CN111796572A - Automatic control system for producing light accessory pieces - Google Patents

Automatic control system for producing light accessory pieces Download PDF

Info

Publication number
CN111796572A
CN111796572A CN202010672017.7A CN202010672017A CN111796572A CN 111796572 A CN111796572 A CN 111796572A CN 202010672017 A CN202010672017 A CN 202010672017A CN 111796572 A CN111796572 A CN 111796572A
Authority
CN
China
Prior art keywords
chain plate
conveyor
control motor
auxiliary material
plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202010672017.7A
Other languages
Chinese (zh)
Other versions
CN111796572B (en
Inventor
马志坚
卢忠东
张建军
刘雨莎
张清华
吴官强
刘祖川
田淦
陈娇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Pharmaceutical Tianxiong Pharmaceutical Co ltd
Original Assignee
Sichuan Tianxiong Pharmaceutical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sichuan Tianxiong Pharmaceutical Co Ltd filed Critical Sichuan Tianxiong Pharmaceutical Co Ltd
Priority to CN202010672017.7A priority Critical patent/CN111796572B/en
Publication of CN111796572A publication Critical patent/CN111796572A/en
Application granted granted Critical
Publication of CN111796572B publication Critical patent/CN111796572B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/418Total factory control, i.e. centrally controlling a plurality of machines, e.g. direct or distributed numerical control [DNC], flexible manufacturing systems [FMS], integrated manufacturing systems [IMS] or computer integrated manufacturing [CIM]
    • G05B19/41875Total factory control, i.e. centrally controlling a plurality of machines, e.g. direct or distributed numerical control [DNC], flexible manufacturing systems [FMS], integrated manufacturing systems [IMS] or computer integrated manufacturing [CIM] characterised by quality surveillance of production
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K36/00Medicinal preparations of undetermined constitution containing material from algae, lichens, fungi or plants, or derivatives thereof, e.g. traditional herbal medicines
    • A61K36/18Magnoliophyta (angiosperms)
    • A61K36/185Magnoliopsida (dicotyledons)
    • A61K36/71Ranunculaceae (Buttercup family), e.g. larkspur, hepatica, hydrastis, columbine or goldenseal
    • A61K36/714Aconitum (monkshood)
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K2236/00Isolation or extraction methods of medicinal preparations of undetermined constitution containing material from algae, lichens, fungi or plants, or derivatives thereof, e.g. traditional herbal medicine
    • A61K2236/10Preparation or pretreatment of starting material
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/32Operator till task planning
    • G05B2219/32368Quality control

Landscapes

  • Health & Medical Sciences (AREA)
  • Natural Medicines & Medicinal Plants (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Pharmacology & Pharmacy (AREA)
  • General Health & Medical Sciences (AREA)
  • Biotechnology (AREA)
  • Botany (AREA)
  • Medical Informatics (AREA)
  • Medicinal Chemistry (AREA)
  • Microbiology (AREA)
  • Mycology (AREA)
  • Chemical & Material Sciences (AREA)
  • Epidemiology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Alternative & Traditional Medicine (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • General Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Quality & Reliability (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Treatment Of Fiber Materials (AREA)
  • Medical Preparation Storing Or Oral Administration Devices (AREA)

Abstract

The invention discloses an automatic control system for producing a fresh aconite, which belongs to the technical field of medicinal material processing and comprises a controller, a timer and a device for producing the fresh aconite; the controller is respectively electrically connected with the first chain plate control motor, the speed measuring sensor, the weighing sensor, the variable frequency control motor, the bucket type vertical elevator control motor, the upper chain plate control motor, the tank body control motor, the flowmeter, the water inlet electromagnetic valve, the water outlet electromagnetic valve, the reset switch, the shunt device, the lower chain plate control motor, the first vibration exciter, the chain plate type medicine boiling device, the second vibration exciter, the mesh belt type spreading and drying device, the second chain plate control motor, the rotary slicer, the third chain plate control motor, the belt type dryer and the timer. The automatic control system for producing the fresh aconite, provided by the invention, is suitable for efficiently processing the salt aconite into high-quality fresh aconite in batches, the automation degree is high, and the labor cost is reduced.

Description

Automatic control system for producing light accessory pieces
Technical Field
The invention belongs to the technical field of medicinal material processing, and particularly relates to an automatic control system for producing a dried aconite.
Background
Radix Aconiti lateralis is processed from the root of Aconitum carmichaeli Debx of Ranunculaceae, is a medicinal material from Chuan birth canal, is recorded in Shennong Ben Cao Jing, is pungent, sweet, hot and toxic, and has the effects of restoring yang, relieving collapse, tonifying fire, supporting yang, dispelling cold and relieving pain. The application of monkshood has been known for a long time, and the monkshood has obvious curative effect in clinical use from ancient times to present, is known as the first important medicine for restoring yang from collapse, and is also a famous toxic traditional Chinese medicine.
Since the salt processing has the advantages of antisepsis, toxicity reduction and synergy, the salt processing method is still mainly adopted for processing monkshood up to the present day. The processing method of the radix aconiti lateralis praeparata recorded in the 'Chinese pharmacopoeia' 2015 edition comprises the following steps: selecting large and uniform radix Aconiti lateralis Preparata, cleaning, soaking in water solution of edible gallbladder for overnight, adding salt, soaking, taking out, sun drying, and gradually prolonging sun drying time until there are a large amount of crystal salt granule salt frost on the surface of radix Aconiti lateralis, and constitution becomes hard, which is called "salted radix Aconiti lateralis". The salted aconite is used as an intermediate and is further used for processing the radix aconiti lateralis praeparata slices.
The processing process of the radix aconiti lateralis praeparata is as follows: taking salted aconite, soaking and bleaching with clear water, changing water for 2-3 times every day until the salt is completely bleached, adding water into the salted aconite, liquorice and black beans, boiling thoroughly, taking out the salted aconite, removing the liquorice and the black beans, slicing and drying in the sun when the salted aconite, the liquorice and the black beans are boiled thoroughly until the salted aconite, the liquorice and the black beans have no tongue numbness.
At present, an automatic control system specially aiming at processing salt aconite into light aconite is not available in the market, and the processing is mainly completed by manpower, so that the quality of the light aconite in the market is different, the production efficiency is low, a large amount of manpower is consumed, and the development of the light aconite industry is restricted.
Disclosure of Invention
The invention aims to provide an automatic control system for producing a thin sliced aconite to solve the problems of low production efficiency, inconsistent quality, labor consumption, low automation degree and the like of the existing thin sliced aconite. In order to achieve the purpose, the invention provides the following technical scheme:
an automatic control system for producing a thin coupon comprises a controller, a timer and a device for producing the thin coupon; the device for producing the light attached sheets comprises a first chain plate conveyor 1, a belt scale 2, a bucket type vertical elevator 3, an upper chain plate conveyor 4, a plurality of rotary soaking tanks 5, a flow dividing device, a lower chain plate conveyor, a vibrating flow dividing conveyor 6, two chain plate type medicine boiling devices 7, a vibrating conveyor 8, a mesh belt type spreading and drying device 9, a second chain plate conveyor 10, a rotary slicer 11, a third chain plate conveyor 12 and a belt type dryer 13; the first chain scraper conveyor 1 comprises a first chain scraper control motor; the belt scale 2 comprises a speed measuring sensor, a weighing sensor and a variable frequency control motor; the bucket type vertical elevator 3 comprises a bucket type vertical elevator control motor; the upper chain plate conveyor 4 comprises an upper chain plate control motor; the rotary soaking tank 5 comprises a tank body with a built-in spiral material guide plate, a tank body control motor, a water inlet pipe, a water outlet pipe, a flowmeter and a water inlet electromagnetic valve which are arranged on the water inlet pipe, a water outlet electromagnetic valve which is arranged on the water outlet pipe and a reset switch for resetting and identifying the angle of the tank body; the shunting device is used for leading the main materials conveyed on the upper chain plate conveyor 4 to enter the corresponding rotary soaking tank 5; the lower chain plate conveyor comprises a lower chain plate control motor; the vibration splitting conveyor 6 comprises a first vibration exciter; the vibration diversion conveyor 6 is used for leading the main materials to enter the corresponding chain plate type medicine boiling device 7; the chain plate type medicine boiling device 7 is used for boiling the main materials and the auxiliary materials; the vibrating conveyor 8 comprises a second vibration exciter; the mesh belt type spreading and drying device 9 is used for spreading and drying the main materials; the second apron conveyor 10 comprises a second apron control motor; the rotary slicer 11 is used for slicing the main material; the third apron conveyor 12 comprises a third apron control motor; the belt dryer 13 is used for drying the main material of the slices; the controller is respectively electrically connected with the first chain plate control motor, the speed measuring sensor, the weighing sensor, the variable frequency control motor, the bucket type vertical elevator control motor, the upper chain plate control motor, the tank body control motor, the flowmeter, the water inlet electromagnetic valve, the water outlet electromagnetic valve, the reset switch, the shunt device, the lower chain plate control motor, the first vibration exciter, the chain plate type medicine boiling device 7, the second vibration exciter, the mesh belt type spreading and drying device 9, the second chain plate control motor, the rotary slicing machine 11, the third chain plate control motor, the belt type drying machine 13 and the timer. According to the structure, the working process is as follows: the salt aconite falls into a first chain plate conveyor 1, a controller controls a first chain plate control motor to drive the first chain plate conveyor 1 to convey the salt aconite to a belt scale 2, and the controller controls the belt scale 2 to convey n times of quantitative salt aconite to a bucket type vertical elevator 3; the controller controls the bucket type vertical elevator to control the motor to drive the bucket type vertical elevator 3 to lift the salt aconite to the upper chain plate conveyor 4; the controller controls the upper chain plate conveyor 4 to drive the upper chain plate conveyor 4 to operate, and the controller distributes the quantitative salt aconite to the corresponding rotary soaking tanks 5 at each time by controlling the flow dividing device, and distributes n rotary soaking tanks 5 in total; the controller controls the rotary soaking tank 5 distributed to the salt aconite to start water replenishing, material turning is carried out every t1 hours, water changing is carried out every t2 hours, the total time lasts for t3 days, the salt aconite is soaked and floated until salt is completely floated, then the rotary soaking tank 5 is drained, and finally the rotary soaking tank 5 discharges the floated salt aconite to a lower chain plate conveyor; the controller controls the lower chain plate to control the motor to drive the lower chain plate conveyor to convey the salt aconite to the vibration shunt conveyor 6, and controls the first vibration exciter to drive the vibration shunt conveyor 6 to distribute the salt aconite to the corresponding chain plate type medicine boiling devices 7; the controller controls the chain plate type medicine boiling device 7 distributed to the salt aconite to add a certain amount of water, and the black beans, the liquorice and the salt aconite are added to be boiled for t4 hours by steam, the water temperature is kept within a set temperature range, and the black beans, the liquorice and the salt aconite are boiled thoroughly; the controller controls the chain plate type medicine boiling device 7 to convey salt aconite to the vibrating conveyor 8, then the controller controls the second vibration exciter to drive the vibrating conveyor 8 to convey the salt aconite to the mesh belt type spreading and drying device 9, and the controller controls the mesh belt type spreading and drying device 9 to spread and dry the salt aconite; the controller controls the mesh belt type spreading and drying device 9 to convey the salt aconite to the second chain plate conveyor 10, the controller controls the second chain plate control motor to drive the second chain plate conveyor 10 to convey the salt aconite to the rotary slicer 11 for slicing, and the salt aconite becomes the freshwater aconite; the thin coupon output by the rotary slicer 11 enters a third chain conveyor 12, and the controller controls a third chain plate to control a motor to drive the third chain conveyor 12 to convey the thin coupon to a belt dryer 13 for drying. N is 2-20; t1 is 1-3; t2 is 7-9; t3 is 5-8; t4 is 3-5; the belt scale 2 comprises a speed measuring sensor, a weighing sensor and a variable frequency control motor; the rotary soaking tank 5 comprises a tank body with a built-in spiral material guide plate, a tank body control motor, a water inlet pipe, a water outlet pipe, a flowmeter and a water inlet electromagnetic valve which are arranged on the water inlet pipe, a water outlet electromagnetic valve which is arranged on the water outlet pipe and a reset switch for resetting and identifying the angle of the tank body; the specific mode that the controller controls the belt scale 2 to convey the quantitative radix aconiti lateralis preparata for n times to the bucket type vertical elevator 3 is as follows: firstly, weighing the mass of the salt aconite on the belt scale 2 and the belt speed by a weighing sensor and a speed measuring sensor respectively, then transmitting the mass information and the speed information to a controller, calculating the instantaneous flow of the salt aconite by the controller, controlling the rotating speed of a variable frequency control motor to slow when the instantaneous flow of the salt aconite is higher than a set value, controlling the rotating speed of the variable frequency control motor to be fast when the instantaneous flow of the salt aconite is lower than the set value by the controller, ensuring the flow of the salt aconite on the belt scale 2 to be constant, timing by a timer, controlling the variable frequency control motor to pause for a certain time after each constant time feeding of the belt scale 2, and then continuing to repeatedly feed and pause to realize n times of conveying of quantitative salt aconite; the specific water replenishing mode of the rotary soaking tank 5 is as follows: the controller controls the water inlet electromagnetic valve to be opened, the water inlet pipe supplies water to the interior of the tank body, and the controller controls the water inlet electromagnetic valve to be closed when the water supply amount monitored by the flowmeter reaches a standard; the specific drainage mode is as follows: the controller controls the tank body to control the motor to drive the tank body to rotate forwards, when the water outlet pipe is positioned right below the tank body, the bulge arranged on the tank body triggers the reset switch, reset information is transmitted to the controller, the controller controls the tank body to control the motor to stop, the controller controls the water outlet electromagnetic valve to be opened, and the water outlet pipe drains water downwards; the specific mode of water changing is as follows: draining water and then supplementing water; the material turning method comprises the following specific steps: the controller controls the tank body to control the motor to drive the tank body to rotate forwards; the specific mode of discharging is as follows: the controller controls the tank body to control the motor to drive the tank body to rotate reversely.
Further, a discharge hole of the first chain plate conveyor 1 is positioned on a feed hole of the belt scale 2; the discharge hole of the belt scale 2 is positioned on the feed inlet of the bucket type vertical elevator 3; the discharge hole of the bucket type vertical elevator 3 is positioned on the feed inlet of the upper chain plate conveyor 4; the material inlet and outlet of the rotary soaking tank 5 are positioned on the lower chain plate conveyor; the discharge hole of the lower chain plate conveyor is positioned on the feed hole of the vibration shunt conveyor 6; the discharge hole of the chain plate type medicine boiling device 7 is positioned on the vibrating conveyor 8; the discharge hole of the vibrating conveyor 8 is positioned on the feed hole of the mesh belt type spreading and drying device 9; the discharge hole of the mesh belt type spreading and drying device 9 is positioned on the feed hole of the second chain plate conveyor 10; the discharge hole of the second chain plate conveyor 10 is positioned on the feed hole of the rotary slicer 11; the discharge hole of the rotary slicer 11 is positioned on the feed hole of the third chain conveyor 12; the discharge hole of the third chain conveyor 12 is positioned on the feed hole of the belt dryer 13.
Further, the flow dividing device comprises two baffles 14 and a plurality of flow dividing units 15; the two baffle plates 14 are symmetrically fixed on two side plates of the upper chain plate conveyor 4; the baffle 14 is provided with a plurality of baffle discharge holes 16 arranged along the length of the baffle 14; the baffle discharge ports 16 correspond to the rotary soaking tanks 5 one by one, and the baffle discharge ports 16 are positioned on the feed and discharge ports of the corresponding rotary soaking tanks 5; the baffle discharge ports 16 of the two baffles 14 are arranged in pairs, and a flow dividing unit 15 is arranged between each pair of baffle discharge ports 16; the diversion unit 15 is used to make the main ingredients conveyed on the upper chain conveyor 4 enter the corresponding rotary soaking tank 5. According to the structure, when a certain amount of the salt aconite needs to enter the corresponding rotary soaking tank 5, the two baffle plates 14 exist, so that the certain amount of the salt aconite can only exit from the baffle plate discharge hole 16 when being conveyed on the upper chain plate conveyor 4; the controller controls the shunting unit 15 to select a certain amount of the salt aconite to go out from the corresponding baffle discharge port 16 and enter the corresponding rotary soaking tank 5.
Further, the shunting unit 15 includes a first electric telescopic rod 17, a first control motor 18, a driving gear 19, a driven gear 20, a rotating shaft 21, a shunting plate 22, two discharging plates 23, four pull rods 24 and two fixing rods 25; a rotating shaft 21 is rotatably arranged at the bottom end of the telescopic part of the first electric telescopic rod 17; a splitter plate 22 is fixed at the bottom end of the rotating shaft 21; a driven gear 20 is fixed on the rotating shaft 21; the driven gear 20 is meshed with the driving gear 19; the driving gear 19 is driven to rotate by a first control motor 18; the first control motor 18 is fixed on the telescopic part of the first electric telescopic rod 17; the telescopic part of the first electric telescopic rod 17 is also fixed with fixing rods 25 which are in one-to-one correspondence with the discharge plates 23; two ends of the fixed rod 25 are connected with two sides of the corresponding discharging plate 23 through two pull rods 24; both ends of the pull rod 24 are hinged with the corresponding fixed rod 25 and the corresponding discharge plate 23; the discharge plate 23 is hinged on a side plate of the upper chain plate conveyor 4 at the position of the baffle discharge port 16; the first electric telescopic rod 17 and the first control motor 18 are respectively and electrically connected with the controller. According to the structure, when a certain amount of the monkshood needs to enter the corresponding rotary soaking tank 5, the controller controls the first electric telescopic rod 17 of the flow dividing unit 15 corresponding to the rotary soaking tank 5 to be divided to extend, the telescopic part of the first electric telescopic rod 17 drives the two fixing rods 25 to descend, so that the four pull rods 24 open the two discharge plates 23 to form the baffle discharge ports 16 at two sides, at the moment, the flow dividing plate 22 cuts off the conveying channel of the chain plate conveyor 4, the controller controls the first control motor 18 of the flow dividing unit 15 to drive the corresponding flow dividing plate 22 to deflect towards the corresponding rotary soaking tank 5, and the monkshood conveyed on the chain plate conveyor 4 is guided to the corresponding rotary soaking tank 5 by the corresponding flow dividing plate 22; the first electric telescopic rods 17 of the irrelevant shunting units 15 controlled by the controller are all shortened, the shunting plates 22 of the irrelevant shunting units do not obstruct the conveying channel of the chain plate conveyor 4, and the telescopic parts of the first electric telescopic rods 17 drive the two fixing rods 25 to ascend, so that the four pull rods 24 close the two discharge plates 23 to the baffle discharge holes 16 on the two sides, and the salt monkshood conveyed on the chain plate conveyor 4 is prevented from falling out.
Further, the vibration diversion conveyor 6 further comprises a second vibration conveyor, a second electric telescopic rod 26 and a movable baffle 27; the first vibration exciter is used for driving the second vibrating conveyor to operate; the second vibratory conveyor includes a conveyor trough 28; a first shunt port 29 is arranged on the bottom plate of the conveying groove 28, and a second shunt port 30 is arranged at the tail end of the conveying groove 28; a side plate of the conveying groove 28 is provided with a second electric telescopic rod 26; the telescopic end of the second electric telescopic rod 26 is connected with a movable baffle 27 and is used for pushing the movable baffle 27 to open or close a first shunt port 29; the first flow dividing port 29 and the second flow dividing port 30 are respectively positioned on the feeding port of one chain plate type medicine boiling device 7; the second electric telescopic rod 26 is electrically connected with the controller. According to the structure, when the controller controls the second electric telescopic rod 26 to shorten, the movable baffle plate 27 opens the first shunting port 29, the salt aconite slides out of the first shunting port 29 along the conveying groove 28, and the salt aconite falls into the feeding hole of the chain plate type medicine boiling device 7; when the controller controls the second electric telescopic rod 26 to extend, the movable baffle plate 27 closes the first branch opening 29, the salt aconite slides out from the second branch opening 30 along the conveying groove 28, and the salt aconite falls into the feeding hole of the other chain plate type medicine boiling device 7. When the amount of the salt aconite is large, two chain plate type medicine boiling devices 7 can be started, the productivity is improved, and when the amount is small, any one chain plate type medicine boiling device 7 can be started, so that unnecessary equipment starting and energy waste are avoided.
Further, the chain plate type medicine boiling device 7 comprises a medicine boiling groove 31, a separation net 32, two chain plate type conveyors 33, a plurality of steam pipes 34, a plurality of auxiliary material liquid inlet pipes 35, an auxiliary material liquid outlet pipe 36, a return pipe 37, a liquid pump 38, a liquid level sensor and a temperature sensor; the medicine boiling groove 31 is divided into a main material area 39 and an auxiliary material area 40 through a separation net 32; the bottoms of the main material area 39 and the auxiliary material area 40 are respectively provided with a chain plate type conveyor 33; a plurality of steam pipes 34 and auxiliary material liquid inlet pipes 35 are arranged between the upper and lower conveyer belts of the chain plate type conveyer 33 in the main material area 39; a plurality of steam pipes 34 and auxiliary material liquid outlet pipes 36 are arranged between the upper and lower conveyer belts of the chain plate type conveyer 33 in the auxiliary material area 40; a filter 41 is arranged on the auxiliary material outlet pipe 36; the auxiliary material liquid inlet pipe 35 is provided with a plurality of upward auxiliary material liquid inlets; a plurality of through holes are formed in the uplink and downlink conveying belts of the chain plate type conveyor 33; the auxiliary material liquid inlet pipes 35 are communicated with the auxiliary material liquid outlet pipes 36 through return pipes 37; the return pipe 37 is provided with a liquid pump 38; the chain plate conveyor 33 comprises a chain plate control motor; the chain plate control motor, the liquid pump 38, the liquid level sensor and the temperature sensor are electrically connected with the controller respectively. According to the structure, salt aconite is placed on the chain plate conveyor 33 of the main material area 39, black beans and liquorice are placed on the chain plate conveyor 33 of the auxiliary material area 40, a certain amount of water is added to the main material area 39 and the auxiliary material area 40, and the salt aconite, the black beans and the liquorice are not mixed due to the existence of the separation net 32, but the water solution of the salt aconite can be mixed, so that the salt aconite is subjected to toxicity reduction processing; the chain plate type conveyor 33 is convenient for taking out the boiled salt aconite, the black beans and the liquorice respectively; in order to promote the mixing of the salt aconite aqueous solution, the black bean and the licorice aqueous solution, the liquid pump 38 pumps the aqueous solution in the auxiliary material area 40 to the main material area 39; in order to avoid that unnecessary impurities in the auxiliary material area 40 are pumped away, a filter 41 is arranged on the auxiliary material outlet pipe 36; the steam pipe 34 can heat the aqueous solution in the auxiliary material region 40 and the main material region 39; a plurality of steam pipes 34 and auxiliary material liquid inlet pipes 35 are arranged between the upper and lower conveyer belts of the chain plate type conveyer 33 of the main material area 39, so that the water solution of the main material area 39 is promoted to move, the salt aconite is sufficiently attenuated, and the moving water solution passes through a plurality of through holes arranged on the upper conveyer belt of the chain plate type conveyer 33; a plurality of steam pipes 34 and auxiliary material liquid outlet pipes 36 are arranged between the upper and lower conveying belts of the chain plate type conveyor 33 in the auxiliary material area 40, so that the black beans and the liquorice cannot enter the auxiliary material liquid outlet pipes 36, the steam from the steam pipes 34 enables the aqueous solution in the auxiliary material area 40 to move, the detoxifying substances of the black beans and the liquorice are fully blended into the aqueous solution, and then the aqueous solution is conveyed to the main material area 39 to carry out detoxification processing on the salt aconite.
Further, a water replenishing pipe 42 is arranged on the medicine boiling groove 31; a water replenishing control valve 43 is arranged on the water replenishing pipe 42; a steam control valve 44 is arranged on the steam pipe 34; an auxiliary material liquid inlet control valve 45 is arranged on the return pipe 37 between the liquid pump 38 and the auxiliary material liquid inlet pipe 35; the inlet of the liquid pump 38 of the chain plate type medicine boiling device 7 is communicated with the outlet of the liquid pump 38 of the other chain plate type medicine boiling device 7 through a first branch pipe 46, and the outlet of the liquid pump 38 of the chain plate type medicine boiling device 7 is communicated with the inlet of the liquid pump 38 of the other chain plate type medicine boiling device 7 through a second branch pipe 47; a first branch pipe control valve 48 is arranged on the first branch pipe 46; a second branch pipe control valve 49 is arranged on the second branch pipe 47; and the water supplementing control valve 43, the steam control valve 44, the auxiliary material liquid inlet control valve 45, the first branch pipe control valve 48 and the second branch pipe control valve 49 are respectively and electrically connected with the controller. According to the structure, the controller controls the water supplementing control valve 43 to be opened, the water supplementing pipe 42 adds water into the medicine boiling groove 31, and when the liquid level sensor senses that the water reaches the set liquid level, the controller controls the water supplementing control valve 43 to be closed; when the water temperature is lower than the set value, the controller controls the steam control valve 44 to open, and the steam pipe 34 feeds steam into the water to raise the temperature. When one medicine boiling tank 31 is not used, but the other medicine boiling tank 31 needs the water solution after the medicine is boiled, the controller controls to open the auxiliary material liquid inlet control valve 45 corresponding to the medicine boiling tank 31 for inputting the water solution, open the first branch pipe control valve 48 or the second branch pipe control valve 49 according to the requirement, and open the liquid suction pumps 38 corresponding to the two medicine boiling tanks 31 respectively, so that the water solution after the medicine is boiled is quickly transferred to the other medicine boiling tank 31.
Further, the mesh belt spreading and drying device 9 comprises a plurality of mesh belt spreading and drying machines 50 which are arranged in sequence; the conveyor belt of the mesh belt type spreading and drying machine 50 is obliquely arranged; the discharge hole of the upstream mesh belt spreading and drying machine 50 is positioned on the feed hole of the downstream mesh belt spreading and drying machine 50; a falling-preventing plate is fixed at the position of a feed inlet of the mesh belt type spreading and drying machine 50; an air draft cover 51 is arranged above the conveying belt of the mesh belt type spreading and drying machine 50, and an air blowing cover 52 is arranged below the conveying belt; the mesh-belt type spreading and drying machine 50 includes a blower and an exhaust fan electrically connected to the controller, respectively. According to the structure, the conveying belt of the mesh belt type spreading and drying machine 50 is obliquely arranged, so that the spreading and drying area of the salt aconite is increased, and the salt aconite is prevented from falling off; the controller controls the blower and the exhaust fan to be opened, the blower blows air upwards through the air blowing cover 52, the air penetrates through the salt monkshood on the conveyor belt, and the exhaust fan exhausts the air through the air exhaust cover 51 to spread and dry the salt monkshood.
Further, the device for producing the fresh aconite also comprises a discharging device; the discharging device comprises a fixed frame 53, a funnel 54, a third electric telescopic rod 55, a rotating plate 56, a supporting platform 57, a hook 58 and a tension and compression sensor 59; a funnel 54 is fixed at the top of the fixed frame 53; the hopper 54 is positioned on the feed inlet of the first chain scraper conveyor 1; the edge of the funnel 54 is hinged with a rotating plate 56; the rotating plate 56 is driven to rotate by a third electric telescopic rod 55; the rotating plate 56 comprises an inclined plate 60 and a transverse plate 61; the transverse plate 61 is connected with the supporting platform 57 through a tension and compression sensor 59; a hook 58 is hinged on the supporting platform 57; the third electric telescopic rod 55 and the tension and compression sensor 59 are respectively and electrically connected with the controller. By the structure, to load the salt monkshood in the pocket and place on supporting platform 57, and catch on the pocket with couple 58, draw pressure information that pressure sensor 59 will receive and give the controller this moment, controller control third electric telescopic handle 55 extension, make and change 56 upsets the salt monkshood in the pocket and unload to the funnel 54 in, the pressure information that draws pressure sensor 59 to feel this moment converts into pulling force information, when the pulling force information that draws pressure sensor 59 to receive is less than the setting value, controller control third electric telescopic handle 55 shrink, change 56 resets, salt monkshood in funnel 54 falls into on first chain slat conveyor 1, accomplish once automatic discharge, use manpower sparingly.
The invention has the beneficial effects that:
1. the invention discloses an automatic control system for producing a fresh aconite, which belongs to the technical field of medicinal material processing and comprises a controller, a timer and a device for producing the fresh aconite; the controller is respectively electrically connected with the first chain plate control motor, the speed measuring sensor, the weighing sensor, the variable frequency control motor, the bucket type vertical elevator control motor, the upper chain plate control motor, the tank body control motor, the flowmeter, the water inlet electromagnetic valve, the water outlet electromagnetic valve, the reset switch, the shunt device, the lower chain plate control motor, the first vibration exciter, the chain plate type medicine boiling device, the second vibration exciter, the mesh belt type spreading and drying device, the second chain plate control motor, the rotary slicer, the third chain plate control motor, the belt type dryer and the timer. The automatic control system for producing the fresh aconite, provided by the invention, is suitable for efficiently processing the salt aconite into high-quality fresh aconite in batches, the automation degree is high, and the labor cost is reduced.
Drawings
FIG. 1 is a schematic view of the overall structure of the present invention;
FIG. 2 is a schematic view of the structure of the shunting unit of the present invention;
FIG. 3 is a schematic left side view of the structure of FIG. 2;
FIG. 4 is a schematic view of the trough structure of the present invention;
FIG. 5 is a schematic view of the structure of two chain-plate type drug boiling devices of the present invention;
FIG. 6 is a schematic view of the structure of the mesh-belt spreading and drying device of the present invention;
FIG. 7 is a schematic view of the structure of the reset position of the discharging device of the present invention;
FIG. 8 is a schematic view of the discharging position of the discharging device of the present invention;
in the drawings: 1-a first chain plate conveyor, 2-a belt scale, 3-a bucket type vertical elevator, 4-a chain plate conveyor, 5-a rotary soaking tank, 6-a vibration split-flow conveyor, 7-a chain plate type medicine boiling device, 8-a vibration conveyor, 9-a mesh belt type spreading and drying device, 10-a second chain plate conveyor, 11-a rotary slicing machine, 12-a third chain plate conveyor, 13-a belt type dryer, 14-a baffle plate, 15-a split-flow unit, 16-a baffle plate discharge port, 17-a first electric telescopic rod, 18-a first control motor, 19-a driving gear, 20-a driven gear, 21-a rotating shaft, 22-a split-flow plate, 23-a discharge plate, 24-a pull rod, 25-a fixed rod, 26-a second electric telescopic rod, 27-a movable baffle, 28-a conveying tank, 29-a first diversion port, 30-a second diversion port, 31-a medicine boiling tank, 32-a separation net, 33-a chain plate conveyor, 34-a steam pipe, 35-an auxiliary material liquid inlet pipe, 36-an auxiliary material liquid outlet pipe, 37-a return pipe, 38-a liquid drawing pump, 39-a main material area, 40-an auxiliary material area, 41-a filter, 42-a water replenishing pipe, 43-a water replenishing control valve, 44-a steam control valve, 45-an auxiliary material liquid inlet control valve, 46-a first branch pipe, 47-a second branch pipe, 48-a first branch pipe control valve, 49-a second branch pipe control valve, 50-a mesh belt type spreading and drying machine, 51-an air suction cover, 52-an air blowing cover, 53-a fixed frame, 54-a funnel, 55-a third electric telescopic rod, 56-rotating plate, 57-supporting platform, 58-hook, 59-tension and compression sensor, 60-inclined plate and 61-transverse plate.
Detailed Description
The present invention will be described in further detail below with reference to the drawings and the embodiments, but the present invention is not limited to the following examples.
The first embodiment is as follows:
see figures 1-8. An automatic control system for producing a thin coupon comprises a controller, a timer and a device for producing the thin coupon; the device for producing the light attached sheets comprises a first chain plate conveyor 1, a belt scale 2, a bucket type vertical elevator 3, an upper chain plate conveyor 4, a plurality of rotary soaking tanks 5, a flow dividing device, a lower chain plate conveyor, a vibrating flow dividing conveyor 6, two chain plate type medicine boiling devices 7, a vibrating conveyor 8, a mesh belt type spreading and drying device 9, a second chain plate conveyor 10, a rotary slicer 11, a third chain plate conveyor 12 and a belt type dryer 13; the first chain scraper conveyor 1 comprises a first chain scraper control motor; the belt scale 2 comprises a speed measuring sensor, a weighing sensor and a variable frequency control motor; the bucket type vertical elevator 3 comprises a bucket type vertical elevator control motor; the upper chain plate conveyor 4 comprises an upper chain plate control motor; the rotary soaking tank 5 comprises a tank body with a built-in spiral material guide plate, a tank body control motor, a water inlet pipe, a water outlet pipe, a flowmeter and a water inlet electromagnetic valve which are arranged on the water inlet pipe, a water outlet electromagnetic valve which is arranged on the water outlet pipe and a reset switch for resetting and identifying the angle of the tank body; the shunting device is used for leading the main materials conveyed on the upper chain plate conveyor 4 to enter the corresponding rotary soaking tank 5; the lower chain plate conveyor comprises a lower chain plate control motor; the vibration splitting conveyor 6 comprises a first vibration exciter; the vibration diversion conveyor 6 is used for leading the main materials to enter the corresponding chain plate type medicine boiling device 7; the chain plate type medicine boiling device 7 is used for boiling the main materials and the auxiliary materials; the vibrating conveyor 8 comprises a second vibration exciter; the mesh belt type spreading and drying device 9 is used for spreading and drying the main materials; the second apron conveyor 10 comprises a second apron control motor; the rotary slicer 11 is used for slicing the main material; the third apron conveyor 12 comprises a third apron control motor; the belt dryer 13 is used for drying the main material of the slices; the controller is respectively electrically connected with the first chain plate control motor, the speed measuring sensor, the weighing sensor, the variable frequency control motor, the bucket type vertical elevator control motor, the upper chain plate control motor, the tank body control motor, the flowmeter, the water inlet electromagnetic valve, the water outlet electromagnetic valve, the reset switch, the shunt device, the lower chain plate control motor, the first vibration exciter, the chain plate type medicine boiling device 7, the second vibration exciter, the mesh belt type spreading and drying device 9, the second chain plate control motor, the rotary slicing machine 11, the third chain plate control motor, the belt type drying machine 13 and the timer. According to the structure, the working process is as follows: the salt aconite falls into a first chain plate conveyor 1, a controller controls a first chain plate control motor to drive the first chain plate conveyor 1 to convey the salt aconite to a belt scale 2, and the controller controls the belt scale 2 to convey n times of quantitative salt aconite to a bucket type vertical elevator 3; the controller controls the bucket type vertical elevator to control the motor to drive the bucket type vertical elevator 3 to lift the salt aconite to the upper chain plate conveyor 4; the controller controls the upper chain plate conveyor 4 to drive the upper chain plate conveyor 4 to operate, and the controller distributes the quantitative salt aconite to the corresponding rotary soaking tanks 5 at each time by controlling the flow dividing device, and distributes n rotary soaking tanks 5 in total; the controller controls the rotary soaking tank 5 distributed to the salt aconite to start water replenishing, material turning is carried out every t1 hours, water changing is carried out every t2 hours, the total time lasts for t3 days, the salt aconite is soaked and floated until salt is completely floated, then the rotary soaking tank 5 is drained, and finally the rotary soaking tank 5 discharges the floated salt aconite to a lower chain plate conveyor; the controller controls the lower chain plate to control the motor to drive the lower chain plate conveyor to convey the salt aconite to the vibration shunt conveyor 6, and controls the first vibration exciter to drive the vibration shunt conveyor 6 to distribute the salt aconite to the corresponding chain plate type medicine boiling devices 7; the controller controls the chain plate type medicine boiling device 7 distributed to the salt aconite to add a certain amount of water, and the black beans, the liquorice and the salt aconite are added to be boiled for t4 hours by steam, the water temperature is kept within a set temperature range, and the black beans, the liquorice and the salt aconite are boiled thoroughly; the controller controls the chain plate type medicine boiling device 7 to convey salt aconite to the vibrating conveyor 8, then the controller controls the second vibration exciter to drive the vibrating conveyor 8 to convey the salt aconite to the mesh belt type spreading and drying device 9, and the controller controls the mesh belt type spreading and drying device 9 to spread and dry the salt aconite; the controller controls the mesh belt type spreading and drying device 9 to convey the salt aconite to the second chain plate conveyor 10, the controller controls the second chain plate control motor to drive the second chain plate conveyor 10 to convey the salt aconite to the rotary slicer 11 for slicing, and the salt aconite becomes the freshwater aconite; the thin coupon output by the rotary slicer 11 enters a third chain conveyor 12, and the controller controls a third chain plate to control a motor to drive the third chain conveyor 12 to convey the thin coupon to a belt dryer 13 for drying. N is 2-20; t1 is 1-3; t2 is 7-9; t3 is 5-8; t4 is 3-5; the belt scale 2 comprises a speed measuring sensor, a weighing sensor and a variable frequency control motor; the rotary soaking tank 5 comprises a tank body with a built-in spiral material guide plate, a tank body control motor, a water inlet pipe, a water outlet pipe, a flowmeter and a water inlet electromagnetic valve which are arranged on the water inlet pipe, a water outlet electromagnetic valve which is arranged on the water outlet pipe and a reset switch for resetting and identifying the angle of the tank body; the specific mode that the controller controls the belt scale 2 to convey the quantitative radix aconiti lateralis preparata for n times to the bucket type vertical elevator 3 is as follows: firstly, weighing the mass of the salt aconite on the belt scale 2 and the belt speed by a weighing sensor and a speed measuring sensor respectively, then transmitting the mass information and the speed information to a controller, calculating the instantaneous flow of the salt aconite by the controller, controlling the rotating speed of a variable frequency control motor to slow when the instantaneous flow of the salt aconite is higher than a set value, controlling the rotating speed of the variable frequency control motor to be fast when the instantaneous flow of the salt aconite is lower than the set value by the controller, ensuring the flow of the salt aconite on the belt scale 2 to be constant, timing by a timer, controlling the variable frequency control motor to pause for a certain time after each constant time feeding of the belt scale 2, and then continuing to repeatedly feed and pause to realize n times of conveying of quantitative salt aconite; the specific water replenishing mode of the rotary soaking tank 5 is as follows: the controller controls the water inlet electromagnetic valve to be opened, the water inlet pipe supplies water to the interior of the tank body, and the controller controls the water inlet electromagnetic valve to be closed when the water supply amount monitored by the flowmeter reaches a standard; the specific drainage mode is as follows: the controller controls the tank body to control the motor to drive the tank body to rotate forwards, when the water outlet pipe is positioned right below the tank body, the bulge arranged on the tank body triggers the reset switch, reset information is transmitted to the controller, the controller controls the tank body to control the motor to stop, the controller controls the water outlet electromagnetic valve to be opened, and the water outlet pipe drains water downwards; the specific mode of water changing is as follows: draining water and then supplementing water; the material turning method comprises the following specific steps: the controller controls the tank body to control the motor to drive the tank body to rotate forwards; the specific mode of discharging is as follows: the controller controls the tank body to control the motor to drive the tank body to rotate reversely.
Example two:
see figures 1-8. On the basis of the first embodiment, the discharge hole of the first chain plate conveyor 1 is positioned on the feed hole of the belt scale 2; the discharge hole of the belt scale 2 is positioned on the feed inlet of the bucket type vertical elevator 3; the discharge hole of the bucket type vertical elevator 3 is positioned on the feed inlet of the upper chain plate conveyor 4; the material inlet and outlet of the rotary soaking tank 5 are positioned on the lower chain plate conveyor; the discharge hole of the lower chain plate conveyor is positioned on the feed hole of the vibration shunt conveyor 6; the discharge hole of the chain plate type medicine boiling device 7 is positioned on the vibrating conveyor 8; the discharge hole of the vibrating conveyor 8 is positioned on the feed hole of the mesh belt type spreading and drying device 9; the discharge hole of the mesh belt type spreading and drying device 9 is positioned on the feed hole of the second chain plate conveyor 10; the discharge hole of the second chain plate conveyor 10 is positioned on the feed hole of the rotary slicer 11; the discharge hole of the rotary slicer 11 is positioned on the feed hole of the third chain conveyor 12; the discharge hole of the third chain conveyor 12 is positioned on the feed hole of the belt dryer 13.
Example three:
see figures 1-8. On the basis of the second embodiment, the flow dividing device comprises two baffles 14 and a plurality of flow dividing units 15; the two baffle plates 14 are symmetrically fixed on two side plates of the upper chain plate conveyor 4; the baffle 14 is provided with a plurality of baffle discharge holes 16 arranged along the length of the baffle 14; the baffle discharge ports 16 correspond to the rotary soaking tanks 5 one by one, and the baffle discharge ports 16 are positioned on the feed and discharge ports of the corresponding rotary soaking tanks 5; the baffle discharge ports 16 of the two baffles 14 are arranged in pairs, and a flow dividing unit 15 is arranged between each pair of baffle discharge ports 16; the diversion unit 15 is used to make the main ingredients conveyed on the upper chain conveyor 4 enter the corresponding rotary soaking tank 5. According to the structure, when a certain amount of the salt aconite needs to enter the corresponding rotary soaking tank 5, the two baffle plates 14 exist, so that the certain amount of the salt aconite can only exit from the baffle plate discharge hole 16 when being conveyed on the upper chain plate conveyor 4; the controller controls the shunting unit 15 to select a certain amount of the salt aconite to go out from the corresponding baffle discharge port 16 and enter the corresponding rotary soaking tank 5.
The shunting unit 15 comprises a first electric telescopic rod 17, a first control motor 18, a driving gear 19, a driven gear 20, a rotating shaft 21, a shunting plate 22, two discharging plates 23, four pull rods 24 and two fixing rods 25; a rotating shaft 21 is rotatably arranged at the bottom end of the telescopic part of the first electric telescopic rod 17; a splitter plate 22 is fixed at the bottom end of the rotating shaft 21; a driven gear 20 is fixed on the rotating shaft 21; the driven gear 20 is meshed with the driving gear 19; the driving gear 19 is driven to rotate by a first control motor 18; the first control motor 18 is fixed on the telescopic part of the first electric telescopic rod 17; the telescopic part of the first electric telescopic rod 17 is also fixed with fixing rods 25 which are in one-to-one correspondence with the discharge plates 23; two ends of the fixed rod 25 are connected with two sides of the corresponding discharging plate 23 through two pull rods 24; both ends of the pull rod 24 are hinged with the corresponding fixed rod 25 and the corresponding discharge plate 23; the discharge plate 23 is hinged on a side plate of the upper chain plate conveyor 4 at the position of the baffle discharge port 16; the first electric telescopic rod 17 and the first control motor 18 are respectively and electrically connected with the controller. According to the structure, when a certain amount of the monkshood needs to enter the corresponding rotary soaking tank 5, the controller controls the first electric telescopic rod 17 of the flow dividing unit 15 corresponding to the rotary soaking tank 5 to be divided to extend, the telescopic part of the first electric telescopic rod 17 drives the two fixing rods 25 to descend, so that the four pull rods 24 open the two discharge plates 23 to form the baffle discharge ports 16 at two sides, at the moment, the flow dividing plate 22 cuts off the conveying channel of the chain plate conveyor 4, the controller controls the first control motor 18 of the flow dividing unit 15 to drive the corresponding flow dividing plate 22 to deflect towards the corresponding rotary soaking tank 5, and the monkshood conveyed on the chain plate conveyor 4 is guided to the corresponding rotary soaking tank 5 by the corresponding flow dividing plate 22; the first electric telescopic rods 17 of the irrelevant shunting units 15 controlled by the controller are all shortened, the shunting plates 22 of the irrelevant shunting units do not obstruct the conveying channel of the chain plate conveyor 4, and the telescopic parts of the first electric telescopic rods 17 drive the two fixing rods 25 to ascend, so that the four pull rods 24 close the two discharge plates 23 to the baffle discharge holes 16 on the two sides, and the salt monkshood conveyed on the chain plate conveyor 4 is prevented from falling out.
The vibration diversion conveyor 6 further comprises a second vibration conveyor, a second electric telescopic rod 26 and a movable baffle 27; the first vibration exciter is used for driving the second vibrating conveyor to operate; the second vibratory conveyor includes a conveyor trough 28; a first shunt port 29 is arranged on the bottom plate of the conveying groove 28, and a second shunt port 30 is arranged at the tail end of the conveying groove 28; a side plate of the conveying groove 28 is provided with a second electric telescopic rod 26; the telescopic end of the second electric telescopic rod 26 is connected with a movable baffle 27 and is used for pushing the movable baffle 27 to open or close a first shunt port 29; the first flow dividing port 29 and the second flow dividing port 30 are respectively positioned on the feeding port of one chain plate type medicine boiling device 7; the second electric telescopic rod 26 is electrically connected with the controller. According to the structure, when the controller controls the second electric telescopic rod 26 to shorten, the movable baffle plate 27 opens the first shunting port 29, the salt aconite slides out of the first shunting port 29 along the conveying groove 28, and the salt aconite falls into the feeding hole of the chain plate type medicine boiling device 7; when the controller controls the second electric telescopic rod 26 to extend, the movable baffle plate 27 closes the first branch opening 29, the salt aconite slides out from the second branch opening 30 along the conveying groove 28, and the salt aconite falls into the feeding hole of the other chain plate type medicine boiling device 7. When the amount of the salt aconite is large, two chain plate type medicine boiling devices 7 can be started, the productivity is improved, and when the amount is small, any one chain plate type medicine boiling device 7 can be started, so that unnecessary equipment starting and energy waste are avoided.
The chain plate type medicine boiling device 7 comprises a medicine boiling groove 31, a separation net 32, two chain plate type conveyors 33, a plurality of steam pipes 34, a plurality of auxiliary material liquid inlet pipes 35, an auxiliary material liquid outlet pipe 36, a return pipe 37, a liquid pump 38, a liquid level sensor and a temperature sensor; the medicine boiling groove 31 is divided into a main material area 39 and an auxiliary material area 40 through a separation net 32; the bottoms of the main material area 39 and the auxiliary material area 40 are respectively provided with a chain plate type conveyor 33; a plurality of steam pipes 34 and auxiliary material liquid inlet pipes 35 are arranged between the upper and lower conveyer belts of the chain plate type conveyer 33 in the main material area 39; a plurality of steam pipes 34 and auxiliary material liquid outlet pipes 36 are arranged between the upper and lower conveyer belts of the chain plate type conveyer 33 in the auxiliary material area 40; a filter 41 is arranged on the auxiliary material outlet pipe 36; the auxiliary material liquid inlet pipe 35 is provided with a plurality of upward auxiliary material liquid inlets; a plurality of through holes are formed in the uplink and downlink conveying belts of the chain plate type conveyor 33; the auxiliary material liquid inlet pipes 35 are communicated with the auxiliary material liquid outlet pipes 36 through return pipes 37; the return pipe 37 is provided with a liquid pump 38; the chain plate conveyor 33 comprises a chain plate control motor; the chain plate control motor, the liquid pump 38, the liquid level sensor and the temperature sensor are electrically connected with the controller respectively. According to the structure, salt aconite is placed on the chain plate conveyor 33 of the main material area 39, black beans and liquorice are placed on the chain plate conveyor 33 of the auxiliary material area 40, a certain amount of water is added to the main material area 39 and the auxiliary material area 40, and the salt aconite, the black beans and the liquorice are not mixed due to the existence of the separation net 32, but the water solution of the salt aconite can be mixed, so that the salt aconite is subjected to toxicity reduction processing; the chain plate type conveyor 33 is convenient for taking out the boiled salt aconite, the black beans and the liquorice respectively; in order to promote the mixing of the salt aconite aqueous solution, the black bean and the licorice aqueous solution, the liquid pump 38 pumps the aqueous solution in the auxiliary material area 40 to the main material area 39; in order to avoid that unnecessary impurities in the auxiliary material area 40 are pumped away, a filter 41 is arranged on the auxiliary material outlet pipe 36; the steam pipe 34 can heat the aqueous solution in the auxiliary material region 40 and the main material region 39; a plurality of steam pipes 34 and auxiliary material liquid inlet pipes 35 are arranged between the upper and lower conveyer belts of the chain plate type conveyer 33 of the main material area 39, so that the water solution of the main material area 39 is promoted to move, the salt aconite is sufficiently attenuated, and the moving water solution passes through a plurality of through holes arranged on the upper conveyer belt of the chain plate type conveyer 33; a plurality of steam pipes 34 and auxiliary material liquid outlet pipes 36 are arranged between the upper and lower conveying belts of the chain plate type conveyor 33 in the auxiliary material area 40, so that the black beans and the liquorice cannot enter the auxiliary material liquid outlet pipes 36, the steam from the steam pipes 34 enables the aqueous solution in the auxiliary material area 40 to move, the detoxifying substances of the black beans and the liquorice are fully blended into the aqueous solution, and then the aqueous solution is conveyed to the main material area 39 to carry out detoxification processing on the salt aconite.
A water replenishing pipe 42 is arranged on the medicine boiling groove 31; a water replenishing control valve 43 is arranged on the water replenishing pipe 42; a steam control valve 44 is arranged on the steam pipe 34; an auxiliary material liquid inlet control valve 45 is arranged on the return pipe 37 between the liquid pump 38 and the auxiliary material liquid inlet pipe 35; the inlet of the liquid pump 38 of the chain plate type medicine boiling device 7 is communicated with the outlet of the liquid pump 38 of the other chain plate type medicine boiling device 7 through a first branch pipe 46, and the outlet of the liquid pump 38 of the chain plate type medicine boiling device 7 is communicated with the inlet of the liquid pump 38 of the other chain plate type medicine boiling device 7 through a second branch pipe 47; a first branch pipe control valve 48 is arranged on the first branch pipe 46; a second branch pipe control valve 49 is arranged on the second branch pipe 47; and the water supplementing control valve 43, the steam control valve 44, the auxiliary material liquid inlet control valve 45, the first branch pipe control valve 48 and the second branch pipe control valve 49 are respectively and electrically connected with the controller. According to the structure, the controller controls the water supplementing control valve 43 to be opened, the water supplementing pipe 42 adds water into the medicine boiling groove 31, and when the liquid level sensor senses that the water reaches the set liquid level, the controller controls the water supplementing control valve 43 to be closed; when the water temperature is lower than the set value, the controller controls the steam control valve 44 to open, and the steam pipe 34 feeds steam into the water to raise the temperature. When one medicine boiling tank 31 is not used, but the other medicine boiling tank 31 needs the water solution after the medicine is boiled, the controller controls to open the auxiliary material liquid inlet control valve 45 corresponding to the medicine boiling tank 31 for inputting the water solution, open the first branch pipe control valve 48 or the second branch pipe control valve 49 according to the requirement, and open the liquid suction pumps 38 corresponding to the two medicine boiling tanks 31 respectively, so that the water solution after the medicine is boiled is quickly transferred to the other medicine boiling tank 31.
The mesh belt type spreading and drying device 9 comprises a plurality of mesh belt type spreading and drying machines 50 which are arranged in sequence; the conveyor belt of the mesh belt type spreading and drying machine 50 is obliquely arranged; the discharge hole of the upstream mesh belt spreading and drying machine 50 is positioned on the feed hole of the downstream mesh belt spreading and drying machine 50; a falling-preventing plate is fixed at the position of a feed inlet of the mesh belt type spreading and drying machine 50; an air draft cover 51 is arranged above the conveying belt of the mesh belt type spreading and drying machine 50, and an air blowing cover 52 is arranged below the conveying belt; the mesh-belt type spreading and drying machine 50 includes a blower and an exhaust fan electrically connected to the controller, respectively. According to the structure, the conveying belt of the mesh belt type spreading and drying machine 50 is obliquely arranged, so that the spreading and drying area of the salt aconite is increased, and the salt aconite is prevented from falling off; the controller controls the blower and the exhaust fan to be opened, the blower blows air upwards through the air blowing cover 52, the air penetrates through the salt monkshood on the conveyor belt, and the exhaust fan exhausts the air through the air exhaust cover 51 to spread and dry the salt monkshood.
The device for producing the fresh aconite also comprises a discharging device; the discharging device comprises a fixed frame 53, a funnel 54, a third electric telescopic rod 55, a rotating plate 56, a supporting platform 57, a hook 58 and a tension and compression sensor 59; a funnel 54 is fixed at the top of the fixed frame 53; the hopper 54 is positioned on the feed inlet of the first chain scraper conveyor 1; the edge of the funnel 54 is hinged with a rotating plate 56; the rotating plate 56 is driven to rotate by a third electric telescopic rod 55; the rotating plate 56 comprises an inclined plate 60 and a transverse plate 61; the transverse plate 61 is connected with the supporting platform 57 through a tension and compression sensor 59; a hook 58 is hinged on the supporting platform 57; the third electric telescopic rod 55 and the tension and compression sensor 59 are respectively and electrically connected with the controller. By the structure, to load the salt monkshood in the pocket and place on supporting platform 57, and catch on the pocket with couple 58, draw pressure information that pressure sensor 59 will receive and give the controller this moment, controller control third electric telescopic handle 55 extension, make and change 56 upsets the salt monkshood in the pocket and unload to the funnel 54 in, the pressure information that draws pressure sensor 59 to feel this moment converts into pulling force information, when the pulling force information that draws pressure sensor 59 to receive is less than the setting value, controller control third electric telescopic handle 55 shrink, change 56 resets, salt monkshood in funnel 54 falls into on first chain slat conveyor 1, accomplish once automatic discharge, use manpower sparingly.
The above description is only a preferred embodiment of the present invention, and not intended to limit the scope of the present invention, and all modifications of equivalent structures and equivalent processes, which are made by using the contents of the present specification and the accompanying drawings, or directly or indirectly applied to other related technical fields, are included in the scope of the present invention.

Claims (9)

1. An automatic control system for producing a dried coupon, comprising: comprises a controller, a timer and a device for producing the freshwater aconite; the device for producing the light attaching sheet comprises a first chain plate conveyor (1), a belt scale (2), a bucket type vertical elevator (3), an upper chain plate conveyor (4), a plurality of rotary soaking tanks (5), a flow dividing device, a lower chain plate conveyor, a vibration flow dividing conveyor (6), two chain plate type medicine boiling devices (7), a vibration conveyor (8), a mesh belt type spreading and drying device (9), a second chain plate conveyor (10), a rotary slicing machine (11), a third chain plate conveyor (12) and a belt type drying machine (13); the first chain scraper conveyor (1) comprises a first chain scraper control motor; the belt scale (2) comprises a speed measuring sensor, a weighing sensor and a variable frequency control motor; the bucket type vertical elevator (3) comprises a bucket type vertical elevator control motor; the upper chain plate conveyor (4) comprises an upper chain plate control motor; the rotary soaking tank (5) comprises a tank body internally provided with a spiral material guide plate, a tank body control motor, a water inlet pipe, a water outlet pipe, a flowmeter and a water inlet electromagnetic valve which are arranged on the water inlet pipe, a water outlet electromagnetic valve arranged on the water outlet pipe and a reset switch for resetting and identifying the angle of the tank body; the shunting device is used for enabling the main materials conveyed on the upper chain plate conveyor (4) to enter the corresponding rotary soaking tank (5); the lower chain plate conveyor comprises a lower chain plate control motor; the vibration diversion conveyor (6) comprises a first vibration exciter; the vibration diversion conveyor (6) is used for leading the main materials to enter the corresponding chain plate type medicine boiling device (7); the chain plate type medicine boiling device (7) is used for boiling the main materials and the auxiliary materials; the vibrating conveyor (8) comprises a second vibration exciter; the mesh belt type spreading and drying device (9) is used for spreading and drying the main materials; the second apron conveyor (10) comprises a second apron control motor; the rotary slicer (11) is used for slicing the main material; the third apron conveyor (12) comprises a third apron control motor; the belt type dryer (13) is used for drying the main slicing materials; the controller is respectively electrically connected with the first chain plate control motor, the speed measuring sensor, the weighing sensor, the variable frequency control motor, the bucket type vertical elevator control motor, the upper chain plate control motor, the tank body control motor, the flowmeter, the water inlet electromagnetic valve, the water outlet electromagnetic valve, the reset switch, the shunting device, the lower chain plate control motor, the first vibration exciter, the chain plate type medicine boiling device (7), the second vibration exciter, the mesh belt type spreading and drying device (9), the second chain plate control motor, the rotary slicing machine (11), the third chain plate control motor, the belt type drying machine (13) and the timer.
2. An automated control system for the production of a coupon according to claim 1, wherein: the discharge hole of the first chain plate conveyor (1) is positioned on the feed hole of the belt scale (2); the discharge hole of the belt scale (2) is positioned on the feed inlet of the bucket type vertical elevator (3); the discharge hole of the bucket type vertical elevator (3) is positioned on the feed hole of the upper chain plate conveyor (4); the material inlet and outlet of the rotary soaking tank (5) are positioned on the lower chain plate conveyor; the discharge hole of the lower chain plate conveyor is positioned on the feed hole of the vibration shunt conveyor (6); a discharge port of the chain plate type medicine boiling device (7) is positioned on the vibrating conveyor (8); the discharge hole of the vibrating conveyor (8) is positioned on the feed hole of the mesh belt type spreading and drying device (9); a discharge hole of the mesh belt type spreading and drying device (9) is positioned on a feed hole of the second chain plate conveyor (10); the discharge hole of the second chain plate conveyor (10) is positioned on the feed hole of the rotary slicer (11); the discharge hole of the rotary slicer (11) is positioned on the feed hole of the third chain plate conveyor (12); and a discharge hole of the third chain plate conveyor (12) is positioned on a feed hole of the belt dryer (13).
3. An automated control system for the production of a coupon according to claim 2, wherein: the flow dividing device comprises two baffles (14) and a plurality of flow dividing units (15); the two baffle plates (14) are symmetrically fixed on two side plates of the upper chain plate conveyor (4); the baffle (14) is provided with a plurality of baffle discharge holes (16) which are arranged along the length of the baffle (14); the baffle discharge ports (16) correspond to the rotary soaking tanks (5) one by one, and the baffle discharge ports (16) are positioned on the feed and discharge ports of the corresponding rotary soaking tanks (5); baffle discharge ports (16) of the two baffles (14) are arranged in pairs, and a flow dividing unit (15) is arranged between each pair of baffle discharge ports (16); the flow dividing unit (15) is used for enabling the main materials conveyed on the upper chain plate conveyor (4) to enter the corresponding rotary soaking tank (5).
4. An automated control system for the production of a coupon according to claim 3, wherein: the flow dividing unit (15) comprises a first electric telescopic rod (17), a first control motor (18), a driving gear (19), a driven gear (20), a rotating shaft (21), a flow dividing plate (22), two discharging plates (23), four pull rods (24) and two fixing rods (25); a rotating shaft (21) is rotatably arranged at the bottom end of the telescopic part of the first electric telescopic rod (17); a splitter plate (22) is fixed at the bottom end of the rotating shaft (21); a driven gear (20) is fixed on the rotating shaft (21); the driven gear (20) is meshed with the driving gear (19); the driving gear (19) is driven to rotate by a first control motor (18); the first control motor (18) is fixed on the telescopic part of the first electric telescopic rod (17); the telescopic part of the first electric telescopic rod (17) is also fixed with fixing rods (25) which correspond to the discharging plates (23) one by one; two ends of the fixed rod (25) are connected with two sides of the corresponding discharging plate (23) through two pull rods (24); both ends of the pull rod (24) are hinged with the corresponding fixed rod (25) and the corresponding discharging plate (23); the discharge plate (23) is hinged on a side plate of the upper chain plate conveyor (4) at the position of the baffle discharge port (16); the first electric telescopic rod (17) and the first control motor (18) are respectively and electrically connected with the controller.
5. An automated control system for the production of a coupon according to claim 2, wherein: the vibration diversion conveyor (6) further comprises a second vibration conveyor, a second electric telescopic rod (26) and a movable baffle (27); the first vibration exciter is used for driving the second vibrating conveyor to operate; the second vibratory conveyor includes a conveyor trough (28); a first diversion port (29) is formed in the bottom plate of the conveying groove (28), and a second diversion port (30) is formed in the tail end of the conveying groove (28); a second electric telescopic rod (26) is arranged on a side plate of the conveying groove (28); the telescopic end of the second electric telescopic rod (26) is connected with a movable baffle (27) and is used for pushing the movable baffle (27) to open or close the first shunt opening (29); the first flow dividing port (29) and the second flow dividing port (30) are respectively positioned on a feed inlet of the chain plate type medicine boiling device (7); the second electric telescopic rod (26) is electrically connected with the controller.
6. An automated control system for the production of a coupon according to claim 2, wherein: the chain plate type medicine boiling device (7) comprises a medicine boiling groove (31), a separation net (32), two chain plate type conveyors (33), a plurality of steam pipes (34), a plurality of auxiliary material liquid inlet pipes (35), an auxiliary material liquid outlet pipe (36), a return pipe (37), a liquid pump (38), a liquid level sensor and a temperature sensor; the medicine boiling groove (31) is divided into a main material area (39) and an auxiliary material area (40) through a separation net (32); the bottoms of the main material area (39) and the auxiliary material area (40) are respectively provided with a chain plate type conveyor (33); a plurality of steam pipes (34) and auxiliary material liquid inlet pipes (35) are arranged between the upper and lower conveyer belts of the chain plate type conveyer (33) of the main material area (39); a plurality of steam pipes (34) and auxiliary material liquid outlet pipes (36) are arranged between the upper and lower conveyer belts of the chain plate type conveyer (33) of the auxiliary material area (40); a filter (41) is arranged on the auxiliary material outlet pipe (36); a plurality of upward auxiliary material liquid inlets are formed in the auxiliary material liquid inlet pipe (35); a plurality of through holes are formed in the uplink and downlink conveying belts of the chain plate type conveyor (33); the auxiliary material liquid inlet pipes (35) are communicated with the auxiliary material liquid outlet pipe (36) through a return pipe (37); a liquid pump (38) is arranged on the return pipe (37); the chain plate conveyor (33) comprises a chain plate control motor; the chain plate control motor, the liquid pump (38), the liquid level sensor and the temperature sensor are electrically connected with the controller respectively.
7. An automated control system for the production of a coupon according to claim 6, wherein: a water replenishing pipe (42) is arranged on the medicine boiling groove (31); a water replenishing control valve (43) is arranged on the water replenishing pipe (42); a steam control valve (44) is arranged on the steam pipe (34); an auxiliary material liquid inlet control valve (45) is arranged on a return pipe (37) between the liquid pump (38) and the auxiliary material liquid inlet pipe (35); an inlet of a liquid pump (38) of the chain plate type medicine boiling device (7) is communicated with an outlet of a liquid pump (38) of the other chain plate type medicine boiling device (7) through a first branch pipe (46), and an outlet of the liquid pump (38) of the chain plate type medicine boiling device (7) is communicated with an inlet of the liquid pump (38) of the other chain plate type medicine boiling device (7) through a second branch pipe (47); a first branch pipe control valve (48) is arranged on the first branch pipe (46); a second branch pipe control valve (49) is arranged on the second branch pipe (47); the water supplementing control valve (43), the steam control valve (44), the auxiliary material liquid inlet control valve (45), the first branch pipe control valve (48) and the second branch pipe control valve (49) are respectively and electrically connected with the controller.
8. An automated control system for the production of a coupon according to claim 2, wherein: the mesh belt type spreading and drying device (9) comprises a plurality of mesh belt type spreading and drying machines (50) which are arranged in sequence; the conveying belt of the mesh belt type spreading and drying machine (50) is obliquely arranged; the discharge hole of the upstream mesh belt type spreading and drying machine (50) is positioned on the feed hole of the downstream mesh belt type spreading and drying machine (50); a falling-preventing plate is fixed at the position of a feed inlet of the mesh belt type spreading and drying machine (50); an air draft hood (51) is arranged above the conveyor belt of the mesh belt type spreading and drying machine (50), and an air blowing hood (52) is arranged below the conveyor belt; the mesh-belt type spreading and drying machine (50) comprises a blower and an exhaust fan which are respectively and electrically connected with the controller.
9. An automated control system for the production of a coupon according to claim 2, wherein: the device for producing the fresh aconite also comprises a discharging device; the discharging device comprises a fixed frame (53), a funnel (54), a third electric telescopic rod (55), a rotating plate (56), a supporting platform (57), a hook (58) and a tension and compression sensor (59); a funnel (54) is fixed at the top of the fixed frame (53); the hopper (54) is positioned on the feed inlet of the first chain scraper conveyor (1); the edge of the funnel (54) is hinged with a rotating plate (56); the rotating plate (56) is driven to rotate by a third electric telescopic rod (55); the rotating plate (56) comprises an inclined plate (60) and a transverse plate (61); the transverse plate (61) is connected with the supporting platform (57) through a tension and compression sensor (59); a hook (58) is hinged on the supporting platform (57); the third electric telescopic rod (55) and the tension and compression sensor (59) are electrically connected with the controller respectively.
CN202010672017.7A 2020-07-14 2020-07-14 Automatic control system for producing light accessory pieces Active CN111796572B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010672017.7A CN111796572B (en) 2020-07-14 2020-07-14 Automatic control system for producing light accessory pieces

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010672017.7A CN111796572B (en) 2020-07-14 2020-07-14 Automatic control system for producing light accessory pieces

Publications (2)

Publication Number Publication Date
CN111796572A true CN111796572A (en) 2020-10-20
CN111796572B CN111796572B (en) 2021-06-29

Family

ID=72808540

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010672017.7A Active CN111796572B (en) 2020-07-14 2020-07-14 Automatic control system for producing light accessory pieces

Country Status (1)

Country Link
CN (1) CN111796572B (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN208161090U (en) * 2018-04-10 2018-11-30 重庆医药高等专科学校 A kind of medicament extracting device
CN109620725A (en) * 2019-01-21 2019-04-16 台州博大制药机械科技有限公司 A kind of the pre-treatment production automation train line and its processing method of toxicity medicinal material
CN209951802U (en) * 2019-01-21 2020-01-17 台州博大制药机械科技有限公司 Automatic linkage line of pretreatment of general type chinese-medicinal material
CN209951803U (en) * 2019-01-21 2020-01-17 台州博大制药机械科技有限公司 Automatic linkage line of herbal pieces-for massive medicinal materials
CN212282212U (en) * 2020-09-29 2021-01-05 四川固康药业有限责任公司 Full-automatic attached sheet saponification device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN208161090U (en) * 2018-04-10 2018-11-30 重庆医药高等专科学校 A kind of medicament extracting device
CN109620725A (en) * 2019-01-21 2019-04-16 台州博大制药机械科技有限公司 A kind of the pre-treatment production automation train line and its processing method of toxicity medicinal material
CN209951802U (en) * 2019-01-21 2020-01-17 台州博大制药机械科技有限公司 Automatic linkage line of pretreatment of general type chinese-medicinal material
CN209951803U (en) * 2019-01-21 2020-01-17 台州博大制药机械科技有限公司 Automatic linkage line of herbal pieces-for massive medicinal materials
CN212282212U (en) * 2020-09-29 2021-01-05 四川固康药业有限责任公司 Full-automatic attached sheet saponification device

Also Published As

Publication number Publication date
CN111796572B (en) 2021-06-29

Similar Documents

Publication Publication Date Title
NL8005139A (en) Apparatus for extracting water from potato slices.
US2112784A (en) Method of nonaerating cooking and apparatus therefor
CN111821185B (en) Production process of radix aconiti lateralis preparata slices
CN111714549B (en) Device for producing fresh aconite
CA2170903A1 (en) Method and apparatus for processing food products
CN108497370B (en) Kelp dry powder preparation facilities
CN111796572B (en) Automatic control system for producing light accessory pieces
CN111281803A (en) Pretreatment method of traditional Chinese medicinal materials
CN108531287B (en) Production system and production method of pressed tea seed oil
CN108433087B (en) A device for preparing kelp sauce
CN105166129A (en) Continuous production line for organic flat tea microwave de-enzyming
CN115444136B (en) Centrifugal separation type device and process for purifying folium viticis
CN207479041U (en) A kind of Chinese medicine radix achyranthis bidentatae makes special for automatic working process machine people
CN206390180U (en) A kind of lotus leaf tea production system
KR20130014786A (en) Manufacture apparatus of unpolished rice
CN210532952U (en) Herbal pieces-processing is with wasing drying equipment
CN205040626U (en) Sesame washing system
CN206390179U (en) A kind of production system of lotus leaf tea beverage
CN105325578A (en) Roasted green tea production line
CN213663597U (en) Roxburgh rose drying machine
CN206390164U (en) A kind of system for producing a variety of tealeaves
KR100664700B1 (en) Brown rice germination device
CN211823660U (en) Chinese herbal medicine cleaning and drying equipment
CN216453193U (en) Insect prevention treatment device for indocalamus leaf processing
CN208964873U (en) A kind of pretreatment unit preparing high-quality functional form grease

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CP03 Change of name, title or address

Address after: No. 07, Kexing Road, Anzhou District Industrial Park, Mianyang City, Sichuan Province, 621000

Patentee after: National Pharmaceutical Tianxiong Pharmaceutical Co.,Ltd.

Address before: 622650 no.435, west section of Yichang Road, Huapeng Town, Anzhou District, Mianyang City, Sichuan Province

Patentee before: SICHUAN TIANXIONG PHARMACEUTICAL Co.,Ltd.

CP03 Change of name, title or address
PE01 Entry into force of the registration of the contract for pledge of patent right

Denomination of invention: An automatic control system for the production of light fufu tablets

Granted publication date: 20210629

Pledgee: China Construction Bank Corporation Mianyang Branch

Pledgor: National Pharmaceutical Tianxiong Pharmaceutical Co.,Ltd.

Registration number: Y2024980005937

PE01 Entry into force of the registration of the contract for pledge of patent right