该测量间隙在时域上第一次出现时的时域起始位置即可,终端设备只要确定了该测量间隙在时域上第一次出现时的时域起始位置,再结合测量间隙的时长以及测量间隙的周期,就可以确定测量间隙每次出现的时域位置。
再例如,网络设备可以为终端设备配置待测量的频率,从而终端设备可以搜索该频率的小区,并对搜索的小区发送的同步信号块进行测量。其中,网络设备所配置的待测量的频率,可以是一个或多个。在这种情况下,如果网络设备没有配置该待测量的频率下的小区,则网络设备还可以为终端设备配置上报数量,也就是配置信息还可以包括上报数量,上报数量是指终端设备向网络设备发送的测量结果所对应的小区的数量。例如,网络设备为终端设备配置了待测量的频率为f1,终端设备在频率f1下搜索到了5个小区,并对5个小区进行了测量,而网络设备配置的上报数量是3,则终端设备可以只向网络设备发送其中3个小区的测量结果。当然,如果网络设备为终端设备配置了待测量的频率,而并未配置该待测量的频率下的小区,则网络设备也可以不为终端设备配置上报数量,终端设备可以向网络设备发送对该频率下所测量的所有小区的测量结果。
又例如,网络设备可以无需为终端设备配置待测量的频率,而是为终端设备配置待测量的小区,则终端设备可以直接测量网络设备所配置的小区。其中,网络设备所配置的待测量的小区,可以是一个或多个。或者,网络设备可以为终端设备配置待测量的频率,以及配置在该待测量的频率下的待测量的小区,从而终端设备可以测量网络设备所配置的小区。其中,网络设备所配置的待测量的频率,可以是一个或多个;同理,网络设备所配置的待测量的小区,也可以是一个或多个。
S72、网络设备在第一小区向终端设备发送所述配置信息,终端设备在第一小区接收来自网络设备的所述配置信息。
网络设备在确定测量间隙的配置信息后,可以向终端设备发送该配置信息。例如网络设备是触发该网络设备提供的第一小区内的终端设备进行SFTD的测量流程,因此网络设备可以在第一小区向终端设备发送该配置信息,第一小区也就是接收该配置信息的终端设备的服务小区。
S73、终端设备确定测量间隙的配置信息,所述配置信息包括所述测量间隙的时长,所述时长大于或等于第一值。
其中,终端设备确定测量间隙的配置信息,一种确定方式就是接收测量间隙的配置信息,也就是说,终端设备接收了测量间隙的配置信息,也就视为终端设备确定了测量间隙的配置信息。在这种情况下,S72和S73可以看做是一个步骤。
或者,终端设备也可以通过其他方式确定测量间隙的配置信息。例如测量间隙的配置信息也可以不是由网络设备确定的,而是通过协议规定的,那么终端设备可以通过协议确定测量间隙的配置信息。在这种情况下,S71和S72可以无需执行。再例如,S71和S72可以执行,终端设备通过S72接收了测量间隙的配置信息,但终端设备可以暂时存储该配置信息,在需要测量时,终端设备可以获取所存储的配置信息,在这种情况下,终端设备确定测量间隙的配置信息,可以是指获取所存储的配置信息。
总之,本申请实施例并不限制终端设备确定配置信息的方式。而关于配置信息素所包括的内容,可以参考S71中的相关介绍。
S74、终端设备在所述测量间隙内进行测量。
终端设备在确定配置信息后,就可以根据配置信息确定测量间隙,以及可以确定测量相关的信息,例如待测量的频率或小区等,因此终端设备就可以在测量间隙内进行测量。
其中,在测量间隙内,因为终端设备是要对异频或异系统进行测量,因此网络设备在测量间隙内可以停止发送对应于该终端设备的业务数据,则终端设备在测量间隙内也停止接收对应于该终端设备的业务数据。而对于其他的未进行测量的终端设备,或者说未配置测量间隙的终端设备,网络设备可以正常发送业务数据。对应于该终端设备的业务数据,是指业务数据的目的地址是该终端设备的地址。对于网络设备来说,是停止发送对应于该终端设备的业务数据,而对应于其他终端设备的业务数据,网络设备还会正常发送。因此对于终端设备来说,也可以理解为,是在测量间隙内停止接收来自网络设备的业务数据,也就是说,在测量间隙内,该终端设备对于来自网络设备的业务数据均不接收,这些业务数据可能是对应于该终端设备的,也可能是对应于其他终端设备的。
或者,网络设备在测量间隙内可以是停止发送对应于该终端设备的信号,则终端设备在测量间隙内也停止接收对应于该终端设备的信号。对应于该终端设备的信号可以包括业务数据,还可以包括其他的信号,例如同步信号等。其中,对应于该终端设备的信号,是指信号的目的地址是该终端设备的地址。对于网络设备来说,是停止发送对应于该终端设备的信号,而对应于其他终端设备的信号,网络设备还会正常发送。因此对于终端设备来说,也可以理解为,是在测量间隙内停止接收来自网络设备的信号,也就是说,在测量间隙内,该终端设备对于来自网络设备的信号均不接收,这些信号可能是对应于该终端设备的,也可能是对应于其他终端设备的。
另外,终端设备在测量完毕后,可以向网络设备发送测量结果,则网络设备可以接收来自终端设备的测量结果,该测量结果就可以包括SFTD。
如果将本申请实施例提供的技术方案应用于图2所示的网络架构,则网络设备在获得SFTD后,例如可以根据SFTD为终端设备配置较为准确的测量间隙,所配置的测量间隙能够较为精确和可靠地在时间上包含邻区发送的SSB。终端设备在该测量间隙进行测量,测量结果可用于LTE-NR双连接结构的添加,或NR系统内的移动性等场景。
或者,如果将本申请实施例提供的技术方案应用于双连接的场景,例如图3~图6中的任意一个附图所示的网络架构,例如所述的网络设备为双连接场景中的辅网络设备。那么,如果双连接场景中的主网络设备为终端设备配置了测量间隙,终端设备要在测量间隙内对异频或异系统进行测量,则主网络设备在测量间隙内需要停止向终端设备发送对应于该终端设备的业务数据。而作为辅网络设备来说,也需要在测量间隙内停止向终端设备发送对应于该终端设备的业务数据。主网络设备可以将测量间隙的信息发送给辅网络设备,而另外辅网络设备也获得了SFTD,则辅网络设备根据测量间隙的信息和SFTD就可以较为准确地确定测量间隙的具体时域位置,从而辅网络设备在测量间隙内可以停止向终端设备发送对应于该终端设备的业务数据,以保证终端设备正常进行测量,以及减小终端设备错过接收业务数据的几率。
因为本申请实施例中测量间隙的时长较长,从而通过较长的测量间隙可以尽量将终端设备待测量的小区的同步信号块的时域位置都包括在内,则终端设备可以尽量完成对于所有的待测量的小区的同步信号块的测量,以获得较为完善及准确的SFTD,提高了网络设备所获取的SFTD的可靠性。且本申请实施例的技术方案无需终端设备具有多通道的功能,对终端设备的能力没有较强的依赖,应用范围较为广泛。网络设备在得到SFTD后,可以根据SFTD来添加双连接的网络结构,由于SFTD较为完善及准确,也就提高了添加双连接的网络结构的可靠性。且由于SFTD较为完善及准确,也保证了终端设备能够具有较好的移动性,减小终端设备在移动过程中出现失步的可能性。
下面结合附图介绍本申请实施例中用来实现上述方法的装置。因此,上文中的内容均可以用于后续实施例中,重复的内容不再赘述。
图8为本申请实施例提供的通信设备800的示意性框图。示例性地,通信设备800例如为终端设备800。终端设备800包括:
处理模块820,用于确定测量间隙的配置信息,所述配置信息包括所述测量间隙的时长,所述时长大于或等于第一值;
处理模块820,还用于在所述测量间隙内进行测量。
作为一种可选的实施方式,
所述时长与同步信号块的周期的最大值存在映射关系;或,
所述时长与所述第一小区的邻区发送的同步信号块的周期的最大值存在映射关系;或,
所述时长是个常数。
作为一种可选的实施方式,
所述时长是根据同步信号块的周期的最大值所确定的;或,
所述时长是根据所述第一小区的邻区发送的同步信号块的周期的最大值所确定的;或,
所述时长是根据常数所确定的。
作为一种可选的实施方式,
所述时长与同步信号块的周期的最大值存在映射关系,所述第一值为同步信号块的周期的最大值,或所述第一值为同步信号块的周期的最大值与第二值之和;或,
所述时长与所述第一小区的邻区发送的同步信号块的周期的最大值存在映射关系,所述第一值为所述第一小区的邻区发送的同步信号块的周期的最大值,或所述第一值为所述第一小区的邻区发送的同步信号块的周期的最大值与第二值之和;或,
所述时长是个常数,所述第一值为所述常数,或所述第一值为所述常数与第二值之和;
其中,所述第二值是通信设备800的开销。
作为一种可选的实施方式,
所述配置信息还包括如下信息中的一种或它们的任意组合:
所述测量间隙的周期;
待测量的频率信息;
待测量的小区信息;
待测量的频率信息或小区信息对应的无线接入技术的信息;或,
所述测量间隙的时域起始位置。
作为一种可选的实施方式,通信设备800还可以包括收发模块810,用于向所述网络设备发送测量结果。
作为一种可选的实施方式,收发模块810,还用于在所述测量间隙内停止接收来自所述网络设备的业务数据。
应理解,本申请实施例中的处理模块820可以由处理器或处理器相关电路组件实现,收发模块810可以由收发器或收发器相关电路组件实现。
如图9所示,本申请实施例还提供一种通信设备900。示例性地,通信设备900例如为终端设备900。终端设备900包括处理器910,存储器920与收发器930,其中,存储器920中存储指令或程序,处理器910用于执行存储器920中存储的指令或程序。存储器920中存储的指令或程序被执行时,该处理器910用于执行上述实施例中处理模块820执行的操作,收发器930用于执行上述实施例中收发模块810执行的操作。
应理解,根据本申请实施例的终端设备800或终端设备900可对应于图7所示的实施例中的终端设备,并且终端设备1000或终端设备1100中的各个模块的操作和/或功能分别为了实现图7所示的实施例中的相应流程,为了简洁,在此不再赘述。
图10为本申请实施例提供的通信设备1000的示意性框图。示例性地,通信设备1000例如为网络设备1000。网络设备1000包括:
处理模块1020,用于确定测量间隙的配置信息,所述配置信息包括所述测量间隙的时长,所述时长大于或等于第一值;
收发模块1010,用于在第一小区向终端设备发送所述配置信息。
作为一种可选的实施方式,
所述时长与同步信号块的周期的最大值存在映射关系;或,
所述时长与所述第一小区的邻区发送的同步信号块的周期的最大值存在映射关系;或,
所述时长是个常数。
作为一种可选的实施方式,
所述时长是根据同步信号块的周期的最大值所确定的;或,
所述时长是根据所述第一小区的邻区发送的同步信号块的周期的最大值所确定的;或,
所述时长是根据常数所确定的。
作为一种可选的实施方式,
所述时长与同步信号块的周期的最大值存在映射关系,所述第一值为同步信号块的周期的最大值,或所述第一值为同步信号块的周期的最大值与第二值之和;或,
所述时长与所述第一小区的邻区发送的同步信号块的周期的最大值存在映射关系,所述第一值为所述第一小区的邻区发送的同步信号块的周期的最大值,或所述第一值为所述第一小区的邻区发送的同步信号块的周期的最大值与第二值之和;或,
所述时长是个常数,所述第一值为所述常数,或所述第一值为所述常数与第二值之和;
其中,所述第二值是所述终端设备的开销。
作为一种可选的实施方式,所述配置信息还包括如下信息中的一种或它们的任意组合:
所述测量间隙的周期;
待测量的频率信息;
待测量的小区信息;
待测量的频率信息或小区信息对应的无线接入技术的信息;或,
所述测量间隙的时域起始位置。
作为一种可选的实施方式,收发模块1010,还用于接收来自所述终端设备的测量结果。
作为一种可选的实施方式,收发模块1010,还用于在所述测量间隙内停止发送对应于所述终端设备的业务数据。
应理解,本申请实施例中的处理模块1020可以由处理器或处理器相关电路组件实现,收发模块1010可以由收发器或收发器相关电路组件实现。
如图11所示,本申请实施例还提供一种通信设备1100。示例性地,通信设备1100例如为网络设备1100。网络设备1100包括处理器1110,存储器1120与收发器1130,其中,存储器1120中存储指令或程序,处理器1110用于执行存储器1120中存储的指令或程序。存储器1120中存储的指令或程序被执行时,该处理器1110用于执行上述实施例中处理模块1020执行的操作,收发器1130用于执行上述实施例中收发模块1010执行的操作。
应理解,根据本申请实施例的网络设备1000或网络设备1100可对应于图7所示的实施例中的网络设备,并且网络设备1000或网络设备1100中的各个模块的操作和/或功能分别为了实现图7所示的实施例中的相应流程,为了简洁,在此不再赘述。
本申请实施例还提供一种通信装置,该通信装置可以是终端设备也可以是电路。该通信装置可以用于执行上述图7所示的方法实施例中由终端设备所执行的动作。
当该通信装置为终端设备时,图12示出了一种简化的终端设备的结构示意图。便于理解和图示方便,图12中,终端设备以手机作为例子。如图12所示,终端设备包括处理器、存储器、射频电路、天线以及输入输出装置。处理器主要用于对通信协议以及通信数据进行处理,以及对终端设备进行控制,执行软件程序,处理软件程序的数据等。存储器主要用于存储软件程序和数据。射频电路主要用于基带信号与射频信号的转换以及对射频信号的处理。天线主要用于收发电磁波形式的射频信号。输入输出装置,例如触摸屏、显示屏,键盘等主要用于接收用户输入的数据以及对用户输出数据。需要说明的是,有些种类的终端设备可以不具有输入输出装置。
当需要发送数据时,处理器对待发送的数据进行基带处理后,输出基带信号至射频电路,射频电路将基带信号进行射频处理后将射频信号通过天线以电磁波的形式向外发送。当有数据发送到终端设备时,射频电路通过天线接收到射频信号,将射频信号转换为基带信号,并将基带信号输出至处理器,处理器将基带信号转换为数据并对该数据进行处理。为便于说明,图12中仅示出了一个存储器和处理器。在实际的终端设备产品中,可以存在一个或多个处理器和一个或多个存储器。存储器也可以称为存储介质或者存储设备等。存储器可以是独立于处理器设置,也可以是与处理器集成在一起,本申请实施例对此不做限制。
在本申请实施例中,可以将具有收发功能的天线和射频电路视为终端设备的收发单元,将具有处理功能的处理器视为终端设备的处理单元。如图12所示,终端设备包括收发单元1210和处理单元1220。收发单元也可以称为收发器、收发机、收发装置等。处理单元也可以称为处理器,处理单板,处理模块、处理装置等。可选的,可以将收发单元1210中用于实现接收功能的器件视为接收单元,将收发单元1210中用于实现发送功能的器件视为发送单元,即收发单元1210包括接收单元和发送单元。收发单元有时也可以称为收发机、收发器、或收发电路等。接收单元有时也可以称为接收机、接收器、或接收电路等。发送单元有时也可以称为发射机、发射器或者发射电路等。
应理解,收发单元1210用于执行上述图7所示的方法实施例中终端设备侧的发送操作和接收操作,处理单元1220用于执行上述图7所示的方法实施例中终端设备侧除了收发操作之外的其他操作。
例如,在一种实现方式中,收发单元1210用于执行图7所示的实施例中的终端设备侧的收发步骤,例如S72。处理单元1220,用于执行图7所示的实施例中的终端设备侧除了收发操作之外的其他操作,例如S73和S74。
当该通信装置为芯片时,该芯片包括收发单元和处理单元。其中,收发单元可以是输入输出电路、通信接口;处理单元为该芯片上集成的处理器或者微处理器或者集成电路。
本申请实施例中的通信装置为终端设备时,可以参照图13所示的设备。作为一个例子,该设备可以完成类似于图9中处理器910的功能。在图13中,该设备包括处理器1310,发送数据处理器1320,接收数据处理器1330。上述实施例中的处理模块820可以是图13中的该处理器1310,并完成相应的功能。上述实施例中的收发模块810可以是图13中的发送数据处理器1320,和/或接收数据处理器1330。
虽然图13中示出了信道编码器、信道解码器,但是可以理解这些模块并不对本实施例构成限制性说明,仅是示意性的。
图14示出本实施例的另一种形式。处理装置1400中包括调制子系统、中央处理子系统、周边子系统等模块。本实施例中的通信装置可以作为其中的调制子系统。具体的,该调制子系统可以包括处理器1403,接口1404。其中处理器1403完成上述处理模块820的功能,接口1404完成上述收发模块810的功能。作为另一种变形,该调制子系统包括存储器1406、处理器1403及存储在存储器1406上并可在处理器上运行的程序,该处理器1403执行该程序时实现上述图7所示的方法实施例中终端设备侧的方法。需要注意的是,所述存储器1406可以是非易失性的,也可以是易失性的,其位置可以位于调制子系统内部,也可以位于处理装置1400中,只要该存储器1406可以连接到所述处理器1403即可。
本申请实施例还提供一种计算机可读存储介质,其上存储有计算机程序,该程序被处理器执行时可以实现上述方法实施例提供的图7所示的实施例中与网络设备相关的流程。
本申请实施例还提供一种计算机可读存储介质,其上存储有计算机程序,该程序被处理器执行时可以实现上述方法实施例提供的图7所示的实施例中与终端设备相关的流程。
本申请实施例还提供一种包含指令的计算机程序产品,该指令被执行时执行上述图7所示的方法实施例中网络设备侧的方法。
本申请实施例还提供一种包含指令的计算机程序产品,该指令被执行时执行上述图7所示的方法实施例中终端设备侧的方法。
应理解,本申请实施例中提及的处理器可以是中央处理单元(centralprocessing unit,CPU),还可以是其他通用处理器、数字信号处理器(digital signalprocessor,DSP)、专用集成电路(application specific integrated circuit,ASIC)、现成可编程门阵列(field programmable gate array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
还应理解,本申请实施例中提及的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(read-only memory,ROM)、可编程只读存储器(programmable ROM,PROM)、可擦除可编程只读存储器(erasable PROM,EPROM)、电可擦除可编程只读存储器(electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(random access memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(dynamic RAM,DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double datarate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(direct rambus RAM,DR RAM)。
需要说明的是,当处理器为通用处理器、DSP、ASIC、FPGA或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件时,存储器(存储模块)集成在处理器中。
应注意,本文描述的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
应理解,在本申请的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(read-only memory,ROM)、随机存取存储器(random access memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请实施例的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请实施例揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请实施例的保护范围应所述以权利要求的保护范围为准。

Claims (16)

1.一种测量方法,其特征在于,包括:
终端设备确定测量间隙的配置信息,所述配置信息包括所述测量间隙的时长,所述时长大于或等于第一值,其中,所述第一值为同步信号块的周期的最大值与第二值之和,或所述第一值为第一小区的邻区发送的同步信号块的周期的最大值与第二值之和,或所述第一值为常数与第二值之和,其中,所述第二值是所述终端设备的开销;
所述终端设备在所述测量间隙内进行测量。
2.根据权利要求1所述的方法,其特征在于,所述配置信息还包括如下信息中的一种或它们的任意组合:
所述测量间隙的周期;
待测量的频率信息;
待测量的小区信息;
待测量的频率信息或小区信息对应的无线接入技术的信息;或,
所述测量间隙的时域起始位置。
3.根据权利要求1所述的方法,其特征在于,所述方法还包括:
所述终端设备向网络设备发送测量结果。
4.根据权利要求1所述的方法,其特征在于,所述方法还包括:
所述终端设备在所述测量间隙内停止接收来自网络设备的业务数据。
5.一种发送测量配置信息的方法,其特征在于,包括:
网络设备确定测量间隙的配置信息,所述配置信息包括所述测量间隙的时长,所述时长大于或等于第一值,其中,所述第一值为同步信号块的周期的最大值与第二值之和,或所述第一值为第一小区的邻区发送的同步信号块的周期的最大值与第二值之和,或所述第一值为常数与第二值之和,其中,所述第二值是终端设备的开销;
所述网络设备在第一小区向所述终端设备发送所述配置信息。
6.根据权利要求5所述的方法,其特征在于,所述配置信息还包括如下信息中的一种或它们的任意组合:
所述测量间隙的周期;
待测量的频率信息;
待测量的小区信息;
待测量的频率信息或小区信息对应的无线接入技术的信息;或,
所述测量间隙的时域起始位置。
7.根据权利要求5所述的方法,其特征在于,所述方法还包括:
所述网络设备接收来自所述终端设备的测量结果。
8.根据权利要求5所述的方法,其特征在于,所述方法还包括:
所述网络设备在所述测量间隙内停止发送对应于所述终端设备的业务数据。
9.一种通信设备,其特征在于,包括:
存储器,用于存储指令;
处理器,用于执行所述存储器所存储的指令,确定测量间隙的配置信息,并在所述测量间隙内进行测量,所述配置信息包括所述测量间隙的时长,所述时长大于或等于第一值,其中,所述第一值为同步信号块的周期的最大值与第二值之和,或所述第一值为第一小区的邻区发送的同步信号块的周期的最大值与第二值之和,或所述第一值为常数与第二值之和,其中,所述第二值是所述通信设备的开销。
10.根据权利要求9所述的通信设备,其特征在于,所述配置信息还包括如下信息中的一种或它们的任意组合:
所述测量间隙的周期;
待测量的频率信息;
待测量的小区信息;
待测量的频率信息或小区信息对应的无线接入技术的信息;或,
所述测量间隙的时域起始位置。
11.根据权利要求9所述的通信设备,其特征在于,所述通信设备还包括收发器,用于向网络设备发送测量结果。
12.根据权利要求9所述的通信设备,其特征在于,所述通信设备还包括收发器,用于在所述测量间隙内停止接收来自网络设备的业务数据。
13.一种通信设备,其特征在于,包括:
处理器,用于确定测量间隙的配置信息,所述配置信息包括所述测量间隙的时长,所述时长大于或等于第一值,其中,所述第一值为同步信号块的周期的最大值与第二值之和,或所述第一值为第一小区的邻区发送的同步信号块的周期的最大值与第二值之和,或所述第一值为常数与第二值之和,其中,所述第二值是终端设备的开销;
收发器,用于在第一小区向所述终端设备发送所述配置信息。
14.根据权利要求13所述的通信设备,其特征在于,所述配置信息还包括如下信息中的一种或它们的任意组合:
所述测量间隙的周期;
待测量的频率信息;
待测量的小区信息;
待测量的频率信息或小区信息对应的无线接入技术的信息;或,
所述测量间隙的时域起始位置。
15.根据权利要求13所述的通信设备,其特征在于,所述收发器,还用于接收来自所述终端设备的测量结果。
16.根据权利要求13所述的通信设备,其特征在于,所述收发器,还用于在所述测量间隙内停止发送对应于所述终端设备的业务数据。
CN201910275793.0A 2019-04-08 2019-04-08 一种测量、发送测量配置信息的方法及设备 Active CN111800797B (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201910275793.0A CN111800797B (zh) 2019-04-08 2019-04-08 一种测量、发送测量配置信息的方法及设备
PCT/CN2020/082491 WO2020207300A1 (zh) 2019-04-08 2020-03-31 一种测量、发送测量配置信息的方法及设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910275793.0A CN111800797B (zh) 2019-04-08 2019-04-08 一种测量、发送测量配置信息的方法及设备

Publications (2)

Publication Number Publication Date
CN111800797A CN111800797A (zh) 2020-10-20
CN111800797B true CN111800797B (zh) 2022-12-27

Family

ID=72750983

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910275793.0A Active CN111800797B (zh) 2019-04-08 2019-04-08 一种测量、发送测量配置信息的方法及设备

Country Status (2)

Country Link
CN (1) CN111800797B (zh)
WO (1) WO2020207300A1 (zh)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113543240B (zh) * 2020-04-16 2023-02-28 华为技术有限公司 一种测量邻区的方法、装置以及终端
CN114390569B (zh) * 2020-10-16 2024-04-26 华为技术有限公司 同步信号块的测量方法、装置和移动终端
CN112333741B (zh) * 2020-11-17 2022-10-11 展讯通信(上海)有限公司 主信息块mib的获取方法、装置和终端
CN112512076B (zh) * 2020-12-04 2022-12-06 Oppo(重庆)智能科技有限公司 一种nr小区测量方法及终端设备
CN113692013B (zh) * 2021-08-16 2022-09-13 紫光展锐(重庆)科技有限公司 一种测量信号的方法、通信装置、芯片及模组设备
CN114520996B (zh) * 2022-02-11 2024-01-16 北京小米移动软件有限公司 测量间隙长度配置方法及装置
WO2023221044A1 (zh) * 2022-05-19 2023-11-23 北京小米移动软件有限公司 一种测量间隙的配置方法、装置及可读存储介质
CN117858201A (zh) * 2024-03-07 2024-04-09 荣耀终端有限公司 搜网方法、通信装置及计算机可读存储介质

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108810920B (zh) * 2017-04-28 2021-01-15 中国移动通信有限公司研究院 一种测量参数的配置方法及装置
CN111601338B (zh) * 2017-06-09 2022-07-15 展讯通信(上海)有限公司 测量配置方法、装置、用户终端及计算机可读存储介质
CN109151922B (zh) * 2017-06-16 2021-05-14 华为技术有限公司 测量方法、测量配置方法和相关设备
CN110035443B (zh) * 2018-01-11 2022-08-02 展讯通信(上海)有限公司 双连接时辅助配置测量间隙的方法、装置及基站
US10932147B2 (en) * 2018-03-30 2021-02-23 Mediatek Inc. Gap-based cell measurement in wireless communication system

Also Published As

Publication number Publication date
WO2020207300A1 (zh) 2020-10-15
CN111800797A (zh) 2020-10-20

Similar Documents

Publication Publication Date Title
CN111800797B (zh) 一种测量、发送测量配置信息的方法及设备
US11265736B2 (en) Method for configuring ANR, terminal device, base station, and core network device
CN112911654B (zh) 一种能力信息发送方法、接收方法及装置
US20220369249A1 (en) Measurement Method Using Synchronization Signal Block, Terminal Device, and Base Station
CN113645657B (zh) 无线通信方法、终端设备和网络设备
US20200205124A1 (en) Paging Method, Terminal Device, and Network Device
WO2021051364A1 (zh) 一种通信方法、装置及设备
CN113810924A (zh) 一种小区测量方法及装置
CA3055628A1 (en) Method and device for transmitting synchronization signal
CN112153633B (zh) 一种发送、接收能力信息的方法及设备
US11503596B2 (en) Data transmission method, terminal device, and network device
CN112449368B (zh) 一种通信方法及装置
CN110933746B (zh) 一种能力信息发送、接收方法及设备
CN110622546B (zh) 无线资源管理测量的方法和设备
CN113785618A (zh) 一种通信方法及装置
CN114128352B (zh) 一种通信方法及装置
CN114071722A (zh) 一种测量方法及装置
CN114616868A (zh) 一种通信方法及装置
CN113382425B (zh) 一种通信方法及装置
US20240031839A1 (en) Methods for rrm measurements when ue is configured with muutipue concurrent measurement gap patterns
WO2023060477A1 (zh) 无线通信方法、远端终端和网络设备

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant