CN111785397A - A nuclear power plant based on a heat pipe type reactor and a method of using the same - Google Patents
A nuclear power plant based on a heat pipe type reactor and a method of using the same Download PDFInfo
- Publication number
- CN111785397A CN111785397A CN202010695572.1A CN202010695572A CN111785397A CN 111785397 A CN111785397 A CN 111785397A CN 202010695572 A CN202010695572 A CN 202010695572A CN 111785397 A CN111785397 A CN 111785397A
- Authority
- CN
- China
- Prior art keywords
- heat pipe
- water
- nuclear power
- condenser
- power plant
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000000034 method Methods 0.000 title claims abstract description 12
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 105
- 239000000498 cooling water Substances 0.000 claims description 10
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 claims description 5
- 239000011734 sodium Substances 0.000 claims description 5
- 229910052708 sodium Inorganic materials 0.000 claims description 5
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 claims description 3
- 229910001182 Mo alloy Inorganic materials 0.000 claims description 3
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 claims description 3
- 229910052770 Uranium Inorganic materials 0.000 claims description 3
- MVXWAZXVYXTENN-UHFFFAOYSA-N azanylidyneuranium Chemical compound [U]#N MVXWAZXVYXTENN-UHFFFAOYSA-N 0.000 claims description 3
- 238000001816 cooling Methods 0.000 claims description 3
- 239000000446 fuel Substances 0.000 claims description 3
- 238000010438 heat treatment Methods 0.000 claims description 3
- 229910052744 lithium Inorganic materials 0.000 claims description 3
- KTEXACXVPZFITO-UHFFFAOYSA-N molybdenum uranium Chemical compound [Mo].[U] KTEXACXVPZFITO-UHFFFAOYSA-N 0.000 claims description 3
- OOAWCECZEHPMBX-UHFFFAOYSA-N oxygen(2-);uranium(4+) Chemical compound [O-2].[O-2].[U+4] OOAWCECZEHPMBX-UHFFFAOYSA-N 0.000 claims description 3
- 229910052700 potassium Inorganic materials 0.000 claims description 3
- 239000011591 potassium Substances 0.000 claims description 3
- FCTBKIHDJGHPPO-UHFFFAOYSA-N uranium dioxide Inorganic materials O=[U]=O FCTBKIHDJGHPPO-UHFFFAOYSA-N 0.000 claims description 3
- JFALSRSLKYAFGM-UHFFFAOYSA-N uranium(0) Chemical compound [U] JFALSRSLKYAFGM-UHFFFAOYSA-N 0.000 claims description 3
- 238000012423 maintenance Methods 0.000 abstract description 9
- 239000007789 gas Substances 0.000 description 7
- 238000006243 chemical reaction Methods 0.000 description 6
- 238000011161 development Methods 0.000 description 3
- 238000012546 transfer Methods 0.000 description 3
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 229910052783 alkali metal Inorganic materials 0.000 description 1
- 150000001340 alkali metals Chemical class 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 230000003749 cleanliness Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000002360 explosive Substances 0.000 description 1
- JEGUKCSWCFPDGT-UHFFFAOYSA-N h2o hydrate Chemical compound O.O JEGUKCSWCFPDGT-UHFFFAOYSA-N 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 125000004435 hydrogen atom Chemical class [H]* 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 231100000331 toxic Toxicity 0.000 description 1
- 230000002588 toxic effect Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G21—NUCLEAR PHYSICS; NUCLEAR ENGINEERING
- G21C—NUCLEAR REACTORS
- G21C1/00—Reactor types
- G21C1/04—Thermal reactors ; Epithermal reactors
-
- G—PHYSICS
- G21—NUCLEAR PHYSICS; NUCLEAR ENGINEERING
- G21D—NUCLEAR POWER PLANT
- G21D1/00—Details of nuclear power plant
- G21D1/006—Details of nuclear power plant primary side of steam generators
-
- G—PHYSICS
- G21—NUCLEAR PHYSICS; NUCLEAR ENGINEERING
- G21D—NUCLEAR POWER PLANT
- G21D1/00—Details of nuclear power plant
- G21D1/02—Arrangements of auxiliary equipment
-
- G—PHYSICS
- G21—NUCLEAR PHYSICS; NUCLEAR ENGINEERING
- G21D—NUCLEAR POWER PLANT
- G21D5/00—Arrangements of reactor and engine in which reactor-produced heat is converted into mechanical energy
- G21D5/04—Reactor and engine not structurally combined
- G21D5/06—Reactor and engine not structurally combined with engine working medium circulating through reactor core
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E30/00—Energy generation of nuclear origin
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E30/00—Energy generation of nuclear origin
- Y02E30/30—Nuclear fission reactors
Landscapes
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Plasma & Fusion (AREA)
- General Engineering & Computer Science (AREA)
- High Energy & Nuclear Physics (AREA)
- Engine Equipment That Uses Special Cycles (AREA)
Abstract
本发明公开了一种基于热管型反应堆的核动力装置及使用方法,该装置包括:热管型反应堆堆芯、热管、热管换热器和水蒸汽循环系统,热管一端与热管型反应堆堆芯连接,另一端与热管换热器连接,热管换热器与水蒸汽循环系统连接;该装置的使用方法为:热管将热管型反应堆堆芯产生的热能非能动的载入热管换热器中,在热管换热器中水蒸气吸收热量,升温,升温后的水蒸气进入水蒸汽循环系统中,进行能量循环交换。本发明公开的一种基于热管型反应堆的核动力装置具有结构简单、安全可靠、运行维护较简单、体积小,可移动等优势,该装置实现了热能到电能的转换,可作为应用于大多数场合的移动式核电源或核动力装置,具有广阔的应用前景。
The invention discloses a nuclear power device based on a heat pipe type reactor and a method of using the same. The device comprises: a heat pipe type reactor core, a heat pipe, a heat pipe heat exchanger and a water vapor circulation system, wherein one end of the heat pipe is connected to the heat pipe type reactor core, The other end is connected with the heat pipe heat exchanger, and the heat pipe heat exchanger is connected with the water vapor circulation system; the use method of the device is as follows: The water vapor in the heat exchanger absorbs heat and heats up, and the heated water vapor enters the water vapor circulation system for energy circulation exchange. A nuclear power device based on a heat pipe type reactor disclosed in the present invention has the advantages of simple structure, safety and reliability, simple operation and maintenance, small size, and mobility. The mobile nuclear power supply or nuclear power plant in the occasion has broad application prospects.
Description
技术领域technical field
本发明属于核动力领域,具体涉及一种基于热管型反应堆的核动力装置及使用方法。The invention belongs to the field of nuclear power, and in particular relates to a nuclear power device based on a heat pipe type reactor and a method for using the same.
背景技术Background technique
能源是社会发展的基石,核能由于其能量密度高、持续、稳定和清洁等特点,在我国的能源结构中扮演着越来越重要的角色。目前大型压水堆核电技术已经成熟并在我国乃至世界的能源结构中占有很大比重,但应用于海陆空的移动式核电源及核动力装置,比如船载、车载、机载创新型小型核反应堆的发展还有待研究,以满足社会经济发展的需要。Energy is the cornerstone of social development. Nuclear energy plays an increasingly important role in my country's energy structure due to its high energy density, sustainability, stability and cleanliness. At present, the nuclear power technology of large-scale pressurized water reactors has matured and occupies a large proportion in the energy structure of my country and the world. However, mobile nuclear power sources and nuclear power devices used in sea, land and air, such as shipborne, vehicle-mounted and airborne innovative small nuclear reactors The development of it remains to be studied to meet the needs of social and economic development.
应用于海陆空的移动式核电源及核动力装置必须兼具安全、轻质紧凑、简单可靠、抗摇摆等特点。传统核电站核动力装置采用“压水堆+蒸汽朗肯循环”系统,这种装置存在设备结构复杂、循环效率低、振动噪声高、运行维护困难的问题,除此之外,还有一回路冷却剂失水失流等事故的潜在风险,需专设核安全辅助设施,导致核动力装置结构复杂、安全可靠性不高、运行维护困难;新型水下核动力装置采用“铅基反应堆+超临界二氧化碳循环”系统,该装置存在剧毒Po-210造成设备维修困难,铅基反应堆材料具有腐蚀性等问题,且铅基反应堆中铅的熔点较高,为了维持反应堆解冻及液态状态都需要在装置中添加相应的功能模块,增加了装置的复杂性,维护工作及其复杂;还有一种核动力装置采用“钠冷快堆+蒸汽朗肯循环”的系统,在反应堆启动时需解冻金属,且二次侧钠与水发生反应的风险也较高,钠与水剧烈反应产生易爆气体氢气,反应堆不具备固有安全特性;除此之外,现有的核动力装置的体积和质量都较大,不方便移动。上述问题的存在限制了海陆空的核电源及核动力装置的应用。Mobile nuclear power sources and nuclear power plants used in the sea, land and air must have the characteristics of safety, light weight and compactness, simplicity and reliability, and anti-sway. The traditional nuclear power plant of nuclear power plant adopts the "pressurized water reactor + steam Rankine cycle" system, which has the problems of complex equipment structure, low cycle efficiency, high vibration and noise, and difficult operation and maintenance. The potential risks of accidents such as water loss and flow loss require special nuclear safety auxiliary facilities, resulting in complex structure of nuclear power plants, low safety and reliability, and difficulty in operation and maintenance; the new underwater nuclear power plant adopts "lead-based reactor + supercritical carbon dioxide" "Circulation" system, the device has problems such as highly toxic Po-210, which makes equipment maintenance difficult, lead-based reactor materials are corrosive, and the melting point of lead in lead-based reactors is relatively high. Adding corresponding functional modules increases the complexity of the device, and the maintenance work is extremely complicated; there is also a nuclear power plant using a "sodium-cooled fast reactor + steam Rankine cycle" system, which needs to thaw the metal when the reactor is started, and two The risk of the reaction between sodium and water on the secondary side is also high. The violent reaction between sodium and water produces an explosive gas, hydrogen, and the reactor does not have inherent safety features. Inconvenient to move. The existence of the above problems limits the application of nuclear power sources and nuclear power plants in the sea, land and air.
热管型反应堆是利用高温热管内碱金属的两相自然循环特性,将热量从堆芯传递到能量转换系统的新型反应堆装置。热管型反应堆耦合水蒸汽朗肯循环新型核动力系统则是应用面向海陆空移动式核电源及核动力装置应用场景的理想选择。Heat pipe reactor is a new type of reactor device that utilizes the two-phase natural circulation characteristics of alkali metals in high temperature heat pipes to transfer heat from the core to the energy conversion system. The new nuclear power system of heat pipe reactor coupled with steam Rankine cycle is an ideal choice for the application scenarios of mobile nuclear power sources and nuclear power plants oriented to sea, land and air.
因此,亟需一种有限空间内结构简单、安全可靠性好、运行维护容易,可以移动的应用于海陆空的移动式核动力装置。Therefore, there is an urgent need for a mobile nuclear power plant with simple structure, good safety and reliability, easy operation and maintenance in a limited space, and can be used in sea, land and air.
发明内容SUMMARY OF THE INVENTION
有鉴于此,本发明提供一种结构简单、安全可靠、运行维护较简单、体积小,可移动的一种基于热管型反应堆的核动力装置及使用方法。In view of this, the present invention provides a heat pipe reactor-based nuclear power device and a method for using it, which are simple in structure, safe and reliable, simple in operation and maintenance, small in volume, and movable.
为达此目的,本发明采用以下技术方案:一种基于热管型反应堆的核动力装置,其特征在于:所述设备包括:For this purpose, the present invention adopts the following technical scheme: a nuclear power plant based on a heat pipe reactor, characterized in that: the equipment comprises:
热管型反应堆堆芯;Heat pipe type reactor core;
热管,所述热管一端与热管型反应堆堆芯连接;a heat pipe, one end of the heat pipe is connected to the core of the heat pipe type reactor;
热管换热器,所述热管换热器与热管的另一端连接;a heat pipe heat exchanger, the heat pipe heat exchanger is connected to the other end of the heat pipe;
水蒸汽循环系统,所述水蒸汽循环系统与热管换热器连接。A water vapor circulation system, the water vapor circulation system is connected with the heat pipe heat exchanger.
优选的,所述水蒸汽循环系统包括:Preferably, the water vapor circulation system includes:
透平,透平进气口与热管换热器连接;Turbine, the turbine air inlet is connected to the heat pipe heat exchanger;
发电机,所述发电机转轴与透平转轴连接,透平转轴带动发电机的转轴同步转动;a generator, the rotating shaft of the generator is connected with the rotating shaft of the turbine, and the rotating shaft of the turbine drives the rotating shaft of the generator to rotate synchronously;
循环水泵;Circulating pump;
冷凝器,所述冷凝器进气口与透平出气口连接,冷凝器的进水口与循环水泵连接;a condenser, the air inlet of the condenser is connected with the air outlet of the turbine, and the water inlet of the condenser is connected with the circulating water pump;
给水泵,所述给水泵的进水口与冷凝器的第一出水口连接,给水泵出水口与热管换热器连接。A water supply pump, the water inlet of the water supply pump is connected with the first water outlet of the condenser, and the water outlet of the water supply pump is connected with the heat pipe heat exchanger.
优选的,所述热管型反应堆堆芯为全固态反应堆。Preferably, the core of the heat pipe type reactor is an all-solid-state reactor.
优选的,所述热管型反应堆堆芯的燃料为铀钼合金、二氧化铀、氮化铀和碳化铀其中的一种。Preferably, the fuel of the heat pipe type reactor core is one of uranium-molybdenum alloy, uranium dioxide, uranium nitride and uranium carbide.
优选的,所述热管为10~20000根管子组成的管束。Preferably, the heat pipe is a tube bundle composed of 10 to 20,000 tubes.
优选的,所述热管外径为10mm-100mm。Preferably, the outer diameter of the heat pipe is 10mm-100mm.
优选的,所述热管管束的排列方式为叉排或顺排。Preferably, the arrangement of the heat pipe bundles is a fork row or a tandem row.
优选的,所述热管的工作介质为锂、钠和钾中的一种或多种。Preferably, the working medium of the heat pipe is one or more of lithium, sodium and potassium.
优选的,所述水蒸汽循环系统中的循环介质为亚临界水或超临界水。Preferably, the circulating medium in the water vapor circulation system is subcritical water or supercritical water.
一种基于热管型反应堆的核动力装置的使用方法,其特征在于,该方法包括以下步骤:A method for using a nuclear power plant based on a heat pipe reactor, characterized in that the method comprises the following steps:
a.热管型反应堆堆芯工作产生热能;a. Heat pipe type reactor core works to generate heat energy;
b.热管将热管型反应堆堆芯产生的热能非能动的载入热管换热器中;b. The heat pipe passively loads the thermal energy generated by the core of the heat pipe type reactor into the heat pipe heat exchanger;
c.在热管换热器中,加热流动工质超临界或临界水蒸气;c. In the heat pipe heat exchanger, the supercritical or critical water vapor of the flowing working medium is heated;
c.升温后的水蒸气进入透平做功,透平转轴转动;c. The heated water vapor enters the turbine to do work, and the turbine shaft rotates;
d.透平转轴带动发电机开始工作;d. The turbine shaft drives the generator to start working;
e.在透平中做功后的乏气通过连接管道及冷凝器进气口进入冷凝器中,同时循环水泵通过冷凝器的进水口向冷凝器中泵入冷却水,对进入冷凝器的乏气进行冷却;冷却后的乏气从冷凝器的第一出水口排出,循环冷却水从冷凝器的第二出水口排出;e. The exhausted gas after doing work in the turbine enters the condenser through the connecting pipe and the air inlet of the condenser, and the circulating water pump pumps cooling water into the condenser through the water inlet of the condenser, so that the exhausted gas entering the condenser is not affected. Cooling; the cooled exhaust gas is discharged from the first water outlet of the condenser, and the circulating cooling water is discharged from the second water outlet of the condenser;
f.冷却乏气经过连接管道进入给水泵;f. The cooling exhaust gas enters the feed water pump through the connecting pipeline;
g.给水泵泵出的水沿着连接管道进入热管换热器中,进行加热,并开始新的循环。g. The water pumped by the feed water pump enters the heat pipe heat exchanger along the connecting pipe for heating and starts a new cycle.
本发明的有益效果是:本发明提出基于热管型反应堆的核动力装置的概念,本发明公开的装置具有结构简单、安全可靠、运行维护较简单、体积小,可移动等优势,具体体现在以下方面:The beneficial effects of the present invention are as follows: the present invention proposes the concept of a nuclear power device based on a heat pipe type reactor, and the device disclosed by the present invention has the advantages of simple structure, safety and reliability, simple operation and maintenance, small size, and mobility, etc., which are embodied in the following aspect:
1、该装置利用热管非能动传热作为堆芯热量导出手段,没有现有装置中的回路系统和转动部件,装置结构大大简化,热管型反应堆芯为全固态堆芯,可以做到堆芯免维护,无传统压水堆失流弹棒事故,提高了装置的可靠性与安全性;2、在动力转换装置方面,水蒸汽循环系统中水蒸气状态可为超临界水,相较于压水堆亚临界水蒸气,超临界水可达到更高的温度,装置的循环能力转化效率更高;3、该装置结构简单,体积较小,适用于空间有限的场合,也可随意移动,适应不同的使用场合。1. The device uses passive heat transfer of heat pipes as the means of heat transfer from the core. There is no circuit system and rotating parts in the existing devices, and the structure of the device is greatly simplified. Maintenance, there is no traditional PWR lost-flow bomb accident, which improves the reliability and safety of the device; 2. In the power conversion device, the water vapor state in the water vapor circulation system can be supercritical water, compared with the PWR Subcritical water vapor and supercritical water can reach higher temperatures, and the conversion efficiency of the device's circulation capacity is higher; 3. The device has a simple structure and a small volume, which is suitable for occasions with limited space, and can also be moved at will to adapt to different conditions. Use occasions.
附图说明Description of drawings
图1为本发明的基于热管型反应堆的核动力装置结构示意图;1 is a schematic structural diagram of a nuclear power plant based on a heat pipe reactor of the present invention;
图中:1.热管型反应堆堆芯2.热管3.热管换热器4.水蒸汽循环系统5.透平6.发电机7.循环水泵8.冷凝器9.给水泵10.连接管道。In the figure: 1. Heat
具体实施方式Detailed ways
本领域的普通技术人员将会意识到,这里所述的实施例是为了帮助读者理解本发明的原理,应被理解为本发明的保护范围并不局限于这样的特别陈述和实施例。本领域的普通技术人员可以根据本发明公开的这些技术启示做出各种不脱离本发明实质的其它各种具体变形和组合,这些变形和组合仍然在本发明的保护范围内。Those of ordinary skill in the art will appreciate that the embodiments described herein are intended to assist readers in understanding the principles of the present invention, and it should be understood that the scope of the present invention is not limited to such specific statements and embodiments. Those skilled in the art can make various other specific modifications and combinations without departing from the essence of the present invention according to the technical teachings disclosed in the present invention, and these modifications and combinations still fall within the protection scope of the present invention.
下面结合附图和具体实施例对本发明进行详细说明。The present invention will be described in detail below with reference to the accompanying drawings and specific embodiments.
如图1所示,一种基于热管型反应堆的核动力装置,该装置包括:热管型反应堆堆芯1、热管2、热管换热器3、水蒸汽循环系统4;所述热管2一端与热管型反应堆堆芯1连接,另一端与热管换热器3连接;水蒸汽循环系统4与热管换热器3通过连接管道10连接。As shown in FIG. 1 , a nuclear power plant based on a heat pipe type reactor includes: a heat pipe type reactor core 1, a
热管2将热管型反应堆堆芯1产生的热能非能动的载入热管换热器3中,热管换热器3中吸收热量后加热超临界或者临界水蒸气,加热后的水蒸气进入水蒸汽循环系统4后进行热能到电能的转换。The
优选的,所述水蒸汽循环系统4包括:透平5、发电机6、循环水泵7、冷凝器8和给水泵9;透平5转轴与发电机6的转轴直接连接,透平5转轴转动可带动发电机6转轴同步转动;沿着水蒸气流动的方向,透平5进气口与热管换热器3连接,透平5出气口与冷凝器8的进气口连接,冷凝器8的第一出水口与给水泵9连接,给水泵9的出水口与热管换热器3连接;循环水泵7的出水口与冷凝器8的进水口连接,冷却水通过冷凝器8的第二出水口直接排出。Preferably, the water vapor circulation system 4 includes: a turbine 5, a
上述冷凝器8的进气口定义为与透平5出气口连接进气口,水蒸气通过进气口进去冷凝器8中;冷凝器8的进水口定义为与循环水泵7连接的进水口,冷却水通过进水口进去冷凝器8中;冷凝器8的第一出水口定义为与给水泵9连接的出水口,水蒸气在冷凝器8中冷却后,状态由气体变为液体,通过冷凝器8的第一出水口排出,进入给水泵9中;冷凝器8的第二出水口与进水口连通,用于排出冷却水。The air inlet of the above-mentioned
透平5转轴转动可带动发电机6转轴同步转动,透平将热管换热器3输出的热能转化为机械能,发电机6将机械能转化为电能,提供核动力。The rotation of the rotating shaft of the turbine 5 can drive the rotating shaft of the
优选的,所述热管型反应堆堆芯1为全固态堆芯。Preferably, the heat pipe type reactor core 1 is an all-solid-state core.
优选的,所述热管型反应堆堆芯1的燃料材料为铀钼合金、二氧化铀、氮化铀和碳化铀其中的一种。Preferably, the fuel material of the heat pipe type reactor core 1 is one of uranium-molybdenum alloy, uranium dioxide, uranium nitride and uranium carbide.
优选的,所述热管2由10~20000根管子组成的管束,管束的数量可根据实际应用中需要的动力大小进行调整。Preferably, the
优选的,所述热管2外径为10mm-100mm。Preferably, the outer diameter of the
优选的,所述热管2管束的排列方式为叉排或顺排。Preferably, the arrangement of the tube bundles of the
优选的,所述热管2的工作介质为锂、钠和钾中的一种或多种。Preferably, the working medium of the
如图1所示的一种基于热管型反应堆的核动力装置的使用方法,图1中用小三角箭头表示接管道10中水蒸气及水的流动方向,该使用方法如下:As shown in Fig. 1, a method of using a nuclear power plant based on a heat pipe type reactor is shown. In Fig. 1, a small triangular arrow is used to indicate the flow direction of water vapor and water in the connecting
首先,热管型反应堆堆芯1工作产生热能;热管2将热管型反应堆堆芯1产生的热能非能动的载入热管换热器3中;在热管换热器3中,超临界水蒸气吸收热量进行加热;升温的超临界水蒸气进入透平5做功,透平5转轴转动;透平5转轴带动发电机6开始转.动,发电;在透平5中做功后的超临界水蒸气乏气通过连接管道10进入冷凝器8,同时循_环水泵向冷凝器中泵入冷却水,对进入冷凝器8水蒸气乏气进行冷却,冷却至系统最低循环温度;冷却后的水蒸气从冷凝器8的第一出水口排出,循环冷却水从冷凝器8的第二出水口排出;之后冷却水进入给水泵9,给水泵9泵出的水沿着连接管10进入热管换热器3中,进行加热,并开始新的循环。First, the heat pipe type reactor core 1 works to generate heat energy; the
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010695572.1A CN111785397A (en) | 2020-07-17 | 2020-07-17 | A nuclear power plant based on a heat pipe type reactor and a method of using the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010695572.1A CN111785397A (en) | 2020-07-17 | 2020-07-17 | A nuclear power plant based on a heat pipe type reactor and a method of using the same |
Publications (1)
Publication Number | Publication Date |
---|---|
CN111785397A true CN111785397A (en) | 2020-10-16 |
Family
ID=72763404
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202010695572.1A Pending CN111785397A (en) | 2020-07-17 | 2020-07-17 | A nuclear power plant based on a heat pipe type reactor and a method of using the same |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN111785397A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114267469A (en) * | 2021-12-15 | 2022-04-01 | 上海交通大学 | Movable reactor power supply |
CN115171924A (en) * | 2022-07-08 | 2022-10-11 | 上海交通大学 | Lead bismuth cooling solid reactor core system |
CN116072318A (en) * | 2023-01-18 | 2023-05-05 | 哈尔滨工程大学 | Multi-loop Brayton cycle energy conversion system and operation method for heat pipe stack |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN203931515U (en) * | 2014-03-20 | 2014-11-05 | 中国核动力研究设计院 | Based on actively adding of 177 reactor cores non-active nuclear steam supply system and nuclear power station thereof |
CN111105883A (en) * | 2019-12-31 | 2020-05-05 | 中国核动力研究设计院 | Heat pipe reactor system with supercritical carbon dioxide as thermoelectric conversion working medium |
CN111128410A (en) * | 2019-12-31 | 2020-05-08 | 中国核动力研究设计院 | Heat pipe reactor system and energy conversion mode thereof |
CN111120100A (en) * | 2019-12-31 | 2020-05-08 | 中国核动力研究设计院 | Heat pipe reactor adopting open type gas Brayton cycle and operation method thereof |
CN111128415A (en) * | 2019-12-31 | 2020-05-08 | 中国核动力研究设计院 | Heat pipe reactor adopting closed gas Brayton cycle and operation method thereof |
-
2020
- 2020-07-17 CN CN202010695572.1A patent/CN111785397A/en active Pending
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN203931515U (en) * | 2014-03-20 | 2014-11-05 | 中国核动力研究设计院 | Based on actively adding of 177 reactor cores non-active nuclear steam supply system and nuclear power station thereof |
CN111105883A (en) * | 2019-12-31 | 2020-05-05 | 中国核动力研究设计院 | Heat pipe reactor system with supercritical carbon dioxide as thermoelectric conversion working medium |
CN111128410A (en) * | 2019-12-31 | 2020-05-08 | 中国核动力研究设计院 | Heat pipe reactor system and energy conversion mode thereof |
CN111120100A (en) * | 2019-12-31 | 2020-05-08 | 中国核动力研究设计院 | Heat pipe reactor adopting open type gas Brayton cycle and operation method thereof |
CN111128415A (en) * | 2019-12-31 | 2020-05-08 | 中国核动力研究设计院 | Heat pipe reactor adopting closed gas Brayton cycle and operation method thereof |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114267469A (en) * | 2021-12-15 | 2022-04-01 | 上海交通大学 | Movable reactor power supply |
CN115171924A (en) * | 2022-07-08 | 2022-10-11 | 上海交通大学 | Lead bismuth cooling solid reactor core system |
CN116072318A (en) * | 2023-01-18 | 2023-05-05 | 哈尔滨工程大学 | Multi-loop Brayton cycle energy conversion system and operation method for heat pipe stack |
CN116072318B (en) * | 2023-01-18 | 2024-01-23 | 哈尔滨工程大学 | Multi-loop brayton cycle energy conversion system for heat pipe stacks and method of operation |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN111724917A (en) | A nuclear power plant with heat pipe reactor coupled with supercritical CO2 cycle and method of using the same | |
CN102446564B (en) | Passive natural-circulation lead bismuth heat exchange device and method for discharging heat out of reactor core | |
US9111652B2 (en) | High-temperature gas-cooled reactor steam generating system and method | |
CN113756892B (en) | Modularized multipurpose small-sized villaumite cooling high-temperature reactor energy system | |
CN101630931B (en) | Combined power-generation device of nuclear power and alkali metal thermoelectricity conversion device | |
JP2012145092A (en) | Centrifugal blower (compressor) for compressing supercritical carbon dioxide (co2), supercritical co2 gas turbine, and supercritical co2 gas turbine electric power generation technique including electric power generator | |
CN209704778U (en) | A kind of tower-type solar thermal power generating system | |
CN205047262U (en) | Super supercritical carbon dioxide power generation system based on secondary reflection spotlight heat absorption technique | |
CN206539381U (en) | A kind of supercritical carbon dioxide cycle generating system based on combustion gas and solar heat | |
CN104992730A (en) | Molten-salt nuclear reactor and airborne power system based on same | |
CN110725778A (en) | Solar energy and wind energy combined energy storage power generation system and method | |
CN105976873A (en) | Internal part cooling power generation system for future tokamak fusion reactor | |
CN108678915A (en) | A kind of nuclear energy and tower type solar photo-thermal combined generating system and electricity-generating method | |
CN108301927B (en) | Solar high temperature heat collection and storage gas turbine power generation device | |
CN111785397A (en) | A nuclear power plant based on a heat pipe type reactor and a method of using the same | |
CN102606340B (en) | Power generation system for driving Stirling engine by using heat of spent fuel | |
CN201916139U (en) | Tower type solar cycle thermal power generation system | |
CN108643984A (en) | A kind of spentnuclear fuel pond passive cooling system based on organic rankie cycle | |
CN104392750B (en) | Low temperature nuclear reactor and the onboard power systems based on low temperature nuclear reactor | |
CN209875395U (en) | Trough type solar thermal power generation system | |
CN115183476A (en) | Ultra-supercritical solar tower type water working medium heat absorber | |
CN112951464B (en) | Space nuclear power system adopting liquid metal magnetohydrodynamic power generation heat exchanger and power generation method | |
CN106121942A (en) | A kind of supercritical solar power station using liquid lead bismuth heat transfer and heat accumulation | |
CN103310856B (en) | A kind of presurized water reactor electricity generation system with inherent safety | |
CN108799025A (en) | A kind of nuclear energy and groove type solar photo-thermal combined generating system and electricity-generating method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20201016 |