CN111793146A - 一种pH敏感型PCA-g-CMCS聚合物及其水凝胶的制备方法 - Google Patents

一种pH敏感型PCA-g-CMCS聚合物及其水凝胶的制备方法 Download PDF

Info

Publication number
CN111793146A
CN111793146A CN202010679720.0A CN202010679720A CN111793146A CN 111793146 A CN111793146 A CN 111793146A CN 202010679720 A CN202010679720 A CN 202010679720A CN 111793146 A CN111793146 A CN 111793146A
Authority
CN
China
Prior art keywords
cmcs
pca
solution
sensitive
polymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202010679720.0A
Other languages
English (en)
Other versions
CN111793146B (zh
Inventor
关水
孙长凯
徐超
许建强
徐卫平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dalian University of Technology
Original Assignee
Dalian University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dalian University of Technology filed Critical Dalian University of Technology
Priority to CN202010679720.0A priority Critical patent/CN111793146B/zh
Publication of CN111793146A publication Critical patent/CN111793146A/zh
Application granted granted Critical
Publication of CN111793146B publication Critical patent/CN111793146B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B37/00Preparation of polysaccharides not provided for in groups C08B1/00 - C08B35/00; Derivatives thereof
    • C08B37/0006Homoglycans, i.e. polysaccharides having a main chain consisting of one single sugar, e.g. colominic acid
    • C08B37/0024Homoglycans, i.e. polysaccharides having a main chain consisting of one single sugar, e.g. colominic acid beta-D-Glucans; (beta-1,3)-D-Glucans, e.g. paramylon, coriolan, sclerotan, pachyman, callose, scleroglucan, schizophyllan, laminaran, lentinan or curdlan; (beta-1,6)-D-Glucans, e.g. pustulan; (beta-1,4)-D-Glucans; (beta-1,3)(beta-1,4)-D-Glucans, e.g. lichenan; Derivatives thereof
    • C08B37/00272-Acetamido-2-deoxy-beta-glucans; Derivatives thereof
    • C08B37/003Chitin, i.e. 2-acetamido-2-deoxy-(beta-1,4)-D-glucan or N-acetyl-beta-1,4-D-glucosamine; Chitosan, i.e. deacetylated product of chitin or (beta-1,4)-D-glucosamine; Derivatives thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/14Macromolecular materials
    • A61L27/20Polysaccharides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/50Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/50Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • A61L27/52Hydrogels or hydrocolloids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/02Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques
    • C08J3/03Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques in aqueous media
    • C08J3/075Macromolecular gels
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2430/00Materials or treatment for tissue regeneration
    • A61L2430/20Materials or treatment for tissue regeneration for reconstruction of the heart, e.g. heart valves
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2430/00Materials or treatment for tissue regeneration
    • A61L2430/32Materials or treatment for tissue regeneration for nerve reconstruction
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2305/00Characterised by the use of polysaccharides or of their derivatives not provided for in groups C08J2301/00 or C08J2303/00
    • C08J2305/08Chitin; Chondroitin sulfate; Hyaluronic acid; Derivatives thereof

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Public Health (AREA)
  • Animal Behavior & Ethology (AREA)
  • Epidemiology (AREA)
  • Veterinary Medicine (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Transplantation (AREA)
  • Dermatology (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Biochemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Molecular Biology (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

一种pH敏感型PCA‑g‑CMCS聚合物及其水凝胶的制备方法,属于复合材料技术领域。步骤:1)采用EDC/NHS化学交联法,通过调节反应体系pH值和原料的投料摩尔比等工艺条件,优化提高PCA的接枝率;2)与CMCS相比,PCA‑g‑CMCS的水溶性下降,保留来自CMCS的pH值敏感性,且在pH≤5.75和pH≥7.25时,光学透射率接近100%,pH在5.75‑7.25时呈絮凝状态;3)通过冷冻干燥和EDC/NHS交联固化的方法制备PCA‑g‑CMCS多孔水凝胶支架,与CMCS支架相比,PCA的接枝降低改性支架的吸水率和体外降解速率,提高压缩模量,且DPPH和ABTS自由基清除能力分别提高7.5倍和5.9倍,能在15天内保持PCA的体外释放活性。本方法工艺简单,具有较好的重复性,有效提高PCA的接枝效率,获得的pH敏感型水凝胶性能优良,具有明显的神经保护作用,为抗氧化药物控制释放和神经组织工程等潜在应用提供新思路。

Description

一种pH敏感型PCA-g-CMCS聚合物及其水凝胶的制备方法
技术领域
本发明涉及复合材料技术领域,具体涉及一种pH敏感型PCA-g-CMCS聚合物及其水凝胶的制备方法。
背景技术
壳聚糖(chitosan,CS)及其水溶性衍生物羧甲基壳聚糖(carboxymethylchitosan,CMCS)具有许多独特的生理特性,如生物降解性、抗氧化性、无免疫原性、抗菌性和良好的生物相容性等,这使得它们在食品、组织工程、制药和化妆品行业等有广泛的应用。CS和CMCS主链上携带有-OH,-NH2和-COOH活性基团,有助于对这些材料的化学改性,从而赋予一些新功能(如抗氧化、抗炎症和导电性等)。目前多种形式的CS基新材料,包括膜、纳米纤维、微/纳米颗粒和水凝胶等,已被广泛应用于组织修复与再生的生物医学工程领域。然而,由于CS本身在生理pH(>6.0)下溶解度较低,限制了其在对溶解度和释药速率要求较高的体系中的应用。幸运的是,CS中存在活性氨基(C-2),伯羟基(C-3)和仲羟基(C-6)有助于化学修饰,从而增强其固有性质或提供一些新的性质。
CMCS是通过部分羧甲基化CS链上的羟基或氨基而获得。羧甲基的引入提高了CS的水溶性,并且羧甲基官能团可以和其他材料的氨基和羟基化学接枝,从而赋予CMCS更多新的功能。研究表明,CMCS具有抗菌、抗肿瘤、抗氧化和抗真菌等生物活性,在伤口愈合、组织工程、药物/酶递送和化妆品等各个领域都有突出的应用。因此,CMCS除了保留CS的良好生物相容性之外,还表现出改善的水溶性、成凝胶能力、pH值敏感和生物活性(如抗氧化活性和过渡金属螯合活性)等。而且,近期研究显示CMCS还具有引导神经再生、防止组织黏连、促进伤口愈合、减少瘢痕形成等优点,这使得CMCS可望成为一种有前途的生物医学材料,用于药物输送和组织工程移植。但CMCS水凝胶的吸水能力过强且质脆易碎,一般来说很难在临床医学领域得到大规模的应用。然而CMCS作为一种两性聚电解质聚合物,主链上-OH,-NH2和-COOH基团的存在同样使得易于对其进行化学改性。因此,通过接枝共聚反应接枝引入其他抗氧化组分,使CS和CMCS具有更强的抗氧化活性是CS基改性材料研发的常用策略之一。近年来已有文献报道将没食子酸(GA)、蚕丝肽和胶原肽等抗氧化物质化学接枝到CMCS上,显著提高了CMCS的体外抗氧化活性。可以预见,基于CMCS的改性抗氧化复合材料更有希望成为组织工程治疗神经退行性疾病(neurodegenerative diseases,ND)和创伤性脑损伤(traumatic brain injury,TBI)等的良好支架材料。
植物多酚(polyphenols)是一类存在于植物体内的具有多元酚结构的次生代谢物,其来源广泛、种类繁多。它们的酚羟基易于通过捕获自由基(例如活性氧)而氧化成醌结构,这使得多酚具有较强的抗氧化性和清除自由基能力。研究表明,某些多酚在神经元细胞死亡或神经变性的体外内模型中均显示出良好的神经保护活性,是一类潜在的神经保护药物。在过去十年中,使用多酚来治疗ND,尤其是AD已有很大的发展,显示多酚类抗氧化剂在神经保护和修复氧化损伤过程中似乎是非常有价值的潜在药物。原儿茶酸(protocatechuic acid,PCA),又名3,4-二羟基苯甲酸,是一种酚酸类单体抗氧化剂,能有效地抑制脂质过氧化,对多种自由基均有良好的清除活性,并具有明显的抗炎和抗菌等作用。PCA可保护H2O2诱导损伤的PC12细胞,避免氧化应激引起的神经毒性,在神经干/祖细胞的增殖和神经保护中起关键作用,可以诱导神经元成熟并有效促进神经突生长。此外PCA还可作为PD和AD等疾病治疗的有效神经保护剂。然而PCA等酚酸类单体作为小分子抗氧化剂的稳定性较差,体内代谢周期短,生物利用度低,难以长效发挥其抗氧化保护作用。例如,在小鼠血浆中,当浓度为0.5μg/mL和5.0μg/mL时,PCA被迅速降解,半衰期分别为90min和314min。因此,通过物理或者化学方法将小分子抗氧化物质(如酚酸类)接枝引入具有良好生物相容性的可生物降解材料中,开发具有稳定和持久抗氧化能力的复合水凝胶支架,提高其生物利用度,以应对神经修复过程中氧化应激的持续损伤,可能是治疗ND和TBI等相关疾病的潜在方法之一。
目前,实现酚酸接枝CS(酚酸-g-CS)的方法主要有三种:酶催化法、自由基聚合法和碳二亚胺法。酶催化接枝方法具有以下优点:第一,酶的高选择性和专一性,省去了化学偶联反应中涉及的保护和去保护步骤;第二,酶催化接枝法比化学偶联方法更安全和环保。但是,酶催化接枝法也有一些局限性。例如,酶可能会催化酚酸上的酚羟基氧化为邻醌,这最终会降低其生物活性,如接枝产物的抗氧化和抗菌活性等。近年来,硝酸铈铵、过硫酸钾和H2O2/Vc氧化还原对等自由基引发体系被用来合成酚酸-g-CS。在这些体系中,H2O2/Vc氧化还原对应用最为广泛。它具有如下几个优点:首先,产生自由基的接枝试剂(如H2O2/Vc)比碳二亚胺和酶的价格较低;其次,室温反应可以避免酚类的降解和氧化;最后,H2O2/Vc氧化还原对的毒性相对要小于碳二亚胺试剂,这尤其适合于药物开发。这些优点使得基于H2O2/Vc反应体系开发的酚酸-g-CS材料在生物医学领域得到了较多的应用。然而自由基介导的接枝方法也有一定的局限性,主要是·OH自由基在聚合过程中进攻CS分子,导致CS分子链断裂,造成CS分子量降低。通常,自由基聚合法获得的酚酸-g-CS的分子量会小于碳二亚胺法和酶催化法,这不利于进一步开发具有一定机械强度的3D支架。已报道采用绿色环保的H2O2/Vc氧化还原对介导的自由基反应可将PCA接枝到CS上,合成水溶性的PCA-g-CS聚合物,但该方法不适用于获得成形的三维水凝胶支架。研究显示,碳二亚胺交联体系则不会出现这种问题,碳二亚胺化学偶联剂如EDC和DCC已被广泛用于酚酸-g-CS的合成。与酶催化接枝法和自由基介导法相比,碳二亚胺交联体系具有最高的接枝效率,并且只需要温和的反应条件。接枝反应通常在酸性水溶液中进行,大大改善了CS反应底物的溶解度。此外,偶联试剂和副产物均为水溶性,可以通过透析除去。迄今为止,已成功通过这种方法将各种酚酸接枝到CS骨架上。例如,Liu等通过碳二亚胺介导的交联反应获得了PCA-g-CS,接枝聚合物的还原能力和DDPH自由基清除活性远高于CS。将聚合物制备成薄膜后,发现PCA-g-CS膜对DPPH自由基清除活性呈剂量依赖性和时间依赖性,有望用作新型抗氧化剂食品包装材料。Yu等合成了GA-g-CMCS,发现该材料对DPPH和ABTS自由基的清除活性呈剂量依赖性。Eom等比较了八种不同酚酸-g-寡聚糖(对羟基苯甲酸、香豆酸、PCA、咖啡酸、香草酸、阿魏酸、丁香酸和芥子酸)的抗氧化活性(DPPH、·OH和·NO自由基清除能力和还原能力),发现PCA-g-寡聚糖和咖啡酸-g-寡聚糖具有比其他酚酸-g-寡聚糖更高的抗氧化活性。
除了研究酚酸-g-CS水溶液的性质之外,研究者也尝试开发具有3D结构的抗氧化酚酸-g-CS复合材料。例如,Kang等合成了聚(甲基丙烯酸2-羟乙酯)/甲基丙烯酰胺CS水凝胶,随后通过酰胺键将GA原位接枝到CS骨架上,获得的GA改性水凝胶表现出很高的DPPH和ABTS自由基清除活性。Wu等开发了阿魏酸-g-聚乙二醇CS自组装纳米颗粒,可以保护原代培养的脊髓神经元免受谷氨酸诱导的兴奋性毒性作用,且大鼠的脊髓损伤模型显示,改性纳米颗粒的体内循环时间延长,可以将CS和阿魏酸有效地输送到损伤部位,同时在损伤后2h静脉内给予改性纳米颗粒的大鼠中观察到运动功能的显著恢复;此外,改性纳米颗粒的系统性给药可显著挽救病变部位的轴突和神经元细胞,并减少星形胶质细胞增生和炎症反应,提示这种改性纳米颗粒有助于脊髓损伤后功能恢复。目前对酚酸接枝CMCS聚合物的研究较少,相应的具有稳定抗氧化成分释放能力的水凝胶支架尚未见报道,因此,开发具有抗氧化活性的酚酸-g-CMCS水凝胶用于组织修复与再生及药物释放等领域的研究是一个亟待深入的研究课题。
发明内容
本发明目的在于提供一种pH敏感型PCA-g-CMCS聚合物及其水凝胶的制备方法。本发明提供的pH敏感型PCA-g-CMCS聚合物及其水凝胶,制备方法工艺简单,具有较好的重复性,有效提高PCA的接枝效率,获得的pH敏感性水凝胶性能优良,具有明显的神经保护作用,应用前景广阔;可用于应对神经/心脏等组织修复与再生过程中以自由基过量积累为特征的持续氧化应激损伤,实现神经/心脏等组织工程构建和药物筛选与毒性评价及其进一步的临床移植应用。
本发明的技术方案为:
一种pH敏感型PCA-g-CMCS聚合物的制备方法,所述pH敏感型PCA-g-CMCS聚合物为原儿茶酸接枝的羧甲基壳聚糖聚合物材料,简写为PCA-g-CMCS,具有稳定抗氧化成分释放的能力。包括如下步骤:
S1、将羧甲基壳聚糖(CMCS)溶于2-吗啉乙烷磺酸(MES)缓冲溶液或磷酸盐(PB)缓冲溶液中,室温下搅拌8至12h,得到CMCS溶液。所述每10mL MES缓冲溶液对应含有0.2mmolCMCS,其中,MES缓冲溶液的浓度为100mM,pH=5.5。当整个反应体系pH 7.4时采用PB缓冲溶液,同样所述每10mL PB缓冲溶液对应含有0.2mmol CMCS。
S2、将原儿茶酸(PCA)溶于n,n-二甲基甲酰胺(DMF)溶液中,得到溶液A;将交联体系溶于MES缓冲溶液中,得到溶液B,交联体系包括碳二亚胺(EDC)、N-羟基琥珀酰亚胺(NHS);将溶液A与溶液B按1:9的体积比混合得到混合液,其中,每3mL混合液对应加入0.2~0.6mmol PCA;所述PCA和交联体系(EDC/NHS)的摩尔比为1:0.5~3,其中,EDC、NHS的质量比或摩尔比为1:1。将混合液置于冰水浴下避光搅拌1h,以活化羧基,得到激活液。
S3、将步骤S2得到的激活液加入到步骤S1制备的CMCS溶液中,用1M HCl或1M NaOH分别调节反应液pH至5.0~6.0或者7.0~7.5;所述激活液与CMCS溶液的体积比为3:10。
S4、室温下避光搅拌24h后,采用0.1M HCl调节反应液pH至4.5~5.5,随后倒入无水乙醇析出沉淀;所述无水乙醇的量为反应体积的1.5~2倍。
S5、高速离心分离后,将沉淀分别用75%乙醇、无水乙醇和石油醚洗涤,直到高效液相色谱(HPLC)未检测到游离PCA;所述75%乙醇、无水乙醇和石油醚的量为反应体积的1.5~2倍。
S6、30℃真空干燥24h后,获得pH敏感型PCA-g-CMCS聚合物粉末,避光储存。
本发明采用EDC/NHS交联体系,合成pH敏感型PCA-g-CMCS聚合物的合成路线(机理)如下:
Figure BDA0002585383840000051
采用EDC/NHS交联体系合成pH敏感型PCA-g-CMCS聚合物主要可分为两个步骤;第一步是PCA羧基的活化阶段,即PCA上羧基在酸性环境下和EDC反应生成不稳定的O-酰基异脲中间产物1,再和NHS反应生成亚稳定的NHS活性酯中间产物2。该阶段最佳pH为4.7-6.0,原因是中间产物1和2在含水体系中不稳定,会在几小时甚至几分钟内水解而失效(速度主要取决于水含量和pH值)。例如,NHS酯在0℃,pH 7时的半衰期为4-5h,在4℃,pH8时为1h,pH8.6仅10min。第二步是NHS活性酯和CMCS伯胺基反应生成酰胺键,最终获得目标产物PCA-g-CMCS。一般认为此反应最佳pH为7-8,因为碱性环境有利于CMCS伯胺基的去质子,可以提高接枝反应效率。然而也有类似的研究是始终维持体系pH<7,也获得了比较好的反应效率。需要指出的是,和以CS为底物的接枝反应相比,该交联体系还存在CMCS自交联副反应,原因是第一步PCA羧基的活化阶段,仅有部分PCA单体转化为中间产物1和2,激活液中仍有相当数量的PCA单体(TLC显示活化24h后仍有清晰的PCA原料点)和EDC交联剂。当激活液和CMCS接触时,剩余的EDC会激活CMCS上的羧基,使其与自身氨基和羟基发生自交联,这相当于和PCA竞争了自身氨基反应点位,不利于PCA的接枝。由于CMCS还属于两性电解质,具有pH敏感性。可见CMCS上PCA的接枝效率和反应体系的pH值密切相关。
一种基于PCA-g-CMCS聚合物得到的pH敏感型PCA-g-CMCS水凝胶的制备方法,包括如下步骤:
S1、将pH敏感型PCA-g-CMCS聚合物粉末溶解在去离子水中,制备成2%(w/v)的溶液;
S2、在室温下磁力搅拌8~12h后,将溶液转入离心管中,1500r/min离心分离5min,用于消泡和去除不溶杂质;
S3、将步骤S2离心后的溶液加入到24孔板中,其中,每孔对应加入1.5mL溶液,在-20℃下预冷冻24h,然后转移到冻干机中真空冷冻干燥,得到冻干的多孔支架;所述冷冻干燥温度为-40~-60℃,时间为24~48h;
S4、将冻干的多孔支架浸入含有MES、EDC、NHS的80%(体积分数)乙醇溶液中,室温下交联24h;所述乙醇溶液pH为6.0,其中,乙醇溶液中,MES浓度为50mM,EDC浓度为50mM,NHS浓度为50mM。
S5、将步骤S4处理后的多孔支架采用大量去离子水浸泡清洗,持续24h,期间换水数次,以去除残余的交联剂;
S6、再次冷冻干燥,获得成形的pH敏感型PCA-g-CMCS水凝胶(干态)。所述冷冻干燥温度为-40~-60℃,时间为24~48h。
本发明的有益效果如下:
(1)本发明方法工艺简单,具有较好的重复性,有效提高PCA的接枝效率,获得的pH敏感性水凝胶性能优良,具有明显的神经保护作用,应用前景广阔;
(2)本发明可用于应对神经/心脏等组织修复与再生过程中以自由基过量积累为特征的持续氧化应激损伤,实现神经/心脏等组织工程构建和药物筛选与毒性评价及其进一步的临床移植应用。
附图说明
图1为本发明实施例1和实施例2制备的pH敏感型PCA-g-CMCS聚合物和CMCS的红外光谱图,其中,a为实施例1,b为实施例2。
图2为本发明实施例1和实施例2制备的pH敏感型PCA-g-CMCS聚合物和CMCS的核磁共振谱图,其中,a为实施例1,b为实施例2。
图3为本发明实施例1和实施例2制备的pH敏感型PCA-g-CMCS聚合物和CMCS的X-射线衍射光谱图,其中,a为实施例1,b为实施例2。
图4为本发明实施例1和实施例2制备的pH敏感型PCA-g-CMCS聚合物的PCA-g-CMCS、CMCS和PCA的紫外-可见光谱图,其中,a为实施例1,b为实施例2。
图5为本发明实施例1和实施例2制备的PCA-g-CMCS聚合物和CMCS水溶液的pH敏感性分析,其中,a为实施例1,b为实施例2。
图6为本发明实施例1制备的PCA-g-CMCS(I)和CMCS水凝胶的SEM形态学观察。其中,A为PCA-g-CMCS(I)水凝胶的微观多孔结构,B为PCA-g-CMCS(I)的局部放大图,C为CMCS水凝胶的微观多孔结构,D为CMCS水凝胶的放大图,E为PCA-g-CMCS(I)和CMCS水凝胶的形态图(干态)。
具体实施方式
以下结合具体实施方式对本发明的技术方案作进一步详细说明,但并不因此而限制于本发明。
实施例1
pH敏感型PCA-g-CMCS聚合物的制备(标记为PCA-g-CMCS(I)):
S1、将0.2mmol CMCS溶于10mL MES缓冲溶液(100mM,pH 5.5)中,室温下搅拌8h;
S2、将0.2mmol PCA溶于DMF溶液中,0.2mmol EDC、0.2mmol NHS溶于MES缓冲溶液中,然后混溶于3mL DMF/MES缓存液(v/v,1/9)中,置于冰水浴下避光搅拌1h,以活化羧基;
S3、将步骤S2得到的3mL激活液加入到步骤S1制备的10mL CMCS溶液中,用1M HCl调节反应液pH至5.0;
S4、室温下避光搅拌24h后,采用0.1M HCl调节反应液pH至5.0,随后倒入19.5mL无水乙醇析出沉淀;
S5、高速离心分离后,将沉淀分别用19.5mL 75%乙醇、19.5mL无水乙醇和19.5mL石油醚洗涤,直到高效液相色谱(HPLC)未检测到游离PCA;
S6、30℃真空干燥24h后,获得pH敏感型PCA-g-CMCS聚合物粉末,避光储存。
实施例2
pH敏感型PCA-g-CMCS聚合物的制备(标记为PCA-g-CMCS(II)):
S1、将0.2mmol CMCS溶于10mL MES缓冲溶液(100mM,pH 5.5)中,室温下搅拌8h;
S2、将0.2mmol PCA溶于DMF溶液中,0.1mmol EDC、0.1mmol NHS溶于MES缓冲溶液中,然后混溶于3mL DMF/MES缓存液(v/v,1/9)中,置于冰水浴下避光搅拌1h,以活化羧基;
S3、将步骤S2得到的3mL激活液加入到步骤S1制备的10mL CMCS溶液中,用1M HCl调节反应液pH至6.0;
S4、室温下避光搅拌24h后,采用0.1M HCl调节反应液pH至5.5,随后倒入19.5mL无水乙醇析出沉淀;
S5、高速离心分离后,将沉淀分别用19.5mL 75%乙醇、19.5mL无水乙醇和19.5mL石油醚洗涤,直到高效液相色谱(HPLC)未检测到游离PCA;
S6、30℃真空干燥24h后,获得pH敏感型PCA-g-CMCS聚合物粉末,避光储存。
本发明对实施例1和实施例2所制备的pH敏感型PCA-g-CMCS聚合物PCA-g-CMCS(I)、PCA-g-CMCS(II)进行了结构表征分析,证明PCA成功接枝到CMCS聚合物上。
(1)采用Bruker EQUINOX55傅里叶红外光谱仪对获得的pH敏感型PCA-g-CMCS聚合物进行测试。样品与KBr的质量比1:(100-200),经过研磨后压制成薄片,转移到红外光谱仪样品池进行测试,扫描范围4000-400cm-1,分辨率4cm-1。PCA-g-CMCS样品的红外谱图如图1所示,对于CMCS,1635cm-1对应于N-乙酰葡萄糖胺残基中C=O伸缩振动(酰胺I),1587cm-1是伯胺中N-H的弯曲振动和COO-的不对称拉伸振动的叠加峰,1408cm-1是-CH2的弯曲振动和COO-拉伸振动的叠加峰,1325cm-1附近的吸收峰是C-N伸缩振动(酰胺III),1380cm-1处的吸收峰是-CH3的对称变形振动峰,1073cm-1为仲羟基的C-O伸缩振动。与CMCS相比,PCA-g-CMCS的特征峰并不明显,3组样品的曲线基本一致。进一步观察发现伯胺在1587cm-1处的N-H弯曲振动有所减弱,这表明葡萄糖胺残基上的-NH2位发生了共轭反应,而且在1635cm-1的酰胺I振动峰有所加强,二者共同提示了CMCS骨架与PCA分子通过酰胺键发生了共价连接。该红外图谱和其他的酚酸-g-CMCS红外图谱一致。此外,在接枝产物中,约1730cm-1处常见的C=O的伸缩振动没有出现,这表明CMCS的羟基与酚酸的羧基之间未形成酯键。因此,PCA在CMCS上的接枝可能主要发生在C-2位置酰胺键上。
(2)采用Bruker Avance II 400M型核磁共振波谱仪对pH敏感型PCA-g-CMCS聚合物进行检测。取约3mg样品在1.5mL微量离心管中经超声脱气溶解后,转移到5mm核磁管中并进行检测。用氘代水(D2O)溶解产物样品,用CD3COOD/D2O(1%,v/v)溶解原料CMCS粉末。采样频率为400MHz,室温下测定,得到样品的核磁氢谱。CMCS和PCA-g-CMCS样品的质子信号如图2所示,在CMCS谱图上,1.97ppm属于乙酰氨基上甲基的H,3.08ppm属于2-氨基-D葡萄糖单环杂环上C2上H,3.64-3.79ppm属于葡萄糖单环杂环上C3、C4、C5和C6上的H,3.19ppm属于-N-CH2-COOD基团的质子特征共振信号,4.02-4.15ppm属于到来自H-6和H-3的-O-CH2-COOD基团的质子特征共振信号。因此,-O-CH2-COOD和-N-CH2-COOD的强吸收证实了CS骨架中-OH和-NH2的高度羧甲基化。与CMCS相比,PCA-g-CMCS(I)和(II)的谱图中出现的新化学位移,分别为δ=7.28ppm和δ=6.91ppm,分别对应PCA芳环上的邻位H-A、H-B和间位H-C,证实PCA和CMCS发生了接枝反应。但是需要指出的是,这两组样品的PCA质子信号都不强,无法通过面积积分法计算接枝量,这可能是因为CMCS上的活性羧基在交联聚合过程中与自身的活性氨基发生了自交联,导致产物的水溶性相对下降,体系呈凝胶状态,不利于获得理想的谱图。这一点在PCA-g-CMCS(II)谱图上尤为明显,因为(II)组采用了更多的交联剂,自交联程度可能比(I)更大,肉眼可见水溶性有明显下降,因此造成PCA特征信号不明显。
(3)采用X射线衍射仪测试样品的结晶状态。测试条件为Cu靶Kα射线,管电压40kV,电流50mA,扫描范围2θ为5°-50°,扫描速率为1°/min。CMCS和PCA-g-CMCS样品的X射线衍射图如图3所示,CMCS呈现半结晶状态,在2θ=8.36°和19.82°处出现两个特征峰。从PCA-g-CMCS(I)和(II)的XRD图谱可见,在2θ=19.82°处的衍射峰强度明显降低,峰型变宽,在2θ=8.36°处的衍射峰消失,这表明PCA-g-CMCS处于非晶态。有研究指出,GA的共价结合可极大地破坏CS的原始半结晶性质,而GA-g-CS非晶态的形成主要是由于GA和CS之间的共价键大大降低了CS中的氢键并限制了CS链的分子运动。综上所述,将PCA接枝到CMCS上会导致CMCS接枝聚合物的结晶度显著降低,接枝后原始CMCS的分子间和分子内氢键已大大减少,证实了PCA和CMCS的成功结合。
(4)采用紫外-可见分光光度计进行检测,称取适量样品粉末,溶于去离子水或0.01M NaOH水溶液,超声振荡均匀,分别稀释至终浓度为0.02mg/mL的PCA以及0.2mg/mLPCA-g-CMCS和CMCS水溶液,以对应去离子水或0.01N NaOH为参比建立基线,测定工作液在波长220-500nm范围内的吸收。CMCS和PCA-g-CMCS样品的紫外-可见光图谱如图4所示,CMCS中所带羟基为饱和醇,因而在去离子水和碱溶液中均不产生吸收。PCA水溶液在220-500nm区间范围内有两个吸收峰,分别为244nm处的较强峰和280nm处的较弱峰,这是由于PCA上苯环不饱和基团可以吸收紫外光所致。而PCA在碱溶液中发生明显的红移,特征峰位移到265nm和289nm,这归因于PCA离子化会离解形成酚离子(Ar-O-)。当CMCS中接枝引入生色团苯环和酚羟基等助色团后,水溶液中紫外吸收变得明显。PCA-g-CMCS(I)和(II)的吸收峰与PCA单体类似,在244nm左右处均有一显著的紫外吸收峰,而且随着PCA接枝量的提高,吸收强度逐渐增强,这表明PCA已成功接枝到CMCS上,该结果与其他报道一致。另外需要指出的是,PCA-g-CMCS(I)存在轻微的红移现象,提示了(I)组的复合物分子中共轭作用可能更强。另一方面,在碱溶液中的两组样品显示出与PCA类似的峰红移现象,符合已有研究报道,再次验证了PCA已经成功接枝到CMCS上这一结论。
本发明对实施例1和实施例2所制备的PCA-g-CMCS(I)和PCA-g-CMCS(II)以2mg/mL浓度溶解到10mL的HCl溶液(0.1M),搅拌过夜,用NaOH溶液(0.1M)调节pH值,用酶标仪检测600nm处不同pH溶液的透光率,以pH值为横坐标,透光率为纵坐标绘制曲线。样品的pH敏感性分析如图5所示,CMCS在pH≤5.75和pH≥7.25时,光学透射率接近100%,pH 5.75-7.25之间,光学透射率出现下降,尤其是pH 6.25-6.75之间,CMCS析出絮状沉淀,溶解度最低。这是因为CMCS是两性电解质,其侧链具有许多氨基和羧基,在不同pH条件下两种基团会发生质子化和去质子化,转化为-NH3+和-COO—。这两种基团的之间存在的静电相互作用,使得CMCS具有pH敏感性。与CMCS相比,产物(I)和(II)的整体透射率变化趋势和CMCS基本一致,但是透射率绝对值有明显下降,在样品可溶的pH区间,(I)的最高透射率约90%,而(II)降至80%,这说明I的水溶性比(II)更好。此外在pH 6.25-7.0,产物(I)和(II)也出现絮状沉淀,和CMCS基本类似,这说明样品(I)和II都具有一定的pH值响应行为。综上所述,向CMCS骨架中引入PCA组分,获得的复合接枝产物保留了来自原料CMCS的pH值响应特性,具有pH敏感性,这和已有研究报道相一致。以CS为骨架合成的酚酸接枝CS不具有这种pH敏感特性,因此本发明为将来开发具有pH响应行为的CMCS基酚酸接枝聚合物新材料提供了参考。
实施例3
pH敏感型PCA-g-CMCS聚合物的制备(标记为PCA-g-CMCS(III)):
S1、将0.2mmol CMCS溶于10mL PB缓冲溶液(pH 7.4)中,室温下搅拌8h;
S2、将0.4mmol PCA溶于DMF溶液中,0.6mmol EDC、0.6mmol NHS溶于PB缓冲溶液中,然后混溶于3mL DMF/PB缓存液(v/v,1/9)中,置于冰水浴下避光搅拌1h,以活化羧基;
S3、将步骤S2得到的3mL激活液加入到步骤S1制备的10mL CMCS溶液中,用1M NaOH调节反应液pH至7.4;
S4、室温下避光搅拌24h后,采用0.1M HCl调节反应液pH至5.0,随后倒入26mL无水乙醇析出沉淀;
S5、高速离心分离后,将沉淀分别用26mL 75%乙醇、26mL无水乙醇和26mL石油醚洗涤,直到高效液相色谱(HPLC)未检测到游离PCA;
S6、30℃真空干燥24h后,获得pH敏感型PCA-g-CMCS聚合物粉末,避光储存。
实施例4
pH敏感型PCA-g-CMCS水凝胶的制备:
S1、将pH敏感型PCA-g-CMCS聚合物粉末(PCA-g-CMCS(I))溶解在去离子水中,制备成2%(w/v)的溶液;
S2、在室温下磁力搅拌12h后,将溶液转入离心管中,1500r/min离心分离5min,用于消泡和去除不溶杂质;
S3、将步骤S2离心后的溶液加入到24孔板中,其中,每孔对应加入1.5mL溶液,在-20℃下预冷冻24h,然后转移到冻干机中真空冷冻干燥(-40℃,48h),得到冻干的多孔支架;
S4、将冻干的多孔支架浸入含有MES(50mM)、EDC(50mM)、NHS(50mM)的80%乙醇溶液(pH 6.0)中,室温下交联24h;
S5、将步骤S4处理后的多孔支架采用大量去离子水浸泡清洗,持续24h,期间换水数次,以去除残余的交联剂;
S6、再次冷冻干燥(-40℃,48h),获得成型的pH敏感型PCA-g-CMCS水凝胶(干态,如图6所示)。
实施例5
pH敏感型PCA-g-CMCS水凝胶的制备:
S1、将pH敏感型PCA-g-CMCS聚合物粉末(PCA-g-CMCS(II))溶解在去离子水中,制备成2%(w/v)的溶液;
S2、在室温下磁力搅拌10h后,将溶液转入离心管中,1500r/min离心分离5min,用于消泡和去除不溶杂质;
S3、将步骤S2离心后的溶液加入到24孔板中,其中,每孔对应加入1.5mL溶液,在-20℃下预冷冻24h,然后转移到冻干机中真空冷冻干燥(-50℃,36h),得到冻干的多孔支架;
S4、将冻干的多孔支架浸入含有MES(50mM)、EDC(50mM)、NHS(50mM)的80%乙醇溶液(pH 6.0)中,室温下交联24h;
S5、将步骤S4处理后的多孔支架采用大量去离子水浸泡清洗,持续24h,期间换水数次,以去除残余的交联剂;
S6、再次冷冻干燥(-50℃,36h),获得成型的pH敏感型PCA-g-CMCS水凝胶。
实施例6
pH敏感型PCA-g-CMCS水凝胶的制备:
S1、将pH敏感型PCA-g-CMCS聚合物粉末(PCA-g-CMCS(III))溶解在去离子水中,制备成2%(w/v)的溶液;
S2、在室温下磁力搅拌8h后,将溶液转入离心管中,1500r/min离心分离5min,用于消泡和去除不溶杂质;
S3、将步骤S2离心后的溶液加入到24孔板中,其中,每孔对应加入1.5mL溶液,在-20℃下预冷冻24h,然后转移到冻干机中真空冷冻干燥(-60℃,24h),得到冻干的多孔支架;
S4、将冻干的多孔支架浸入含有MES(50mM)、EDC(50mM)、NHS(50mM)的80%乙醇溶液(pH 6.0)中,室温下交联24h;
S5、将步骤S4处理后的多孔支架采用大量去离子水浸泡清洗,持续24h,期间换水数次,以去除残余的交联剂;
S6、再次冷冻干燥(-60℃,24h),获得成型的pH敏感型PCA-g-CMCS水凝胶。
本发明采用EDC/NHS化学交联法,通过调节反应体系pH值和原料的投料摩尔比等工艺条件,优化提高PCA的接枝率;与CMCS相比,PCA-g-CMCS的水溶性下降,保留来自CMCS的pH值敏感性,且在pH≤5.75和pH≥7.25时,光学透射率接近100%,pH在5.75-7.25时呈絮凝状态;通过冷冻干燥和EDC/NHS交联固化的方法制备PCA-g-CMCS多孔水凝胶支架,与CMCS支架相比,PCA的接枝降低改性支架的吸水率和体外降解速率,提高压缩模量,且DPPH和ABTS自由基清除能力分别提高7.5倍和5.9倍,能在15天内保持PCA的体外释放活性。
以上所述,仅为本发明较佳的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明披露的技术范围内,根据本发明的技术方案及其发明构思加以等同替换或改变,都应涵盖在本发明的保护范围之内。

Claims (8)

1.一种pH敏感型PCA-g-CMCS聚合物的制备方法,其特征在于,所述pH敏感型PCA-g-CMCS聚合物为原儿茶酸接枝的羧甲基壳聚糖聚合物材料,简写为PCA-g-CMCS,具有稳定抗氧化成分释放的能力;制备方法包括如下步骤:
S1、将羧甲基壳聚糖CMCS溶于2-吗啉乙烷磺酸MES缓冲溶液或磷酸盐PB缓冲溶液中,室温下搅拌8~12h,得到CMCS溶液;
S2、将原儿茶酸PCA溶于n,n-二甲基甲酰胺DMF溶液中,得到溶液A;将交联体系溶于MES缓冲溶液中,得到溶液B,交联体系包括碳二亚胺EDC、N-羟基琥珀酰亚胺NHS;将溶液A与溶液B按1:9的体积比混合得到混合液,其中,每3mL混合液对应加入0.2~0.6mmol PCA;所述PCA和交联体系的摩尔比为1:0.5~3;将混合液置于冰水浴下避光搅拌1h,以活化羧基,得到激活液;
S3、将步骤S2得到的激活液加入到步骤S1制备的CMCS溶液中,用1M HCl或1M NaOH分别调节反应液pH至5.0~6.0或者7.0~7.5;所述激活液与CMCS溶液的体积比为3:10;
S4、室温下避光搅拌24h后,采用0.1M HCl调节反应液pH至4.5~5.5,随后倒入无水乙醇析出沉淀;
S5、高速离心分离后,将沉淀分别用乙醇、无水乙醇和石油醚洗涤,直到高效液相色谱HPLC未检测到游离PCA;
S6、真空干燥后,获得pH敏感型PCA-g-CMCS聚合物粉末,避光储存。
2.根据权利要求1所述的一种pH敏感型PCA-g-CMCS聚合物的制备方法,其特征在于,步骤S1中所述每10mL MES缓冲溶液对应加入0.2mmol CMCS,其中,MES缓冲溶液的浓度为100mM,pH=5.5;当整个反应体系pH 7.4时采用PB缓冲溶液,同样所述每10mL PB缓冲溶液对应加入0.2mmol CMCS。
3.根据权利要求1所述的一种pH敏感型PCA-g-CMCS聚合物的制备方法,其特征在于,所述交联体系中EDC、NHS的质量比或摩尔比为1:1。
4.根据权利要求1所述的一种pH敏感型PCA-g-CMCS聚合物的制备方法,其特征在于,步骤S6中,真空干燥温度为30℃,时间为24h。
5.一种基于权利要求1-4任一所述的PCA-g-CMCS聚合物得到的pH敏感型PCA-g-CMCS水凝胶的制备方法,其特征在于,包括如下步骤:
S1、将pH敏感型PCA-g-CMCS聚合物粉末溶解在去离子水中,制备成2%(w/v)的溶液;
S2、在室温下磁力搅拌8~12h后,进行离心分离,消泡和去除不溶杂质;
S3、将步骤S2离心后的溶液加入到24孔板中,其中,每孔对应加入1.5mL溶液,在-20℃下预冷冻24h,然后转移到冻干机中真空冷冻干燥,得到冻干的多孔支架;
S4、将冻干的多孔支架浸入含有MES、EDC、NHS的乙醇溶液中,室温下交联24h;所述乙醇溶液pH为6.0,其中,乙醇溶液中,MES浓度为50mM,EDC浓度为50mM,NHS浓度为50mM;
S5、将步骤S4处理后的多孔支架采用去离子水浸泡清洗,持续24h,期间换水数次,以去除残余的交联剂;
S6、再次冷冻干燥,获得干态且成形的pH敏感型PCA-g-CMCS水凝胶。
6.根据权利要求5所述的制备方法,其特征在于,步骤S2所述离心分离转速为1500r/min、时间为5min。
7.根据权利要求5所述的制备方法,其特征在于,步骤S3所述真空冷冻干燥温度为-40~-60℃,时间为24~48h。
8.根据权利要求5所述的制备方法,其特征在于,步骤S6所述冷冻干燥温度为-40~-60℃,时间为24~48h。
CN202010679720.0A 2020-07-15 2020-07-15 一种pH敏感型PCA-g-CMCS聚合物及其水凝胶的制备方法 Active CN111793146B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010679720.0A CN111793146B (zh) 2020-07-15 2020-07-15 一种pH敏感型PCA-g-CMCS聚合物及其水凝胶的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010679720.0A CN111793146B (zh) 2020-07-15 2020-07-15 一种pH敏感型PCA-g-CMCS聚合物及其水凝胶的制备方法

Publications (2)

Publication Number Publication Date
CN111793146A true CN111793146A (zh) 2020-10-20
CN111793146B CN111793146B (zh) 2022-02-11

Family

ID=72807127

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010679720.0A Active CN111793146B (zh) 2020-07-15 2020-07-15 一种pH敏感型PCA-g-CMCS聚合物及其水凝胶的制备方法

Country Status (1)

Country Link
CN (1) CN111793146B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114957720A (zh) * 2022-05-30 2022-08-30 大连理工大学 一种自交联的抗氧化型PCA-g-CMCS/OSA席夫碱水凝胶及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080114096A1 (en) * 2006-11-09 2008-05-15 Hydromer, Inc. Lubricious biopolymeric network compositions and methods of making same
CN104710653A (zh) * 2015-01-28 2015-06-17 南京工业大学 一种壳聚糖水凝胶及其制备方法与应用
CN106220876A (zh) * 2016-08-12 2016-12-14 扬州大学 一种壳聚糖‑原儿茶酸接枝共聚物膜的制备方法
CN106977622A (zh) * 2016-01-15 2017-07-25 扬州大学 一种用于食用菌保鲜的酚酸改性壳聚糖涂膜液的制备方法
CN110483662A (zh) * 2019-07-05 2019-11-22 常州大学 一种羧甲基壳聚糖交联凝胶

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080114096A1 (en) * 2006-11-09 2008-05-15 Hydromer, Inc. Lubricious biopolymeric network compositions and methods of making same
WO2008133646A1 (en) * 2006-11-09 2008-11-06 Hydromer, Inc. Lubricious biopolymeric network compositions and methods of making same
CN104710653A (zh) * 2015-01-28 2015-06-17 南京工业大学 一种壳聚糖水凝胶及其制备方法与应用
CN106977622A (zh) * 2016-01-15 2017-07-25 扬州大学 一种用于食用菌保鲜的酚酸改性壳聚糖涂膜液的制备方法
CN106220876A (zh) * 2016-08-12 2016-12-14 扬州大学 一种壳聚糖‑原儿茶酸接枝共聚物膜的制备方法
CN110483662A (zh) * 2019-07-05 2019-11-22 常州大学 一种羧甲基壳聚糖交联凝胶

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
XU,CHAO 等: "Preparation, characterization and antioxidant activity of protocatechuic acid grafted carboxymethyl chitosan and its hydrogel", 《CARBOHYDRATE POLYMERS》 *
XU,CHAO 等: "Synthesis of protocatechuic acid grafted chitosan copolymer: Structure characterization and in vitro neuroprotective potential", 《INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES》 *
徐超 等: "辐照壳聚糖对辣椒抗性酶及生长的调节作用", 《浙江大学学报(农业与生命科学版)》 *
朱寿进: "生物可降解羧甲基壳聚糖及其接枝聚乳酸水凝胶的合成与性能研究", 《中国优秀硕士学位论文全文数据库(电子期刊) 工程科技I辑》 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114957720A (zh) * 2022-05-30 2022-08-30 大连理工大学 一种自交联的抗氧化型PCA-g-CMCS/OSA席夫碱水凝胶及其制备方法
CN114957720B (zh) * 2022-05-30 2024-09-10 大连理工大学 一种自交联的抗氧化型PCA-g-CMCS/OSA席夫碱水凝胶及其制备方法

Also Published As

Publication number Publication date
CN111793146B (zh) 2022-02-11

Similar Documents

Publication Publication Date Title
Xu et al. Preparation, characterization and antioxidant activity of protocatechuic acid grafted carboxymethyl chitosan and its hydrogel
Zhang et al. Preparation and antibacterial activity of a cellulose-based Schiff base derived from dialdehyde cellulose and L-lysine
Kim et al. Synthesis and characterization of dextran‐maleic acid based hydrogel
Yan et al. Fabrication of injectable hydrogels based on poly (l-glutamic acid) and chitosan
Kono et al. Cyclodextrin-grafted chitosan hydrogels for controlled drug delivery
Söderqvist Lindblad et al. Biodegradable polymers from renewable sources. New hemicellulose‐based hydrogels
Aiping et al. Synthesis and characterization of N-succinyl-chitosan and its self-assembly of nanospheres
Liu et al. Preparation, characterization and antioxidant activity of silk peptides grafted carboxymethyl chitosan
Motasadizadeh et al. Development of PVA/Chitosan-g-Poly (N-vinyl imidazole)/TiO2/curcumin nanofibers as high-performance wound dressing
Uyanga et al. Citric acid crosslinked natural bi-polymer-based composite hydrogels: Effect of polymer ratio and beta-cyclodextrin on hydrogel microstructure
Fan et al. Preparation and characterization of hydroxypropyl chitosan modified with collagen peptide
Ma et al. Synthesis and properties of photosensitive chitosan derivatives (1)
Yan et al. Synthesis and characterization of protocatechuic acid grafted carboxymethyl chitosan with oxidized sodium alginate hydrogel through the Schiff's base reaction
Bazmandeh et al. Hyaluronic acid coated electrospun chitosan-based nanofibers prepared by simultaneous stabilizing and coating
El-Sayed et al. Rational design of novel water-soluble ampholytic cellulose derivatives
Muslim et al. Chitosan and carboxymethyl chitosan from fish scales of Labeo rohita
Ayadi et al. Synthesis of water dispersed nanoparticles from different polysaccharides and their application in drug release
Reay et al. In vitro evaluation of the biodegradability of chitosan–genipin hydrogels
CN109796606A (zh) 一种基于多重动态化学键的自愈合水凝胶及其制备方法
Suwattanachai et al. Multi-functional carboxylic acids for chitosan scaffold
US10968286B2 (en) Site-selective modification of polysaccharides and applications thereof
CN111793146B (zh) 一种pH敏感型PCA-g-CMCS聚合物及其水凝胶的制备方法
KR20160089431A (ko) 히알루론산 또는 이의 염의 광경화성 에스테르 유도체를 포함하는 나노섬유, 광경화된 나노섬유, 이의 제조 방법, 광경화된 나노섬유를 포함하는 조제물 및 이의 용도
Poon et al. Cytocompatible hydrogels based on photocrosslinkable methacrylated O‐carboxymethylchitosan with tunable charge: synthesis and characterization
KR20160126252A (ko) 은나노입자-키토산 나노섬유의 제조방법

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant