CN111793637A - 一种细菌磷脂酰肌醇特异性磷脂酶c基因及其应用 - Google Patents

一种细菌磷脂酰肌醇特异性磷脂酶c基因及其应用 Download PDF

Info

Publication number
CN111793637A
CN111793637A CN202010722004.6A CN202010722004A CN111793637A CN 111793637 A CN111793637 A CN 111793637A CN 202010722004 A CN202010722004 A CN 202010722004A CN 111793637 A CN111793637 A CN 111793637A
Authority
CN
China
Prior art keywords
protein
gene
plc66
ser
gly
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202010722004.6A
Other languages
English (en)
Other versions
CN111793637B (zh
Inventor
张文飞
周家怡
曹楠
肖时嫱
赵新元
赵子君
何佳利
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Haikou Haisenyuan Biotechnology Co ltd
Hainan Normal University
Original Assignee
Haikou Haisenyuan Biotechnology Co ltd
Hainan Normal University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Haikou Haisenyuan Biotechnology Co ltd, Hainan Normal University filed Critical Haikou Haisenyuan Biotechnology Co ltd
Priority to CN202010722004.6A priority Critical patent/CN111793637B/zh
Publication of CN111793637A publication Critical patent/CN111793637A/zh
Application granted granted Critical
Publication of CN111793637B publication Critical patent/CN111793637B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/16Hydrolases (3) acting on ester bonds (3.1)
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N63/00Biocides, pest repellants or attractants, or plant growth regulators containing microorganisms, viruses, microbial fungi, animals or substances produced by, or obtained from, microorganisms, viruses, microbial fungi or animals, e.g. enzymes or fermentates
    • A01N63/20Bacteria; Substances produced thereby or obtained therefrom
    • A01N63/22Bacillus
    • A01N63/23B. thuringiensis
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8261Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield
    • C12N15/8271Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance
    • C12N15/8279Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance for biotic stress resistance, pathogen resistance, disease resistance
    • C12N15/8285Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance for biotic stress resistance, pathogen resistance, disease resistance for nematode resistance
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8261Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield
    • C12N15/8271Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance
    • C12N15/8279Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance for biotic stress resistance, pathogen resistance, disease resistance
    • C12N15/8286Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance for biotic stress resistance, pathogen resistance, disease resistance for insect resistance
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y301/00Hydrolases acting on ester bonds (3.1)
    • C12Y301/04Phosphoric diester hydrolases (3.1.4)
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/30Against vector-borne diseases, e.g. mosquito-borne, fly-borne, tick-borne or waterborne diseases whose impact is exacerbated by climate change

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Zoology (AREA)
  • Organic Chemistry (AREA)
  • Wood Science & Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Health & Medical Sciences (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • Molecular Biology (AREA)
  • Biomedical Technology (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • Plant Pathology (AREA)
  • Physics & Mathematics (AREA)
  • Pest Control & Pesticides (AREA)
  • Cell Biology (AREA)
  • Biophysics (AREA)
  • Insects & Arthropods (AREA)
  • Agronomy & Crop Science (AREA)
  • Virology (AREA)
  • Dentistry (AREA)
  • Environmental Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Peptides Or Proteins (AREA)
  • Agricultural Chemicals And Associated Chemicals (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

本发明公开了一种从苏云金芽孢杆菌野生菌株HS66中分离克隆得到的新型磷脂酰肌醇特异性磷脂酶C基因PI‑PLC66,该基因编码毒素蛋白由697个氨基酸残基组成,与现有氨基酸序列最大相似性不超过80%,同时,PI‑PLC66蛋白跟Cry家族和Vip家族蛋白没有任何同源性,很大可能不会产生交互抗性。PI‑PLC66蛋白对传播登革热的埃及伊蚊和模式动物秀丽隐杆线虫表现出很高的杀虫活性,这也是首次报道PI‑PLC类蛋白对农业害虫有杀虫活性。PI‑PLC66基因可以应用于生物防治领域,为新型生物农药创制,抗虫转基因作物培育提供候选基因,能够有效缓解农业害虫对现有Bt毒素产生抗性的现状。

Description

一种细菌磷脂酰肌醇特异性磷脂酶C基因及其应用
技术领域
本发明涉及生物防治技术领域和微生物基因工程技术领域,具体涉及一种来自苏云金芽孢杆菌的新型磷脂酰肌醇特异性磷脂酶C基因PI-PLC66的鉴定与克隆,涉及PI-PLC66基因在异源宿主细胞(工程菌)中的诱导表达,涉及PI-PLC66蛋白纯化,溶血性试验和对秀丽隐杆线虫,埃及伊蚊幼虫的杀虫活性测定。
背景技术
苏云金芽孢杆菌(Bacillus thuringiensis,简称Bt)是一种革兰氏阳性细菌,广泛分布于自然界中,能够在各种不同的生境中分离得到,譬如土壤、树叶、水中等。在生长后期或在营养匮乏等不利的生长环境下,Bt菌与其它芽孢杆菌一样形成芽孢以抵御不良的生存环境,不同的是伴随芽孢的形成还产生伴胞晶体(Sauka and Benintende,2008;Schnepfet al.,1998)。Bt的伴孢晶体对多种昆虫有特异的杀虫活性,包括鳞翅目(Coleoplera)、双翅目(Diplera)、直翅目(Orthoplera)、同翅目(Homoptera)、膜翅目(Hymenoptera)等,以及近年来也有报道某些Bt菌株对线虫、原生动物和螨虫类等亦有特异的杀虫活性(Jouzani et al.,2017)。
Bt是迄今为止最安全和应用最为广泛的杀虫细菌,占生物杀虫剂95%的市场份额,已经逐步成为化学农药的有力替代品。Bt毒素基因还是转基因抗虫工程植物重要的基因来源,cry基因和编码营养期杀虫蛋白的vip基因已经成功转入少数重要的农作物中,如转Bt cry基因抗虫玉米和抗虫棉,在美国和中国等国家获得了大面积的种植(Estruch etal.,1997;Kumar et al.,2008;刘辰et al.,2008)。同时,Bt菌在控制蚊媒疾病的传播中也发挥着独特的作用。Bt菌株以色列亚种(Bti)被证明有很强的杀幼蚊作用,且具有无污染,特异性强,对人畜和非靶标昆虫无害等优势,获得了广泛应用。世界卫生组织推荐使用以Bt为主的生物农药来控制蚊虫,防止疟疾、登革热和乙脑等流行病大规模传播(Zhang etal.,2012)。
Bt菌具有非常广阔的应用前景,但同时也面临着较大的挑战,现有的Bt毒蛋白对很多重要农业害虫无能为力,与此同时,长期大面积种植同一种抗虫转基因作物可能导致害虫产生相应的抗性,目前至少4种农业害虫被报道在田间已经对Bt毒素产生了相应的抗性(Downes andMahon,2012;Jouzani et al.,2017;Paolino and Gassmann,2017)。昆虫对Bt毒素蛋白的抗性已影响Bt的持续使用,为了抵御昆虫对现有cry1、cry2和cry9等基因产生的抗性,目前世界各国继续筛选鉴定Bt菌株及杀虫基因,以期筛选分离与现有杀虫基因有着不同杀虫机制的新型杀虫基因。
本研究基于海南热带雨林自主分离的一株Bt菌株HS66,利用基因组测序策略,鉴定克隆了一个新型磷脂酰肌醇特异性磷脂酶C基因(phosphatidylinositol-specificphospholipase C,简称PI-PLC)(Zenewicz et al.,2005),命名为PI-PLC66。PI-PLC是一种普遍存在的酶(EC3.1.4.10),能够特异地水解磷脂酰肌醇磷酸二酯键,产生水溶性肌醇-1,2-环磷酸酯或肌醇1-磷酸和脂溶性二酰基甘油(DAG),水解产物作为第二信使,起着传递信息和调节细胞代谢的作用(孙大千et al.,2017)。关于PI-PLC类蛋白的杀虫功能鲜有报道。
PI-PLC类蛋白研究主要围绕两大方面进行,一方面PI-PLC作为一种疑似致病因子被用于研究致病菌的毒性,比如李斯特菌,金黄色葡萄球菌等;另一方面,利用PI-PLC裂解GPI的能力,可以用PI-PLC释放GPI类毒素受体蛋白,研究毒素的作用机制,这也是目前PI-PLC在Bt上的主要研究方向;可以用PI-PLC裂解寄生虫特异性GPI,研究PI-PLC抗寄生虫的能力;还可以用PI-PLC处理细胞,研究GPI的生理活动及功能。目前,没有关于PI-PLC类蛋白有杀农业害虫的报道。
发明内容
鉴于现有技术的不足,本发明提供一种新型细菌磷脂酰肌醇特异性磷脂酶C基因及其应用。
本发明方案包括以下方面:
发明人从海南省吊罗山原始热带雨林区采集的土壤样品中筛选分离获得菌株BtHS66。为了进一步挖掘更多的杀虫基因,发明人完成了Bt HS66的全基因组测序。基因组大小为6.11Mb,GC含量为35.31%,含有3个质粒(3个质粒的大小分别为3.5Mb,2.6Mb,0.1Mb)。基因组中共存在6289个基因,平均长度为79927bp,本地BLASTP的序列比对(序列相似性>=20%且覆盖度>=50%),发现在Bt HS66基因组中有7个cry疑似基因,4个vip疑似基因,1个cyt疑似基因(数据未列出)。其中,2.6Mb质粒上有一个新型的cry-like基因,本地BLASTP发现其氨基酸序列与Bt毒素Cry41Ab1(BAD35163)有最大相似性(相似性24.88%,覆盖率24.73%),进一步利用NCBI提供的Blastx程序在No-redundant protein sequences(nr)数据库中进行同源性搜索,发现该基因与GenBank数据库中Phosphatidylinositol-specificphospholipase C的序列有最大相似性(相似性77.95%,覆盖度为94%),是一种新型的磷脂酰肌醇特异性磷脂酶C基因,发明人将该基因命名为PI-PLC66。基因PI-PLC66的核苷酸序列如SEQ ID NO:1所示,基因PI-PLC66编码蛋白的氨基酸序列如SEQ ID NO:2所示。
为了进一步明确基因PI-PLC66的功能,发明人将PI-PLC66基因在大肠杆菌中进行异源表达。先通过PCR扩增获得大量PI-PLC66基因,利用限制性内切酶的策略,将PCR产物与质粒pET-28a连接,转入到大肠杆菌BL21(DE3)细胞中。经过反复优化培养温度,通气量和诱导时间等表达条件,成功实现PI-PLC66蛋白在大肠杆菌细胞中的可溶性表达,Ni-NTA偶联的琼脂糖亲和层析对重组蛋白进行纯化,酶联免疫分析确定PI-PLC66蛋白是一类磷脂酰肌醇特异性磷脂酶C蛋白。接着,对PI-PLC66蛋白进行溶血性试验,确定PI-PLC66蛋白没有溶血性。最后,利用实验室饲养的靶标昆虫进行生物活性测定,首次发现PI-PLC类蛋白对埃及伊蚊幼虫和秀丽隐杆线虫表现出很高的杀虫活性。
PI-PLC66蛋白跟Cry家族和Vip家族蛋白没有任何同源性,这表明这种新型PI-PLC66蛋白可能不会与Cry蛋白,甚至不会与Vip蛋白产生交互抗性。将多个不同类型的杀虫蛋白混合使用,不仅可以拓宽其杀虫谱、同时昆虫也不容易对毒素蛋白产生抗性或交互抗性,甚至还存在协同增效作用,是延缓害虫产生抗性的有力措施(Khasdan et al.,2001;田青and许驰,2000)。PI-PLC66基因可作为生物农药创制和抗虫转基因作物培育的候选基因,对拓宽杀虫谱、提高杀虫毒力,尤其是延缓害虫抗性的产生具有非常积极的作用。
与现有技术相比,本发明的有益效果是:
①PI-PLC66基因是一个新型Bt毒素基因,生物信息学分析表明其氨基酸序列与现有基因的氨基酸序列相似度不到80%,能有效填充我国的Bt基因库。
②PI-PLC66蛋白跟Cry家族和Vip家族蛋白没有任何同源性,不会与Cry蛋白、Vip蛋白产生交互抗性。PI-PLC66蛋白与其他蛋白混合使用,不仅能拓宽杀虫谱,还能有效缓解目前靶标昆虫对现有Bt毒素蛋白产生抗性的现状。
③PI-PLC66蛋白是一类磷脂酰肌醇特异性磷脂酶C(简称PI-PLC)类蛋白,系首次发现PI-PLC类蛋白对埃及伊蚊幼虫和秀丽隐杆线虫有杀虫活性,为挖掘杀虫基因提供了一个新的方向,同时也为生物农药的创制,抗虫转基因作物的培育,蚊媒疾病的控制提供了候选基因。
④现有的Bt毒蛋白对很多重要农业害虫无能为力,PI-PLC66蛋白同时对秀丽隐杆线虫和埃及伊蚊幼虫有较高的杀虫活性。
附图说明
图1、PI-PLC66保守结构域分析;通过NCBI的Conserved domains search service服务器对毒素蛋白的结构域进行预测分析(htt ps://www.ncbi.nlm.nih.gov/Structure/cdd/wrpsb.cgi)
图2、PI-PLC66蛋白三级结构预测;右图为同源建模时所选择的模板(PDB号:4rv3.1)
图3、PI-PLC66异源表达SDS-PAGE电泳分析;PM为蛋白质分子量标准,泳道1为pET-28a空载转入BL21(DE3),泳道2为PI-PLC66基因表达产物,-表示未加IPTG进行基因诱导表达,泳道3为PI-PLC66纯化产物。
图4、PI-PLC66蛋白溶血性试验;PI-PLC66是工程菌株pETPI-PLC66;WJH1是Bt菌株,为阳性参照;CK是空载pET-28a转BL21(DE3),为阴性参照。
具体实施方式
为了更好理解本发明技术内容,下面提供具体实施例,对本发明做进一步的说明。
实施例1菌株Bt HS66的筛选与鉴定
采样土壤地点选择海南省吊罗山向阳坡。称取1.0g左右土样于50mL的离心管中,每管用量筒加入10mLBPA液体培养基或无菌水,涡漩振荡器上涡旋2min充分混匀,28℃,200rpm摇床上振荡培养4-6h左右,75℃水浴锅中水浴15min,每隔几分钟振荡一下。将土壤静置30S左右,作10倍稀释(移取1mL至盛9mL无菌水小白瓶中),选取10-2、10-3、10-4、10-5稀释梯度菌液,吸取200μL均匀涂布到BP培养平板上,然后放置恒温培养箱,28℃下倒置培养1-2天左右形成菌落。每份土样选择一个菌落疏密适中的平板(50-200个菌落)挑菌。然后根据菌苔颜色、厚度、表面是否光滑、边缘是否整齐,挑取不同的单菌落,在新鲜BP平板上重新画线或点板培养,继续培养4-5天。利用考马斯亮蓝染色和光学显微镜观察分离株是否含有伴胞晶体蛋白,光学显微镜下观察到无色芽孢为芽孢杆菌,无色芽孢旁的蓝色点即为伴胞晶体。产生伴胞晶体的芽孢杆菌认定为Bt菌株。得到菌株Bt HS66。
实施例2 Bt菌株HS66总DNA提取及Bt毒素基因的鉴定
Bt单菌落HS66接种于5mL左右的LB液体培养基中,28℃,220rpm培养过夜活化,第二天按1%量转接到新鲜的LB液体培养基中,28℃,220rpm继续培养4~6小时至OD600=2.0左右,8000rpm离心2min收集1-3mL菌体,1mL J Buffer洗涤沉淀,8000rpm离心2min,弃上清。移液枪吹打将沉淀重新悬浮于500μL J Buffer(J Buffer使用前预先加入溶菌酶至20mg/mL)中,37℃温育30min,期间振荡3-5次,加入15μLRNase(10mg/mL),50℃作用15min,再加入80μL SDS(10%),70℃处理20min,室温冷却至室温。等体积酚:氯仿:异戊醇(25:24:1)、氯仿:异戊醇(24:1)各抽提一次(上下剧烈倒置10-30次,12000rpm离心10min,小心吸取上清),加入等体积的异丙醇混匀,12000rpm离心10min,小心倾去上清,加入500μL的70%乙醇(勿剧烈震荡),12000rpm离心2min,弃上清,风干后溶于50μL TE Buffer中,取5μLDNA溶液用1%的琼脂糖凝胶电泳检测。
取Bt基因组DNA,进行第二代全基因组测序和基因预测,本地blast和NCBI在线blast分析发现,该基因与磷脂酰肌醇特异性磷脂酶C,简称PI-PLC,非常相似,有相同的保守结构域(图1)。使用同源建模的方法对PI-PLC66蛋白的蜡质芽孢杆菌的PLC结构域进行了建模(图2),同源模板PDB号为4rv3.1,结果表明PI-PLC66蛋白和4RV3蛋白的三维模型整体具有相似性,但同时也存在较多结构差异。
实施例3 PCR扩增新型PI-PLC66基因
25μL反应体系中包括0.25ng基因组DNA为模板,dNTP的浓度为200μmol,引物PI-PLC66F/PI-PLC66R(PI-PLC66F:5`-cgggatccATGAATAAGAAAGAACTAGATTCGTTA-3`;PI-PLC66R:5`-ccgctcgagTTATAATGTGTAGAATTTCACTGTAAAT-3`)为2μmol,Taq DNA polymerase为2U。PCR反应条件为:94℃变性4min,然后进入35个循环扩增(94℃-1min,53℃-1min,72℃-2min),最后在70℃再延伸10min。扩增反应结束后,取5μLPCR产物,在1%琼脂糖凝胶上电泳检测PCR片段大小。
实施例4 PI-PLC66基因的克隆
PCR产物用上海生工SanPrep柱式DNA胶回收试剂盒纯化,将PCR纯化产物和载体pET-28a用限制性内切酶(BamHI和XhoI)消化后,用T4 DNALigase(3μ/μL)构建重组质粒,重组质粒导入到大肠杆菌BL21(DE3)感受态细胞中,转化子在含有Kan(20μg/ml)的LB培养基平板上,37℃培养过夜,任意挑取单菌落于LB液体培养基中培养,提取重组菌株的质粒,送往上海生工测序。通过测序确定基因序列没有产生突变和移码突变后,进行后续基因表达。
实施例5大肠杆菌重组质粒DNA提取
挑取单菌落至含20μg/ml Kan的LB培养基中,37℃,200rpm振荡过夜培养,8000rpm,2min离心收集菌体4.5mL,然后短暂离心吸除多余培养基,菌体重新悬浮在150μLS I中(S I加入RNase用于去除RNA),加入150μL的S II,轻轻上下倒置混匀5次左右,至液体变清晰透明,加入250μL的S III,立刻轻轻上下倒置5次左右,冰上放置5-10min,12000rpm离心10min,将上清转移至新的离心管中,加入500μL异丙醇上下倒置混匀,12000rpm离心10min,小心倾去上清,加入700μL 70%乙醇(漂洗液)(勿剧烈震荡),12000rpm离心2min,小心倾去上清,重复一次,短暂离心,吸取多余的漂洗液,自然干燥30min左右,加入50μL TE,涡旋溶解,-20℃保存备用。
实施例6 PI-PLC66基因大肠杆菌异源表达与纯化
挑取单菌落于20μg/ml Kan的TB培养基中,37℃,200rpm振荡过夜培养,按1%的比例转接至盛有100ml TB的三角瓶(500ml)中,加入Kan至20μg/ml,28℃,180rpm震荡培养10h,10000rpm,5min收集菌体,将菌体悬浮于10ml PBS中,加入0.1mM/LPMSF后超声破破碎1h(model VC-130,Sonics andMaterials Inc,USA),12000rpm,10min收集上清,获得可溶性PI-PLC66蛋白。由于表达的融合蛋白含有6x histidine(His)-tagged标签,利用Ni-NTA偶联的琼脂糖亲和层析对重组蛋白进行纯化(Gayen et al.,2012),获得纯化PI-PLC66蛋白,分子量大小约为80kDa。
实施例7 SDS电泳分析表达的PI-PLC66蛋白
20μL制备好的蛋白样品与5μL的5×SDS-PAGE sample Buffer混合,100℃沸水中煮5min,12000g离心10min,上清上样。利用Mini-Protein II类似装置(BioRad,USA)90V电泳30min,换成110V,电泳1.5h至溴酚蓝行至电泳槽下端停止。将胶从板中取出,考马斯亮兰R250染色液60rpm震荡染色30min,倒掉染液后慢脱至蛋白带清晰。Bio-Rad GS-800Calibrated Densitometer扫描系统对蛋白质凝胶进行照相(图3),并使用QuantityOne软件对蛋白条带图象及其表达蛋白的浓度进行分析(Fang et al.,2007)。
实施例8 PI-PLC66蛋白的酶联免疫分析
用实施例6纯化的PI-PLC66进行酶联免疫分析。使用上海酶联生物科技有限公司试剂盒。在酶标包被板上标准品加样50μL,待测样品孔中先加样品稀释液40μL,再加入PI-PLC66蛋白10μL,轻轻混匀后用封板膜封板后37℃温浴30min,弃去液体,甩干,每孔加满洗涤液,静置30s后弃去,重复洗5次,拍干后,每孔加酶标试剂50μL,空白孔除外,用封板膜封板后37℃温浴30min,再用洗涤液洗5次,每孔加入显色剂A、B各50μL,轻轻振荡混匀后,37℃避光显色10min,每孔加入终止液50μL,终止反应,以空白孔调零,450nm波长测量各孔的吸光值,根据标准品绘制出标准曲线后计算各个孔的浓度。酶联免疫分析确定PI-PLC66蛋白是一类磷脂酰肌醇特异性磷脂酶C蛋白。
实施例9溶血性试验
100mL的LB固体培养基中加入5mL脱纤维兔血,倒板,将工程菌pETPI-PLC66,阴性对照空载pET-28a转BL21(DE3),阳性对照Bt菌WJH1点板,实验结果表明PI-PLC66蛋白没有溶血性。(图4)
实施例10秀丽隐杆线虫的生物活性测定
BSA蛋白作为标准浓度,lowry方法用来测定表达蛋白的浓度。表达的蛋白溶于PBS中溶液中,然后稀释成8个浓度测定。在48孔板上每孔加入50μL的S medium(S basalpotassium citrate(pH 6.0)、Trace metals solution、1M CaCl2、1M MgSO4、5mg/mLcholesterol in ethanol),将稀释成8个梯度的PI-PLC66蛋白加入48孔板中,每个梯度6个平行试验,用2mL的M9 buffer(2.2mM KH2PO4、4.2mM Na2HPO4、85.6mM NaCl)将线虫于ENG平板中洗入1.5mL的EP管中,待成虫沉降后,吸入成虫至48孔板中,每孔约50头,将48孔板置于20℃恒温箱中,连续观察5天,统计死亡虫数,利用spss软件进行毒力回归分析,计算LC50值,得出表达蛋白PI-PLC66对秀丽隐杆线虫LC50活性为26.56μg/mL。
实施例11埃及伊蚊的生物活性测定
蚊的生物测定参照WHO建立的标准程序,用于蛋白毒力测定的蚊幼虫为实验室人工饲养的品系。用除氯自来水将蛋白稀释成8个梯度,分别置于消毒透明饮水塑料杯里(直径5cm),每个塑料杯盛20mL蛋白溶液,用pasteur pipette移入30头3龄的蚊幼虫,连续观察5天,统计蚊幼虫死亡数,利用spss软件进行毒力回归分析,计算LC50值,得出表达蛋白PI-PLC66埃及伊蚊幼虫LC50活性为4.97μg/mL。
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。
序列表
<110> 海口海森元生物科技有限公司
<120> 一种细菌磷脂酰肌醇特异性磷脂酶C基因及其应用
<160> 4
<170> SIPOSequenceListing 1.0
<210> 1
<211> 2094
<212> DNA/RNA
<213> 苏云金芽孢杆菌(Bacillus thuringiensis)
<400> 1
atgaataaga aagaactaga ttcgttacat gattatgaaa aatctgctga taccccaaat 60
gcaacagacg aagggtattg gtattctgaa tctcgtccaa ctagcaatgc agattggatg 120
aggtttctac ctgggacaac aaaaatcagt gaattgtcta tccctggtac gcatggatct 180
atagcaagac atggtaaaac cgtttttgat gaggacttcg taagaaatca aagaatgacg 240
atatccacac aactagatgc tgggattcgt tatctggata ttcgtgcaag acgtacagga 300
tcttcctttg ctatgcacca tggtgcagtc tatcaaaaat tgatgtttgg agatgtatta 360
aaccaagtac aatcatttct acgagatcac ccttatgaga cggttttaat gagattaaaa 420
gaagaacatg atgcagaaga tggctcccaa tcctttgaac aaatttttat aaattatagg 480
aataattata gctctttatt ttggtcttct tcttctcaaa acccaacttt ggataatgta 540
agaggaaaaa ttgttttgtt acaagacttc tctacatccc aaacttatgg gattcgatac 600
agttctttaa atactcagga tcaatataat gtagtaggtt cgtctacacc agatgctatg 660
tatgggaaat ggacagccgt aagaaatcat cttatgagaa ctaatagtga taagacacaa 720
attcatctga attatttaag tggaactggg ggcggagagg catacacaaa aggaacctat 780
ccttggttta tcgtaagtgg tcatcttgct agagatggtt ctaaaggtgc aaaaatgatt 840
caagagcacc gcacggataa atggccagat tttccacgtg gatattatgg gcaagtcttt 900
tatggtggaa cgaacatttt aacagcggaa tttatctcta gattaaactt atctcatgtt 960
ggaatcatag cggcggattt tcctggggcg cctttaatca ataatgtaat caaattaaat 1020
gatcggttag ctataggaga tattagatat actcgagtag aaggtacaag acttaaaatt 1080
ggttttcagg gcgatactta tcttcaaaag agatatatca tacaaaaaaa tgggaagtat 1140
atagcggaat taacaaatgg taaaccttac tatgcttctt taactaaaac cgactttggc 1200
catgaactta cgaacaattc cttattattt acagatgata aaattgatgt atatctagat 1260
caaaatggcc aacgaacatt actaaaaagt gaagtaatta aagtggaaaa tcaagaagga 1320
gcggttcaaa taccggaaga gacatttatt ataaaatcta gactaaccgg agcagcaaac 1380
aaggcagtag atttagatat tccaagttcc aatgtacaga tatggaatta tgataaccaa 1440
ttaaatgctg aatggtattt tcaatatcat tcagacaaag acgcttatgt tatttggaat 1500
agtgcaaggc caggtttagt tctcgcatgg aatgatgtca acgattcttg gaatgtattt 1560
ggaactccat ttaatcctga aaatgatgaa cacttttgga aagtaaggag aacgagagaa 1620
ggatacgcat ccatcgtaaa ttttaaaaaa agagatggga aagaagttgt tatggatgtg 1680
gcatatggta atacggctga tggtacaact attaatgtat attataatta cccagaagag 1740
ttaaaccaga aattcagatt gacagagcgt gcaaaaagtg agcgtgcatc gatcacttca 1800
ttatatagac cacaatcagg gcaaaagaat cgatcaagta acaacttttc gttgaaccat 1860
atcgcagctg ggaaaaaggt tcgagtagag gtacatggag aaggcgaatc aaacctgaca 1920
tttaaaatca tgagggataa atcaggagac acagatccaa cgatttggtc taatgtcaag 1980
catggtacca tccttacaat ccctgcaaat acacaactag gtagtttata tattgctaat 2040
ccaagtggct atagttctaa tggttcattt acagtgaaat tctacacatt ataa 2094
<210> 2
<211> 697
<212> PRT
<213> 苏云金芽孢杆菌(Bacillus thuringiensis)
<400> 2
Met Asn Lys Lys Glu Leu Asp Ser Leu His Asp Tyr Glu Lys Ser Ala
1 5 10 15
Asp Thr Pro Asn Ala Thr Asp Glu Gly Tyr Trp Tyr Ser Glu Ser Arg
20 25 30
Pro Thr Ser Asn Ala Asp Trp Met Arg Phe Leu Pro Gly Thr Thr Lys
35 40 45
Ile Ser Glu Leu Ser Ile Pro Gly Thr His Gly Ser Ile Ala Arg His
50 55 60
Gly Lys Thr Val Phe Asp Glu Asp Phe Val Arg Asn Gln Arg Met Thr
65 70 75 80
Ile Ser Thr Gln Leu Asp Ala Gly Ile Arg Tyr Leu Asp Ile Arg Ala
85 90 95
Arg Arg Thr Gly Ser Ser Phe Ala Met His His Gly Ala Val Tyr Gln
100 105 110
Lys Leu Met Phe Gly Asp Val Leu Asn Gln Val Gln Ser Phe Leu Arg
115 120 125
Asp His Pro Tyr Glu Thr Val Leu Met Arg Leu Lys Glu Glu His Asp
130 135 140
Ala Glu Asp Gly Ser Gln Ser Phe Glu Gln Ile Phe Ile Asn Tyr Arg
145 150 155 160
Asn Asn Tyr Ser Ser Leu Phe Trp Ser Ser Ser Ser Gln Asn Pro Thr
165 170 175
Leu Asp Asn Val Arg Gly Lys Ile Val Leu Leu Gln Asp Phe Ser Thr
180 185 190
Ser Gln Thr Tyr Gly Ile Arg Tyr Ser Ser Leu Asn Thr Gln Asp Gln
195 200 205
Tyr Asn Val Val Gly Ser Ser Thr Pro Asp Ala Met Tyr Gly Lys Trp
210 215 220
Thr Ala Val Arg Asn His Leu Met Arg Thr Asn Ser Asp Lys Thr Gln
225 230 235 240
Ile His Leu Asn Tyr Leu Ser Gly Thr Gly Gly Gly Glu Ala Tyr Thr
245 250 255
Lys Gly Thr Tyr Pro Trp Phe Ile Val Ser Gly His Leu Ala Arg Asp
260 265 270
Gly Ser Lys Gly Ala Lys Met Ile Gln Glu His Arg Thr Asp Lys Trp
275 280 285
Pro Asp Phe Pro Arg Gly Tyr Tyr Gly Gln Val Phe Tyr Gly Gly Thr
290 295 300
Asn Ile Leu Thr Ala Glu Phe Ile Ser Arg Leu Asn Leu Ser His Val
305 310 315 320
Gly Ile Ile Ala Ala Asp Phe Pro Gly Ala Pro Leu Ile Asn Asn Val
325 330 335
Ile Lys Leu Asn Asp Arg Leu Ala Ile Gly Asp Ile Arg Tyr Thr Arg
340 345 350
Val Glu Gly Thr Arg Leu Lys Ile Gly Phe Gln Gly Asp Thr Tyr Leu
355 360 365
Gln Lys Arg Tyr Ile Ile Gln Lys Asn Gly Lys Tyr Ile Ala Glu Leu
370 375 380
Thr Asn Gly Lys Pro Tyr Tyr Ala Ser Leu Thr Lys Thr Asp Phe Gly
385 390 395 400
His Glu Leu Thr Asn Asn Ser Leu Leu Phe Thr Asp Asp Lys Ile Asp
405 410 415
Val Tyr Leu Asp Gln Asn Gly Gln Arg Thr Leu Leu Lys Ser Glu Val
420 425 430
Ile Lys Val Glu Asn Gln Glu Gly Ala Val Gln Ile Pro Glu Glu Thr
435 440 445
Phe Ile Ile Lys Ser Arg Leu Thr Gly Ala Ala Asn Lys Ala Val Asp
450 455 460
Leu Asp Ile Pro Ser Ser Asn Val Gln Ile Trp Asn Tyr Asp Asn Gln
465 470 475 480
Leu Asn Ala Glu Trp Tyr Phe Gln Tyr His Ser Asp Lys Asp Ala Tyr
485 490 495
Val Ile Trp Asn Ser Ala Arg Pro Gly Leu Val Leu Ala Trp Asn Asp
500 505 510
Val Asn Asp Ser Trp Asn Val Phe Gly Thr Pro Phe Asn Pro Glu Asn
515 520 525
Asp Glu His Phe Trp Lys Val Arg Arg Thr Arg Glu Gly Tyr Ala Ser
530 535 540
Ile Val Asn Phe Lys Lys Arg Asp Gly Lys Glu Val Val Met Asp Val
545 550 555 560
Ala Tyr Gly Asn Thr Ala Asp Gly Thr Thr Ile Asn Val Tyr Tyr Asn
565 570 575
Tyr Pro Glu Glu Leu Asn Gln Lys Phe Arg Leu Thr Glu Arg Ala Lys
580 585 590
Ser Glu Arg Ala Ser Ile Thr Ser Leu Tyr Arg Pro Gln Ser Gly Gln
595 600 605
Lys Asn Arg Ser Ser Asn Asn Phe Ser Leu Asn His Ile Ala Ala Gly
610 615 620
Lys Lys Val Arg Val Glu Val His Gly Glu Gly Glu Ser Asn Leu Thr
625 630 635 640
Phe Lys Ile Met Arg Asp Lys Ser Gly Asp Thr Asp Pro Thr Ile Trp
645 650 655
Ser Asn Val Lys His Gly Thr Ile Leu Thr Ile Pro Ala Asn Thr Gln
660 665 670
Leu Gly Ser Leu Tyr Ile Ala Asn Pro Ser Gly Tyr Ser Ser Asn Gly
675 680 685
Ser Phe Thr Val Lys Phe Tyr Thr Leu
690 695
<210> 3
<211> 35
<212> DNA/RNA
<213> 苏云金芽孢杆菌(Bacillus thuringiensis)
<400> 3
cgggatccat gaataagaaa gaactagatt cgtta 35
<210> 4
<211> 37
<212> DNA/RNA
<213> 苏云金芽孢杆菌(Bacillus thuringiensis)
<400> 4
ccgctcgagt tataatgtgt agaatttcac tgtaaat 37

Claims (8)

1.一种细菌磷脂酰肌醇特异性磷脂酶C基因,其特征在于,该基因的核苷酸序列如SEQID NO:1所示。
2.权利要求1所述的基因编码的蛋白,其特征在于,所述蛋白的核苷酸序列如SEQ IDNO:2所示。
3.磷脂酰肌醇特异性磷脂酶C在制备杀虫药物方面的应用和/或在转基因抗虫作物的培育方面的应用。
4.权利要求1所述的基因和/或权利要求2所述的蛋白在制备杀虫药物方面的应用。
5.权利要求1所述的基因和/或权利要求2所述的蛋白在转基因抗虫作物的培育方面的应用。
6.根据权利要求3所述的应用,其特征在于,所述虫为埃及伊蚊和/或秀丽隐杆线虫。
7.根据权利要求4所述的应用,其特征在于,所述虫为埃及伊蚊和/或秀丽隐杆线虫。
8.根据权利要求5所述的应用,其特征在于,所述虫为埃及伊蚊和/或秀丽隐杆线虫。
CN202010722004.6A 2020-07-24 2020-07-24 一种细菌磷脂酰肌醇特异性磷脂酶c基因及其应用 Active CN111793637B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010722004.6A CN111793637B (zh) 2020-07-24 2020-07-24 一种细菌磷脂酰肌醇特异性磷脂酶c基因及其应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010722004.6A CN111793637B (zh) 2020-07-24 2020-07-24 一种细菌磷脂酰肌醇特异性磷脂酶c基因及其应用

Publications (2)

Publication Number Publication Date
CN111793637A true CN111793637A (zh) 2020-10-20
CN111793637B CN111793637B (zh) 2023-04-14

Family

ID=72828687

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010722004.6A Active CN111793637B (zh) 2020-07-24 2020-07-24 一种细菌磷脂酰肌醇特异性磷脂酶c基因及其应用

Country Status (1)

Country Link
CN (1) CN111793637B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112522293A (zh) * 2020-12-24 2021-03-19 黑龙江省科学院高技术研究院 小黑杨磷脂酰肌醇特异性磷脂酶C编码基因PsnPI-PLC及其应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1994025611A1 (en) * 1993-04-23 1994-11-10 Sandoz Ltd. Integrative dna segment comprising gene encoding insecticidal protein
CN103952418A (zh) * 2014-04-01 2014-07-30 海南师范大学 杀鳞翅目昆虫的新型vip3-like基因及其应用
CN107849097A (zh) * 2015-06-22 2018-03-27 农业生物群落股份有限公司 杀虫基因和使用方法
CN109517069A (zh) * 2018-10-18 2019-03-26 先正达参股股份有限公司 一种用于表达Bt杀虫蛋白的高效蛋白质表达系统

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1994025611A1 (en) * 1993-04-23 1994-11-10 Sandoz Ltd. Integrative dna segment comprising gene encoding insecticidal protein
CN103952418A (zh) * 2014-04-01 2014-07-30 海南师范大学 杀鳞翅目昆虫的新型vip3-like基因及其应用
CN107849097A (zh) * 2015-06-22 2018-03-27 农业生物群落股份有限公司 杀虫基因和使用方法
CN109517069A (zh) * 2018-10-18 2019-03-26 先正达参股股份有限公司 一种用于表达Bt杀虫蛋白的高效蛋白质表达系统

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
FRANCESCO CELANDRONI等: "Bacillus thuringiensis membrane-damaging toxins acting on mammalian cells" *
林美璇等: "磷脂酰肌醇特异性磷脂酶C的异源表达和应用" *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112522293A (zh) * 2020-12-24 2021-03-19 黑龙江省科学院高技术研究院 小黑杨磷脂酰肌醇特异性磷脂酶C编码基因PsnPI-PLC及其应用
CN112522293B (zh) * 2020-12-24 2023-06-27 黑龙江省科学院高技术研究院 小黑杨磷脂酰肌醇特异性磷脂酶C编码基因PsnPI-PLC及其应用

Also Published As

Publication number Publication date
CN111793637B (zh) 2023-04-14

Similar Documents

Publication Publication Date Title
Gowda et al. A transgenic approach for controlling Lygus in cotton
Pigott et al. Role of receptors in Bacillus thuringiensis crystal toxin activity
Schnepf et al. Characterization of Cry34/Cry35 binary insecticidal proteins from diverse Bacillus thuringiensis strain collections
Fang et al. Characterization of chimeric Bacillus thuringiensis Vip3 toxins
Karim et al. Determination of receptor binding properties of Bacillus thuringiensis δ-endotoxins to cotton bollworm (Helicoverpa zea) and pink bollworm (Pectinophora gossypiella) midgut brush border membrane vesicles
Fiuza et al. Binding of Bacillus thuringiensis Cry1 toxins to the midgut brush border membrane vesicles of Chilo suppressalis (Lepidoptera: Pyralidae): evidence of shared binding sites
Salehi Jouzani et al. Molecular detection of nematicidal crystalliferous Bacillus thuringiensis strains of Iran and evaluation of their toxicity on free-living and plant-parasitic nematodes
Gorashi et al. Identification and characterization of the Sudanese Bacillus thuringiensis and related bacterial strains for their efficacy against Helicoverpa armigera and Tribolium castaneum
Karim et al. Toxicity and receptor binding properties of Bacillus thuringiensis δ-endotoxins to the midgut brush border membrane vesicles of the rice leaf folders, Cnaphalocrocis medinalis and Marasmia patnalis
Yuan et al. Identification and molecular structural prediction analysis of a toxicity determinant in the Bacillus sphaericus crystal larvicidal toxin
CN102154171A (zh) 一株对蚊子幼虫高效的苏云金芽孢杆菌
Chen et al. Transgenic cotton co-expressing chimeric Vip3AcAa and Cry1Ac confers effective protection against Cry1Ac-resistant cotton bollworm
CN111793637B (zh) 一种细菌磷脂酰肌醇特异性磷脂酶c基因及其应用
EP0787299A1 (en) Receptor for a bacillus thuringiensis toxin
Nishimoto et al. Functional analysis of block 5, one of the highly conserved amino acid sequences in the 130‐kDa CryIVA protein produced by Bacillus thuringiensis subsp. israelensis
CN104611260B (zh) 苏云金芽胞杆菌LTS290、杀虫基因cry57Ab、表达蛋白及其应用
Iftikhar et al. Isolation, characterization and larvicidal potential of indigenous soil inhabiting bacteria against larvae of southern house mosquito (Culex quinquefasciatus Say)
CN109929015B (zh) 苏云金芽胞杆菌杀虫基因cry79Aa1、表达蛋白及其应用
US6962977B2 (en) Protein having pesticidal activity, DNA encoding the protein, and noxious organism-controlling agent and method
CN112522132B (zh) 一种芽孢杆菌SJ110、杀虫蛋白、vip3-like杀虫基因及应用
Gitahy et al. A Brazilian Bacillus thuringiensis strain highly active to sugarcane borer Diatraea saccharalis (Lepidoptera: Crambidae)
Bukhari et al. Isolation and molecular characterization of cry4 harbouring Bacillus thuringiensis isolates from Pakistan and mosquitocidal activity of their spores and total proteins
CN106243199B (zh) 对甜菜夜蛾具有高活性的Vip3Aa11蛋白突变体
CN104673706A (zh) 苏云金芽胞杆菌fh21、杀虫基因,表达蛋白及其应用
LU501420B1 (en) Bacillus sj110 strain, insecticidal protein, vip3-like insecticidal gene, and use thereof

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant