CN111781088B - Method for detecting hydrogen content in solid metal - Google Patents
Method for detecting hydrogen content in solid metal Download PDFInfo
- Publication number
- CN111781088B CN111781088B CN202010672082.XA CN202010672082A CN111781088B CN 111781088 B CN111781088 B CN 111781088B CN 202010672082 A CN202010672082 A CN 202010672082A CN 111781088 B CN111781088 B CN 111781088B
- Authority
- CN
- China
- Prior art keywords
- hydrogen
- solid metal
- hydrogen evolution
- gas
- chamber
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000001257 hydrogen Substances 0.000 title claims abstract description 473
- 229910052739 hydrogen Inorganic materials 0.000 title claims abstract description 473
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 title claims abstract description 422
- 229910052751 metal Inorganic materials 0.000 title claims abstract description 115
- 239000002184 metal Substances 0.000 title claims abstract description 115
- 239000007787 solid Substances 0.000 title claims abstract description 101
- 238000000034 method Methods 0.000 title claims abstract description 58
- 238000001514 detection method Methods 0.000 claims abstract description 79
- 239000012159 carrier gas Substances 0.000 claims abstract description 74
- 238000010438 heat treatment Methods 0.000 claims abstract description 61
- 150000002431 hydrogen Chemical class 0.000 claims abstract description 45
- 125000004435 hydrogen atom Chemical group [H]* 0.000 claims abstract description 5
- 238000001816 cooling Methods 0.000 claims description 24
- 238000012545 processing Methods 0.000 claims description 22
- 238000010926 purge Methods 0.000 claims description 12
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 10
- 239000011261 inert gas Substances 0.000 claims description 8
- 229910052757 nitrogen Inorganic materials 0.000 claims description 5
- 238000000926 separation method Methods 0.000 abstract 3
- 239000007789 gas Substances 0.000 description 222
- 238000012360 testing method Methods 0.000 description 41
- 238000007789 sealing Methods 0.000 description 11
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 10
- 238000010586 diagram Methods 0.000 description 10
- 150000002739 metals Chemical class 0.000 description 8
- 238000005259 measurement Methods 0.000 description 7
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 6
- 229910002092 carbon dioxide Inorganic materials 0.000 description 6
- 239000001569 carbon dioxide Substances 0.000 description 6
- 239000000463 material Substances 0.000 description 6
- 229910000831 Steel Inorganic materials 0.000 description 5
- 229910052786 argon Inorganic materials 0.000 description 5
- 239000010959 steel Substances 0.000 description 5
- 238000006243 chemical reaction Methods 0.000 description 4
- 230000006837 decompression Effects 0.000 description 4
- 238000000605 extraction Methods 0.000 description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 4
- 238000009434 installation Methods 0.000 description 3
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 description 3
- 229910052753 mercury Inorganic materials 0.000 description 3
- 238000001556 precipitation Methods 0.000 description 3
- 230000002265 prevention Effects 0.000 description 3
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 2
- 238000004891 communication Methods 0.000 description 2
- 239000000306 component Substances 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000004817 gas chromatography Methods 0.000 description 2
- 239000012535 impurity Substances 0.000 description 2
- 238000000746 purification Methods 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 238000003466 welding Methods 0.000 description 2
- 229910000838 Al alloy Inorganic materials 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 238000003723 Smelting Methods 0.000 description 1
- 229910001069 Ti alloy Inorganic materials 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 239000008358 core component Substances 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 238000006356 dehydrogenation reaction Methods 0.000 description 1
- 238000011065 in-situ storage Methods 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 229910001338 liquidmetal Inorganic materials 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
- GALOTNBSUVEISR-UHFFFAOYSA-N molybdenum;silicon Chemical compound [Mo]#[Si] GALOTNBSUVEISR-UHFFFAOYSA-N 0.000 description 1
- 239000003921 oil Substances 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 238000005086 pumping Methods 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 230000006641 stabilisation Effects 0.000 description 1
- 238000011105 stabilization Methods 0.000 description 1
- -1 steel Chemical class 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 238000000357 thermal conductivity detection Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N7/00—Analysing materials by measuring the pressure or volume of a gas or vapour
- G01N7/14—Analysing materials by measuring the pressure or volume of a gas or vapour by allowing the material to emit a gas or vapour, e.g. water vapour, and measuring a pressure or volume difference
- G01N7/16—Analysing materials by measuring the pressure or volume of a gas or vapour by allowing the material to emit a gas or vapour, e.g. water vapour, and measuring a pressure or volume difference by heating the material
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/20—Metals
- G01N33/202—Constituents thereof
- G01N33/2022—Non-metallic constituents
- G01N33/2025—Gaseous constituents
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Engineering & Computer Science (AREA)
- Food Science & Technology (AREA)
- Medicinal Chemistry (AREA)
- Sampling And Sample Adjustment (AREA)
- Investigating And Analyzing Materials By Characteristic Methods (AREA)
Abstract
Description
技术领域technical field
本发明涉及物质含量检测技术领域,具体涉及一种固态金属中氢含量检测方法,诸如钢块、铝块、金属焊接接头中氢含量的检测方法。The invention relates to the technical field of substance content detection, in particular to a method for detecting hydrogen content in solid metals, such as a method for detecting hydrogen content in steel blocks, aluminum blocks, and metal welded joints.
背景技术Background technique
钢铁、铝合金、钛合金等金属中的氢通常被认为是有害元素。钢铁冶炼或热加工后,残留的氢将影响材料的力学性能和化学性能,尤其是高强度结构钢,残余氢产生的氢脆直接危害到构件的结构安全,钢铁焊接接头中扩散氢含量过高会使容器诱发氢致裂纹。扩散氢含量的检测可用于对焊接材料等级进行分类,同时可参考用于设计合理的焊接构件脱氢热处理工艺,以预防承压类特种设备使用过程中裂纹产生。因此,固态金属中氢含量的检测对确保金属原材料质量和热加工工艺稳定性具有重要意义。Hydrogen in metals such as steel, aluminum alloys, and titanium alloys is generally considered a harmful element. After iron and steel smelting or thermal processing, residual hydrogen will affect the mechanical and chemical properties of materials, especially high-strength structural steels. The hydrogen embrittlement produced by residual hydrogen will directly endanger the structural safety of components, and the content of diffused hydrogen in steel welded joints is too high Can induce hydrogen-induced cracking in containers. The detection of diffusible hydrogen content can be used to classify the grade of welding materials, and at the same time, it can refer to the dehydrogenation heat treatment process for designing reasonable welding components to prevent cracks during the use of pressure-bearing special equipment. Therefore, the detection of hydrogen content in solid metal is of great significance to ensure the quality of metal raw materials and the stability of thermal processing processes.
常用固态金属中氢含量检测方法主要有水银法、气相色谱法和载气热提取法。前两种方法常用于扩散氢含量的检测,水银法通过多天收集浸入到水银中焊接接头析出的氢对总扩散氢含量进行评定,该方法测氢时间长,效率低下,存在安全隐患。气相色谱法针对一定温度下焊接接头加热析出的氢含量,用气相色谱仪进行测试,结果精度高,测试范围宽,但是由于提取氢的温度相对较低导致其测试时间较长,此外该方法测氢操作过程复杂且成本相对较高。目前应用较多的固态金属中氢含量检测方法是载气热提取法,检测人员通过改变不同的氢析出加热温度,可测试焊接接头中扩散氢含量,也可测试金属中包含分子氢和扩散氢在内的总氢含量。载气热提取法通过惰性气体将析出的氢带入到热导池或红外检测模块中进行测试,由于可使用较高的氢提取温度,可以在数十分钟内完成一次样品测试,但测试前需要将近1个小时用于热导检验池的稳定,总体效率相对低下。此外,由于热导检测池和红外检测模块价格都较昂贵,增加了该方法测氢成本,测氢装置结构也较复杂。The commonly used detection methods for hydrogen content in solid metals mainly include mercury method, gas chromatography and carrier gas thermal extraction method. The first two methods are commonly used in the detection of diffusible hydrogen content. The mercury method evaluates the total diffusible hydrogen content by collecting hydrogen precipitated from welded joints immersed in mercury for many days. This method takes a long time to measure hydrogen, is inefficient, and has potential safety hazards. Gas chromatography is used to test the hydrogen content of the welded joints heated and precipitated at a certain temperature. The gas chromatograph is used to test the results with high accuracy and wide test range. Hydrogen operation is complex and relatively expensive. At present, the most widely used detection method of hydrogen content in solid metal is carrier gas thermal extraction method. By changing different hydrogen precipitation heating temperatures, inspectors can test the content of diffused hydrogen in welded joints, and can also test the content of molecular hydrogen and diffused hydrogen in metals. total hydrogen content in it. The carrier gas thermal extraction method uses an inert gas to bring the precipitated hydrogen into the thermal conductivity cell or infrared detection module for testing. Due to the high hydrogen extraction temperature, a sample test can be completed within tens of minutes, but before the test It takes nearly 1 hour for the stabilization of the thermal conductivity test cell, and the overall efficiency is relatively low. In addition, since the thermal conductivity detection cell and the infrared detection module are both expensive, the cost of hydrogen measurement by this method is increased, and the structure of the hydrogen measurement device is also relatively complicated.
以功能陶瓷为核心元件制备的氢气传感器是近年来发展较快的一类高温传感器,该传感器已逐渐应用于液态金属、熔盐等高温介质中氢含量检测。根据材料种类的不同,各种材料析出氢气时的高温温度不同。对于固态金属中氢含量检测,若采用高温氢气传感器,则可直接对高温(一般为300-500℃或更高温度)下析出的氢进行检测,而无需对氢气冷却和二次收集。相对于热导池、气象色谱仪和红外元素检测模块,采用高温氢气传感器进行固态金属中氢含量检测有望使测氢装置更小巧便携、测氢效率更高、相对成本更低廉。因此,本发明基于高温原位测氢技术,提出一种新型检测方法,将高温氢气传感器应用于固态金属中氢含量检测,具有创新性和重要意义。The hydrogen sensor prepared with functional ceramics as the core component is a type of high-temperature sensor that has developed rapidly in recent years. This sensor has been gradually applied to the detection of hydrogen content in high-temperature media such as liquid metal and molten salt. Depending on the type of material, the high temperature at which hydrogen gas is precipitated is different for each material. For the detection of hydrogen content in solid metal, if a high-temperature hydrogen sensor is used, the hydrogen precipitated at high temperature (generally 300-500°C or higher) can be directly detected without cooling and secondary collection of hydrogen. Compared with thermal conductivity cells, gas chromatographs and infrared element detection modules, the use of high-temperature hydrogen sensors for hydrogen content detection in solid metals is expected to make hydrogen measurement devices smaller and more portable, with higher hydrogen measurement efficiency and relatively lower cost. Therefore, the present invention proposes a new detection method based on high-temperature in-situ hydrogen measurement technology, and applies a high-temperature hydrogen sensor to the detection of hydrogen content in solid metals, which is innovative and significant.
发明内容Contents of the invention
本发明针对现有技术的不足,提供了一种固态金属中氢含量检测方法,该测氢方法采用高温氢气传感器直接安装于析氢室内,在固态金属样品析出氢的同时进行氢含量在线检测,无需二次收集氢气,相比传统测氢方法,该方法更有利于提高氢含量检测速度及检测数据的精度。Aiming at the deficiencies of the prior art, the present invention provides a method for detecting hydrogen content in solid metal. The hydrogen measuring method adopts a high-temperature hydrogen sensor directly installed in the hydrogen evolution chamber, and detects the hydrogen content on-line while the solid metal sample is releasing hydrogen. Secondary collection of hydrogen, compared with traditional hydrogen measurement methods, this method is more conducive to improving the detection speed of hydrogen content and the accuracy of detection data.
为至少解决上述技术问题之一,本发明采取的技术方案为:For at least solving one of the above-mentioned technical problems, the technical scheme that the present invention takes is:
一种固态金属中氢含量检测方法,其特征在于,包括以下步骤:A method for detecting hydrogen content in solid metal, characterized in that it comprises the following steps:
S1:将固态金属放入析氢室内;S1: Put solid metal into the hydrogen evolution chamber;
S2:对析氢室抽真空后,向析氢室内通入载气将析氢室置换为载气气氛,随后以一定流速继续通入载气;S2: After evacuating the hydrogen evolution chamber, feed carrier gas into the hydrogen evolution chamber to replace the hydrogen evolution chamber with a carrier gas atmosphere, and then continue to feed the carrier gas at a certain flow rate;
S3:对析氢室进行加热使固态金属析出氢,通过析氢室内的高温氢气传感器连续获取析氢室内的实时氢浓度C1(t);S3: Heating the hydrogen evolution chamber to precipitate hydrogen from the solid metal, and continuously obtain the real-time hydrogen concentration C 1 (t) in the hydrogen evolution chamber through the high-temperature hydrogen sensor in the hydrogen evolution chamber;
S4:根据所述实时氢浓度C1(t)和载气的流动速度v1,在析氢时间内进行积分处理得到固态金属中氢含量,包括:开始析氢时间为t1,结束析氢时间为t2,则在析氢过程中析出的氢含量q1为 S4: According to the real-time hydrogen concentration C 1 (t) and the flow velocity v 1 of the carrier gas, perform integral processing within the hydrogen evolution time to obtain the hydrogen content in the solid metal, including: the start hydrogen evolution time is t 1 , and the end hydrogen evolution time is t 2 , then the hydrogen content q 1 precipitated during the hydrogen evolution process is
进一步的,步骤S3中:所述高温氢气传感器获取数据的频率不低于10次/s。Further, in step S3: the frequency of acquiring data by the high-temperature hydrogen sensor is not less than 10 times/s.
进一步的,在进行步骤S1前还包括不放置固态金属的空白检测步骤,包括:Further, before performing step S1, a blank detection step without placing solid metal is also included, including:
S01:对析氢室抽真空后,向析氢室内通入载气将析氢室置换为载气气氛,随后以一定流速继续通入载气;S01: After evacuating the hydrogen evolution chamber, feed carrier gas into the hydrogen evolution chamber to replace the hydrogen evolution chamber with a carrier gas atmosphere, and then continue to feed the carrier gas at a certain flow rate;
S02:对析氢室进行加热达到氢析出温度,通过析氢室内的高温氢气传感器连续获取析氢室内的实时氢浓度C0(t);S02: Heating the hydrogen evolution chamber to reach the hydrogen evolution temperature, and continuously obtaining the real-time hydrogen concentration C 0 (t) in the hydrogen evolution chamber through the high-temperature hydrogen sensor in the hydrogen evolution chamber;
S03:根据所述实时氢浓度C0(t)和载气的流动速度v0,在析氢时间内进行积分处理得到析氢室中的氢含量,包括:开始析氢时间为t3,结束析氢时间为t4,则在析氢过程中析出的氢含量q0为即为空白检测时的氢含量。S03: According to the real-time hydrogen concentration C 0 (t) and the flow velocity v 0 of the carrier gas, carry out integral processing within the hydrogen evolution time to obtain the hydrogen content in the hydrogen evolution chamber, including: the start hydrogen evolution time is t 3 , and the end hydrogen evolution time is t 4 , then the hydrogen content q 0 precipitated during the hydrogen evolution process is That is, the hydrogen content in the blank detection.
进一步的,还包括步骤S5:将固态金属氢含量检测得到的氢含量q1和空白检测得到的氢含量q0求差,得到固态金属中的实际氢含量。Further, step S5 is also included: calculating the difference between the hydrogen content q 1 obtained by the solid metal hydrogen content detection and the hydrogen content q 0 obtained by the blank detection, to obtain the actual hydrogen content in the solid metal.
进一步的,根据所述固态金属中的实际氢含量与固态金属的质量,得到每100g固态金属中氢含量,作为该固态金属中氢含量的判定指标。Further, according to the actual hydrogen content in the solid metal and the mass of the solid metal, the hydrogen content in every 100 g of the solid metal is obtained as an index for judging the hydrogen content in the solid metal.
进一步的,检测结束后通入载气对析氢室进行吹扫冷却,同时通过冷却元件对析氢室进行冷却处理。Further, after the detection is finished, the carrier gas is introduced to purge and cool the hydrogen evolution chamber, and at the same time, the hydrogen evolution chamber is cooled by the cooling element.
进一步的,所述析氢室设有用于固态金属析氢的加热区以及用于加热前对固态金属吹扫的样品预放区。Further, the hydrogen evolution chamber is provided with a heating area for hydrogen evolution of solid metal and a sample pre-release area for purging solid metal before heating.
进一步的,在所述加热区设有所述高温氢气传感器和温度传感器。Further, the high-temperature hydrogen sensor and temperature sensor are provided in the heating zone.
进一步的,在所述加热区的外部设有加热元件和所述冷却元件,所述加热元件用于对析氢室加热,使固态金属中氢含量在高温下析出,所述冷却元件用于使析氢室快速降温。Further, a heating element and the cooling element are provided outside the heating zone, the heating element is used to heat the hydrogen evolution chamber, so that the hydrogen content in the solid metal is precipitated at a high temperature, and the cooling element is used to make the hydrogen evolution chamber The room cools down quickly.
进一步的,所述载气包括氮气或惰性气体。Further, the carrier gas includes nitrogen or inert gas.
与现有技术相比,本发明的有益效果在于:Compared with prior art, the beneficial effect of the present invention is:
(1)采用能在高温下直接使用的高温氢气传感器为测氢元件,使固态金属中氢的析出与检测同步进行,无需收集析出的氢气之后再进行氢含量检测,该设计方案使装置更便携简易;(1) The high-temperature hydrogen sensor that can be used directly at high temperature is used as the hydrogen measuring element, so that the precipitation and detection of hydrogen in solid metal can be carried out simultaneously, and there is no need to collect the precipitated hydrogen and then detect the hydrogen content. This design scheme makes the device more portable simple;
(2)采用筒体上开设筒体分支的结构形式,为析氢室设置样品预放区和加热区,加热析氢前待测金属样品暂放于样品预放区被载气充分吹扫,可极大减弱样品表面吸附气体对氢含量检测结果的干扰;(2) Adopt the structural form of opening the cylinder branch on the cylinder, set the sample pre-release area and heating area for the hydrogen evolution chamber, and the metal sample to be tested is temporarily placed in the sample pre-release area before heating the hydrogen evolution and fully purged by the carrier gas, which can be extremely efficient Greatly weaken the interference of gas adsorbed on the sample surface on the detection results of hydrogen content;
(3)冷却元件可给析氢室快速降温,加快样品分析时间,提高测试效率;(3) The cooling element can quickly cool down the hydrogen evolution chamber, speed up the sample analysis time, and improve the test efficiency;
(4)通过增加空白测试,减小了检测装置自身因素对金属氢含量检测准确性的影响,提高了数据的检测精度;(4) By adding a blank test, the influence of the detection device's own factors on the detection accuracy of the metal hydrogen content is reduced, and the detection accuracy of the data is improved;
(5)供气装置既可为固态金属样品氢含量检测时提供载气,也可为检测装置中高温氢气传感器标定时提供含氢标定气,供气流程与测试流程匹配,自动化程度高;(5) The gas supply device can not only provide carrier gas for the detection of hydrogen content in solid metal samples, but also provide hydrogen-containing calibration gas for calibration of the high-temperature hydrogen sensor in the detection device. The gas supply process matches the test process and has a high degree of automation;
(6)可提供高氢浓度标定气或低氢浓度标定气,满足不同氢浓度的标定需求,实现对高温氢气传感器的标定,避免传感器自身因素对金属氢含量检测准确性的影响,提高了数据的检测精度;(6) High hydrogen concentration calibration gas or low hydrogen concentration calibration gas can be provided to meet the calibration requirements of different hydrogen concentrations, realize the calibration of high temperature hydrogen sensors, avoid the influence of the sensor's own factors on the detection accuracy of metal hydrogen content, and improve the data detection accuracy;
(7)通过选择大流量气体流量控制器和小流量气体流量控制器,可满足进入析氢室不同气体流量的要求,提高气体流量控制准确性,进一步提高标定过程和固态金属氢含量检测数据的准确性。(7) By selecting a large-flow gas flow controller and a small-flow gas flow controller, it can meet the requirements of different gas flow rates entering the hydrogen evolution chamber, improve the accuracy of gas flow control, and further improve the accuracy of the calibration process and the detection data of solid metal hydrogen content sex.
附图说明Description of drawings
图1为本发明检测装置结构框图。Fig. 1 is a structural block diagram of the detection device of the present invention.
图2为本发明析氢室结构示意图。Fig. 2 is a schematic diagram of the structure of the hydrogen evolution chamber of the present invention.
图3为本发明固态金属样品放置示意图。Fig. 3 is a schematic diagram of placing a solid metal sample in the present invention.
图4为本发明氢含量空白测试检测流程图。Fig. 4 is a flow chart of the hydrogen content blank test of the present invention.
图5为本发明固态金属氢含量检测流程图。Fig. 5 is a flow chart of the detection of solid metal hydrogen content in the present invention.
图6为氢浓度-时间分布曲线图。Fig. 6 is a hydrogen concentration-time distribution curve.
图7为本发明一个实施例的供气装置结构示意图。Fig. 7 is a schematic structural diagram of an air supply device according to an embodiment of the present invention.
图8为本发明一个实施例的供气装置中控制模块的控制原理框图。Fig. 8 is a block diagram of the control principle of the control module in the gas supply device according to an embodiment of the present invention.
上述诸图中:1-筒体;2-第一筒体端盖;3-第二筒体端盖;4-筒体分支端盖;5-温度传感器;6-高温氢气传感器;7-固态金属样品;8-加热元件;9-冷却元件;100-供气单元;101-样品预放区;102-加热区;103-筒体分支;104-推杆;11-加热区气体入口;12-加热区气体出口;13-筒体密封元件一;14-筒体密封元件二;15-样品预放区气体入口;16-筒体分支密封元件;17-样品推杆通道;18-温度传感器传感元件;19-高温氢气传感器传感元件;20-真空泵;21-氢浓度-时间曲线;22-曲线与时间坐标轴围成的几何区域面积;231-载气气源;232-高氢浓度标定气气源;233-低氢浓度标定气气源;241-第一减压阀;242-第二减压阀;243-第三减压阀;251-载气电磁阀;252-第一含氢标定气电磁阀;253-第二含氢标定气电磁阀;261-第一气源压力表;262-第二气源压力表;271-除水蒸气单元;272-除二氧化碳单元;281-第一气体流量控制器;282-第一气体电磁阀;291-大流量气体电磁阀;292-大流量气体流量控制器;293-小流量气体电磁阀;294-小流量气体流量控制器;30-析氢室压力表;31-处理器;32-信号转换模块;33-开关量输入输出模块;34-模拟量输入模块;35-出气电磁阀;36-析氢室。In the above figures: 1-Cylinder body; 2-First cylinder end cap; 3-Second cylinder end cap; 4-Cylinder branch end cap; 5-Temperature sensor; 6-High temperature hydrogen sensor; 7-Solid state Metal sample; 8-heating element; 9-cooling element; 100-gas supply unit; 101-sample pre-release area; 102-heating area; 103-cylinder branch; 104-push rod; -gas outlet of heating zone; 13-cylinder sealing element one; 14-cylinder sealing element two; 15-gas inlet of sample pre-release area; 16-cylinder branch sealing element; 17-sample push rod channel; 18-temperature sensor Sensing element; 19-high temperature hydrogen sensor sensing element; 20-vacuum pump; 21-hydrogen concentration-time curve; 22-geometric area surrounded by curve and time axis; 231-carrier gas source; 232-high hydrogen Concentration calibration gas source; 233-low hydrogen concentration calibration gas source; 241-first pressure reducing valve; 242-second pressure reducing valve; 243-third pressure reducing valve; 251-carrier gas solenoid valve; 252-the first 1. Hydrogen-containing calibration gas solenoid valve; 253-second hydrogen-containing calibration gas solenoid valve; 261-first gas source pressure gauge; 262-second gas source pressure gauge; 271-water vapor removal unit; 272-carbon dioxide removal unit; 281-First gas flow controller; 282-First gas solenoid valve; 291-Large flow gas solenoid valve; 292-Large flow gas flow controller; 293-Small flow gas solenoid valve; 294-Small flow gas flow controller 30-hydrogen evolution chamber pressure gauge; 31-processor; 32-signal conversion module; 33-switch input and output module; 34-analog input module; 35-outlet solenoid valve; 36-hydrogen evolution chamber.
具体实施方式Detailed ways
为了使本领域技术人员更好地理解本发明的技术方案,下面结合具体实施例对本发明作进一步的详细说明。下面描述的实施例是示例性的,仅用于解释本发明,而不能理解为对本发明的限制。实施例中未注明具体技术或条件的,按照本领域内的文献所描述的技术或条件或者按照产品说明书进行。In order to enable those skilled in the art to better understand the technical solutions of the present invention, the present invention will be further described in detail below in conjunction with specific examples. The embodiments described below are exemplary only for explaining the present invention and should not be construed as limiting the present invention. If no specific technique or condition is indicated in the examples, it shall be carried out according to the technique or condition described in the literature in this field or according to the product specification.
实施例1:根据本发明的该实施例,提供了一种固态金属中氢含量检测装置,图1为本发明检测装置结构框图,如图1所示,该装置主要包括:供气控制单元、供气单元、析氢室、信号采集单元、温度控制单元和控制处理系统。Embodiment 1: According to this embodiment of the present invention, a kind of detection device of hydrogen content in solid metal is provided, and Fig. 1 is the structural block diagram of detection device of the present invention, as shown in Fig. 1, this device mainly comprises: gas supply control unit, Gas supply unit, hydrogen evolution chamber, signal acquisition unit, temperature control unit and control processing system.
测试时,固体金属样品置于析氢室内,供气单元与析氢室连接,用于给析氢室提供加热前对固态金属样品进行吹扫和析氢过程中作为承载氢气载体的载气。供气控制单元和供气单元共同组成供气装置,供气控制单元与供气单元相连,实现对供气单元的控制,具体地,供气控制单元用于控制供气单元中相关阀门的通断,对气体流量控制元件进行流量设置,并获取供气单元中气体压力信号。During the test, the solid metal sample is placed in the hydrogen evolution chamber, and the gas supply unit is connected to the hydrogen evolution chamber to provide the hydrogen evolution chamber with a carrier gas for purging the solid metal sample before heating and serving as a hydrogen carrier during the hydrogen evolution process. The air supply control unit and the air supply unit together form an air supply device, and the air supply control unit is connected with the air supply unit to realize the control of the air supply unit. Specifically, the air supply control unit is used to control the flow of relevant valves in the air supply unit. Set the flow rate of the gas flow control element and obtain the gas pressure signal in the gas supply unit.
在本发明的该实施例中,所述供气装置(供气控制单元和供气单元)的具体种类不受特别限制,只要能实现供气即可。In this embodiment of the present invention, the specific type of the air supply device (the air supply control unit and the air supply unit) is not particularly limited, as long as the air supply can be realized.
根据本发明的该实施例,所述载气应选择不与氢气和固态金属发生反应的氮气或惰性气体。According to this embodiment of the present invention, the carrier gas should be nitrogen or an inert gas that does not react with hydrogen and solid metal.
可以理解的是,本发明所述高温氢气传感器和温度传感器的传感元件设置于析氢室内部,具体为析氢室的加热区内。It can be understood that the high-temperature hydrogen sensor and the sensing element of the temperature sensor in the present invention are arranged inside the hydrogen evolution chamber, specifically in the heating area of the hydrogen evolution chamber.
所述信号采集单元分别与高温氢气传感器和温度传感器相连,用于采集高温氢气传感器的电信号数据和温度传感器的电信号数据。The signal acquisition unit is respectively connected with the high-temperature hydrogen sensor and the temperature sensor, and is used for collecting the electrical signal data of the high-temperature hydrogen sensor and the electrical signal data of the temperature sensor.
根据本发明的该实施例,所述信号采集单元的具体种类不受特别限制,只要能实现信号采集即可,例如常用的信号采集仪或相关的信号采集传感器等。According to this embodiment of the present invention, the specific type of the signal acquisition unit is not particularly limited, as long as it can realize signal acquisition, such as a commonly used signal acquisition instrument or a related signal acquisition sensor.
所述温度控制单元用于控制析氢室的内部温度,由加热元件和冷却元件组成,加热元件可控制析氢室内部升温过程,以间接控制固体金属样品中氢的析出过程,冷却元件可用于控制析氢室内部降温过程,实现一个样品测试结束后为下一个样品测试做准备,提高测试效率。The temperature control unit is used to control the internal temperature of the hydrogen evolution chamber, and is composed of a heating element and a cooling element. The heating element can control the temperature rise process inside the hydrogen evolution chamber to indirectly control the hydrogen evolution process in the solid metal sample, and the cooling element can be used to control the hydrogen evolution. The cooling process inside the chamber realizes the preparation for the next sample test after one sample test is completed, and improves the test efficiency.
根据本发明的该实施例,所述加热元件可为电阻丝、加热碳棒、硅钼棒、微波加热元件或红外加热元件等,或其他类型的加热装置;所述冷却元件可以为风机、冷却机或其他冷却用设备。在该实施例中,温度控制方案优选“比例-积分-微分”控制方案,该方案为常规技术,此处不进行具体描述。According to this embodiment of the present invention, the heating element can be a resistance wire, a heating carbon rod, a silicon molybdenum rod, a microwave heating element or an infrared heating element, etc., or other types of heating devices; the cooling element can be a fan, a cooling machine or other cooling equipment. In this embodiment, the temperature control scheme is preferably a "proportional-integral-derivative" control scheme, which is a conventional technology and will not be specifically described here.
在本发明的该实施例中,所述控制处理系统的具体类型不受限制,可以为PLC、工业控制计算机、个人计算机或嵌入式处理器、或其他可以实现相同功能的系统,该实施例优选为PLC控制处理系统。In this embodiment of the present invention, the specific type of the control processing system is not limited, it can be PLC, industrial control computer, personal computer or embedded processor, or other systems that can realize the same function, and this embodiment is preferably For the PLC control processing system.
更具体的,所述控制处理系统包括电气控制单元、信号获取单元和处理单元。所述控制处理系统的电气控制单元分别与所述供气控制单元和温度控制单元相连,所述信号获取单元与所述信号采集单元相连,用于对相关单元进行控制和数据获取,具体的:控制供气控制单元中相关电磁阀的通断,实现气体流速及通过流量大小的控制,进而控制供气过程;通过温度传感器检测的数据,电气控制单元精准控制温度控制单元实现对析氢室内温度的控制;信号获取单元通过串口或并口等通讯方式与信号采集单元通讯,以间接获取数字化的高温氢气传感器和温度传感器的检测数据;所述处理单元分别与所述电气控制单元和信号获取单元相连,对采集到的载气流动速度和氢浓度数据进行分析,计算出固态金属中氢含量,更具体的:根据连续获取到的析氢室内的实时氢浓度C(t)和载气流动速度v在一定的析氢时间内进行积分处理得到固态金属中氢含量,包括:开始析氢时间为t开始,结束析氢时间为t结束,则在析氢过程中固态金属析出的氢含量为 More specifically, the control processing system includes an electrical control unit, a signal acquisition unit and a processing unit. The electrical control unit of the control processing system is respectively connected to the air supply control unit and the temperature control unit, and the signal acquisition unit is connected to the signal acquisition unit for controlling and data acquisition of related units, specifically: Control the on-off of the relevant solenoid valve in the gas supply control unit to realize the control of the gas flow rate and the flow rate, and then control the gas supply process; through the data detected by the temperature sensor, the electrical control unit precisely controls the temperature control unit to realize the temperature in the hydrogen evolution chamber. control; the signal acquisition unit communicates with the signal acquisition unit through a communication mode such as a serial port or a parallel port, so as to indirectly obtain the detection data of the digital high-temperature hydrogen sensor and the temperature sensor; the processing unit is connected with the electrical control unit and the signal acquisition unit respectively, Analyze the collected carrier gas flow velocity and hydrogen concentration data, and calculate the hydrogen content in the solid metal. More specifically: according to the continuously acquired real-time hydrogen concentration C(t) in the hydrogen evolution chamber and the carrier gas flow velocity v at a certain The hydrogen content in the solid metal is obtained by integral processing within the hydrogen evolution time, including: the start of the hydrogen evolution time is t, and the end of the hydrogen evolution time is the end of t, then the hydrogen content of the solid metal during the hydrogen evolution process is
图2为本发明析氢室结构示意图,图3为本发明固态金属样品放置示意图,如图2和3所示,本发明所述析氢室36主要由以下部分组成:筒体1、筒体分支103、第一筒体端盖2、第二筒体端盖3、筒体分支端盖4、样品预放区101、加热区102、筒体密封元件一13、筒体密封元件二14、筒体分支密封元件16。其中,筒体分支103垂直安装于筒体1上且与所述筒体1为一体连通结构,第一筒体端盖2和第二筒体端盖3安装于筒体1两端,筒体分支端盖4安装于筒体分支103的端部,安装方法为螺纹安装,也可为其他可拆卸安装方式,筒体和筒体分支的形状不受限制,本发明该实施例优选为圆柱状,便于加工制造与加热区均匀受热。筒体1内部空间为加热区102、筒体分支内部空间为样品预放区101。第一筒体端盖2、第二筒体端盖3与筒体1之间分别装设有筒体密封元件一13和筒体密封元件二14,筒体分支端盖4与筒体分支103之间装设有筒体分支密封元件16,可以理解的是,所有密封元件用于防止析氢室气体泄漏,具体种类不受限制,在该实施例中,优选为耐高温密封圈或密封垫。Figure 2 is a schematic diagram of the structure of the hydrogen evolution chamber of the present invention, and Figure 3 is a schematic diagram of the placement of solid metal samples of the present invention, as shown in Figures 2 and 3, the
继续参照图2和3所示,第一筒体端盖2上开设有加热区气体入口11,与供气单元100相连,为析氢室提供吹扫用和氢气载体用的载气。温度传感器5和高温氢气传感器6同时安装固定于第一筒体端盖2上,温度传感器传感元件18和高温氢气传感器传感元件19位于析氢室的加热区102,分别用于测量加热区的温度和析氢室内的氢浓度。第二筒体端盖3上开设有加热区气体出口12,用于析氢室内气体排出。筒体分支端盖4上开设有样品预放区气体入口15和样品推杆通道17,样品预放区气体入口15与供气单元100相连,为样品预放区和加热区提供吹扫用载气,样品推杆通道17用于操作者将推杆104从外到内伸入样品预放区101,将待测固态金属样品从样品预放区101推至加热区102,进行后续的加热析氢过程。Continuing to refer to FIGS. 2 and 3 , the first
根据本发明的一些实施例,样品推杆通道17的外部装有通过阀,推送样品时可打开通过阀,使推杆104经过样品推杆通道17推送固态金属样品7。According to some embodiments of the present invention, a passage valve is installed outside the sample
加热元件8置于加热区102所在筒体1的外部,用于给加热区102内固态金属样品7加热,使样品中的氢在高温下析出。冷却元件9设置于加热元件8的附近,用于样品测试结束后给加热区快速降温,为下一个样品检测过程做准备,提高检测效率。The heating element 8 is placed outside the
实施例2:根据本发明的该实施例,提供了一种利用前述实施例1所述的固态金属中氢含量检测装置的检测方法,氢含量检测时,将固态金属样品7先置于析氢室的样品预放区101内,通过温度传感器5和高温氢气传感器6对析氢室内的温度和氢浓度进行检测。通过供气单元100对析氢室的样品预防区101和加热区102提供载气。载气选择不与氢气和固态金属发生反应的氮气或惰性气体。测氢前需排出析氢室内的空气,在通入载气前可通过析氢室外部的真空泵20对析氢室抽真空,随后通入载气,达到析氢室内气体的快速置换。Embodiment 2: According to this embodiment of the present invention, a detection method using the hydrogen content detection device in the solid metal described in the foregoing
为减小检测装置自身因素对金属中氢含量检测准确性的影响,开始进行氢含量检测前需进行至少一次氢含量空白测试(即不放置固态金属样品,对检测装置本身进行检测),随后再进行后续的固态金属中氢含量检测,有利于提高检测数据的准确性。In order to reduce the influence of the detection device's own factors on the accuracy of hydrogen content detection in metals, at least one hydrogen content blank test (that is, the detection device itself is tested without placing a solid metal sample) is required before starting the hydrogen content detection, and then The subsequent detection of the hydrogen content in the solid metal is conducive to improving the accuracy of the detection data.
图4为本发明氢含量空白测试检测流程图,如图4所示,空白测试流程主要为:进行气体置换(具体包括:通过真空泵对析氢室进行抽真空,随后通入高纯载气,将析氢室内部原有的空气置换为高纯载气气氛);随后以一定流速继续通入高纯载气;随后对析氢室进行加热,达到氢析出温度,该过程通过高温氢气传感器对析氢室内的氢浓度C0(t)进行连续测量,实时氢浓度C0(t)单位为ppm,即每100万毫升析氢室内气体中氢气的体积;高温加热一定时间后当检测的氢浓度为零且不再改变时,由控制处理系统根据获取到的载气流速和连续采集的氢浓度数据进行氢含量计算,得出空白测试时氢含量q0,单位为毫升;随后用载气对析氢室进行大流量吹扫降温,同时冷却元件从外部对析氢室进行降温,结束空白测试过程。Fig. 4 is a flow chart of the hydrogen content blank test detection of the present invention. As shown in Fig. 4, the blank test process mainly includes: performing gas replacement (specifically including: vacuumizing the hydrogen evolution chamber by a vacuum pump, then introducing high-purity carrier gas, and removing the hydrogen evolution chamber The original air in the interior is replaced by a high-purity carrier gas atmosphere); then the high-purity carrier gas is continuously introduced at a certain flow rate; then the hydrogen evolution chamber is heated to reach the hydrogen evolution temperature, and the hydrogen concentration in the hydrogen evolution chamber C 0 (t ) for continuous measurement, the unit of real-time hydrogen concentration C 0 (t) is ppm, that is, the volume of hydrogen in the gas in the hydrogen evolution chamber per 1 million milliliters; The processing system calculates the hydrogen content based on the obtained carrier gas flow rate and the continuously collected hydrogen concentration data, and obtains the hydrogen content q 0 in the blank test, in milliliters; then the hydrogen evolution chamber is purged and cooled with a large flow of carrier gas, and at the same time The cooling element cools down the hydrogen evolution chamber from the outside to end the blank test process.
图5为本发明固态金属氢含量检测流程图,如图5所示,固态金属中氢含量检测流程主要为:准备待测固态金属样品,使其表面无油污、水分等杂质,对于长条形金属样品,其尺寸不大于10mm×10mm×40mm,对于圆柱状样品,其直径应不大于10mm,长度不超过40mm;对样品进行称重,得到其质量为m,单位为克;将样品预放入析氢室的样品预防区中;进行气体置换(具体包括:真空泵对析氢室进行抽真空,随后通入高纯载气,将析氢室内部原有的空气置换为高纯载气气氛);随后以一定流速继续通入高纯载气;随后将样品从样品预防区推移至加热区;启动信号采集单元和高温氢气传感器开始连续获取析氢室内的实时氢浓度C1(t),数据获取频率不低于10次/秒,将连续获取的数据发送到控制处理系统,随后控制加热元件对析氢室进行加热,达到氢析出温度,氢含量析出至析氢室内,实时氢浓度C1(t)单位为ppm,即每100万毫升析氢室内气体中氢气的体积;一定时间后当固态金属中氢全部释放完后,高温氢气传感器检测的氢浓度下降到零且不再改变,此时控制处理系统根据析氢过程中获取到的载气流速和连续获取的氢浓度数据对本次测试析出的氢含量进行计算,得到氢含量q1,单位为毫升,q1减去q0得到固态样品中实际的总氢含量q(q=q1-q0),单位为毫升,最终得到待测金属中氢浓度为Q=100*q/m,即每100克固态金属中含有的氢含量,作为该固态金属中氢含量多少的判定指标;测试结束后通入较大流速载气对析氢室进行吹扫冷却,同时析氢室外部冷却元件也对析氢室进行冷却处理,待冷却到100℃以下温度后取出样品,结束测氢。Fig. 5 is the detection flow chart of solid metal hydrogen content of the present invention, as shown in Fig. 5, the hydrogen content detection flow process in solid metal is mainly: prepare the solid metal sample to be tested, make its surface free of impurities such as oil, moisture, for strip shape For metal samples, its size should not exceed 10mm×10mm×40mm. For cylindrical samples, its diameter should not exceed 10mm and its length should not exceed 40mm; weigh the sample to obtain its mass in m and the unit is gram; place the sample in advance Enter the sample prevention area of the hydrogen evolution chamber; carry out gas replacement (specifically include: the vacuum pump vacuumizes the hydrogen evolution chamber, and then introduces high-purity carrier gas to replace the original air inside the hydrogen evolution chamber with a high-purity carrier gas atmosphere); then continue at a certain flow rate Introduce high-purity carrier gas; then move the sample from the sample prevention area to the heating area; start the signal acquisition unit and high-temperature hydrogen sensor to continuously acquire the real-time hydrogen concentration C 1 (t) in the hydrogen evolution chamber, and the data acquisition frequency is not less than 10 times per second , send the continuously acquired data to the control processing system, and then control the heating element to heat the hydrogen evolution chamber to reach the hydrogen evolution temperature, and the hydrogen content is precipitated into the hydrogen evolution chamber. The unit of real-time hydrogen concentration C 1 (t) is ppm, that is, every one million The volume of hydrogen in the gas in the hydrogen evolution chamber in milliliters; after a certain period of time, when all the hydrogen in the solid metal is released, the hydrogen concentration detected by the high-temperature hydrogen sensor drops to zero and does not change anymore. The gas flow rate and the continuously acquired hydrogen concentration data are used to calculate the hydrogen content precipitated in this test to obtain the hydrogen content q 1 in milliliters, and subtract q 0 from q 1 to obtain the actual total hydrogen content q in the solid sample (q=q 1 -q 0 ), the unit is milliliter, and finally the hydrogen concentration in the metal to be tested is Q=100*q/m, that is, the hydrogen content contained in every 100 grams of solid metal, which is used as a judgment index of the hydrogen content in the solid metal ;After the test, a carrier gas with a large flow rate is introduced to purge and cool the hydrogen evolution chamber, and at the same time, the external cooling element of the hydrogen evolution chamber also cools the hydrogen evolution chamber. After cooling to a temperature below 100°C, take out the sample and end the hydrogen measurement.
在本发明的该实例中,所述高纯载气的纯度应不低于体积分数99.99%。In this example of the present invention, the purity of the high-purity carrier gas should not be lower than 99.99% by volume.
图6为氢浓度-时间分布曲线图,在空白测试和固态金属中氢含量检测过过程中,根据传感器连续获取的析氢室内氢浓度C(t)对氢含量q0和q1进行计算的原理如图6所示,包括:分别绘制出空白测试和固态金属中氢含量检测时的高温氢传感器所测氢含量对时间的连续曲线,该曲线记录了从开始加热到开始析氢,到最后结束析氢、结束加热过程中析氢室内的实时氢浓度C(t)。假设析氢过程中流动载气通过析氢室内的流速恒定为v,单位为毫升/秒,开始析氢时间为t开始,结束析氢时间为t结束,则在析氢总过程中析出的氢含量为即氢浓度-时间曲线21与时间坐标轴围成的几何区域面积22为与v×10-6的乘积。通过该方法可分别计算得到空白测试时氢含量q0和固态金属氢含量测试时氢含量q1,两者差值为该金属中实际氢含量,更具体的:固态金属中氢含量检测时:根据所述实时氢浓度C1(t)和载气的流动速度v1,在析氢时间内进行积分处理得到固态金属中氢含量,包括:开始析氢时间为t1/s,结束析氢时间为t2/s,则在析氢过程中析出的氢含量q1为同理,空白测试时:根据所述实时氢浓度C0(t)和载气的流动速度v0,在析氢时间内进行积分处理得到析氢室中的氢含量,包括:开始析氢时间为t3/s,结束析氢时间为t4/s,则在析氢过程中析出的氢含量q0为即为空白检测时的氢含量。将q1减去q0得到固态样品中实际的总氢含量q(q=q1-q0),单位为毫升。Figure 6 is a hydrogen concentration-time distribution curve. During the blank test and the detection of hydrogen content in solid metal, the principle of calculating the hydrogen content q 0 and q 1 is based on the hydrogen concentration C(t) in the hydrogen evolution chamber continuously acquired by the sensor As shown in Figure 6, it includes: draw the continuous curves of the hydrogen content measured by the high-temperature hydrogen sensor versus time during the blank test and the detection of the hydrogen content in the solid metal respectively, and the curve records from the beginning of heating to the beginning of hydrogen evolution, and finally ends the hydrogen evolution , The real-time hydrogen concentration C(t) in the hydrogen evolution chamber during the end of the heating process. Assuming that the flow rate of the flowing carrier gas passing through the hydrogen evolution chamber during the hydrogen evolution process is constant v, the unit is ml/s, the start time of hydrogen evolution is t, and the end time of hydrogen evolution is t end , then the hydrogen content in the total process of hydrogen evolution is That is, the
实施例3:根据本发明的该实施例,提供了一种用于前述实施例1和实施例2进行固态金属中氢含量检测的供气装置,该实施例提供的供气装置既可为固态金属样品氢含量检测时提供载气,也可为检测装置标定时提供含氢标定气,供气流程与测试流程匹配,自动化程度高;可提供高氢浓度标定气或低氢浓度标定气,满足不同氢浓度的标定需求,实现对高温氢气传感器的标定,避免传感器自身因素对金属氢含量检测准确性的影响,提高了数据的检测精度;通过选择大流量气体流量控制器和小流量气体流量控制器,可满足进入析氢室不同气体流量的要求,提高气体流量控制准确性,进一步提高标定过程和固态金属氢含量检测数据的准确性。Embodiment 3: According to this embodiment of the present invention, a gas supply device for detecting the hydrogen content in solid metals in the
图7为本发明该实施例的供气装置结构示意图,如图7所示,本发明提供的供气装置为实施例1固体金属中氢含量检测装置的一部分,用于给析氢室提供气体。该实施例的供气装置主要包括八个模块:气源模块、减压阀模块、气体电磁阀模块、压力显示模块、气体净化模块、流量控制模块、抽真空模块和控制模块。Fig. 7 is a schematic structural diagram of the gas supply device of this embodiment of the present invention. As shown in Fig. 7, the gas supply device provided by the present invention is a part of the hydrogen content detection device in solid metal in
该实施例中,所述气源模块包括一瓶载气气源231、一瓶高氢浓度标定气气源232和一瓶低氢浓度标定气气源233,载气为不与待测固态金属和氢气发生反应的气体,优选氮气或氩气等惰性气体,一瓶含氢标定气为高氢浓度混合气,具体为:氢气-惰性气体混合气,优选为氢氩混合气,如体积分数为10%的氢氩混合气,另一瓶含氢标定气为低氢浓度混合气,具体为:氢气-惰性气体混合气,优选为氢氩混合气,如体积分数为0.1%的氢氩混合气。可以理解的是,本发明所述气源为储气容器,具体种类不受限制,该实施例优选立式气瓶。In this embodiment, the gas source module includes a bottle of
该实施例中,所述减压阀模块包括三个与气源相配合的减压阀,具体为:第一减压阀241、第二减压阀242和第三减压阀243,用于控制气源模块的输出气体压力大小。In this embodiment, the pressure reducing valve module includes three pressure reducing valves matched with the air source, specifically: a first
该实施例中,所述气体电磁阀模块包括载气电磁阀251、第一含氢标定气电磁阀252、第二含氢标定气电磁阀253、第一气体电磁阀282、第二气体电磁阀和出气电磁阀35,所述第二气体电磁阀包括:大流量气体电磁阀291和小流量气体电磁阀293,用于控制供气装置中气体流通或截止。In this embodiment, the gas solenoid valve module includes a carrier
该实施例中,所述压力显示模块包括第一气源压力表261、第二气源压力表262和析氢室压力表30,其中,第一气源压力表和析氢室压力表为电子式压力表,可输出压力信号给所述控制模块,气源压力表二为表盘显示型压力表,可直接观察。In this embodiment, the pressure display module includes a first gas
该实施例中,所述气体净化模块包括除水蒸气单元271和除二氧化碳单元272,可以理解的是,所述除水蒸气单元和除二氧化碳单元分别可以除去水蒸气和二氧化碳,具体处理措施不受特别限制,为常规技术,此处不具体描述。In this embodiment, the gas purification module includes a water
该实施例中,所述流量控制模块包括第一气体流量控制器281和第二气体流量控制器,所述第一气体流量控制器用于控制析氢室内测氢加热前载气或含氢标定气对空气的置换吹扫速率、测氢加热前载气对固态金属样品的吹扫速率以及样品测试结束后析氢室冷却速率,可以理解的是,流量越大则相应的吹扫速度越快,且析氢室冷却速度越快;所述第二气体流量控制器包括:大流量气体流量控制器292和小流量气体流量控制器294,用于控制测氢时氢析出过程载气通入析氢室的流速,或标定时含氢标定气通入析氢室的流速。根据本发明的该实施例,相应的流量控制器的具体种类不受限制,只要可以实现流量控制功能即可,可以理解的是,本发明大流量与小流量是相对而言的,具体以实际要求为准,例如:小流量的流量为0-200mL/min时,大流量的流量则超过200mL/min。In this embodiment, the flow control module includes a first
该实施例中,所述抽真空模块为真空泵20。In this embodiment, the vacuum pumping module is a
继续参照图7所示,供气装置各模块的气路连接方式具体如下:载气气源231、高氢浓度标定气气源232、低氢浓度标定气气源233分别与第一减压阀241、第二减压阀242和第三减压阀243的进气端相连,载气电磁阀251、第一含氢标定气电磁阀252、第二含氢标定气电磁阀253分别与第一减压阀241、第二减压阀242和第三减压阀243的出气端相连,三个电磁阀出口气路合并后同时与除水蒸气单元271入口、第一气源压力表261和第二气源压力表262相连。除水蒸气单元271出口与除二氧化碳单元272入口端相连,除二氧化碳单元272出口气路同时连接第一气体流量控制器281、大流量气体电磁阀291和小流量气体电磁阀293。第一气体流量控制器281出气口与第一气体电磁阀282入气口相连,第一气体电磁阀282出气口与析氢室的样品预放区气体入口15相连。大流量气体电磁阀291出气口与大流量气体流量控制器292入气口相连,大流量气体流量控制器292的出气口与析氢室的加热区气体入口11相连。小流量气体电磁阀293出气口与小流量气体流量控制器294入气口相连,小流量气体流量控制器294的出气口与析氢室的加热区气体入口11相连。析氢室36的加热区气体入口11处设置有析氢室压力表30,用于获取析氢室内的气体压力大小。析氢室36的加热区气体出口12与出气电磁阀35入气口相连,出气电磁阀35出气口与真空泵20相连。Continuing to refer to Fig. 7 , the gas circuit connections of each module of the gas supply device are specifically as follows:
图8为本发明该实施例的供气装置中控制模块的控制原理框图,如图8所示,当该实施例中的供气装置用于实施例1的检测装置时,所述控制模块与所述实施例1的检测装置的控制处理系统相连,可以理解的是,所述控制模块与控制处理系统也可以合并设置为一个控制处理单元,统一进行控制。Fig. 8 is a control principle block diagram of the control module in the gas supply device of this embodiment of the present invention, as shown in Fig. 8, when the gas supply device in this embodiment is used for the detection device of
所述控制模块可为PLC、工业控制计算机、个人计算机或嵌入式处理器,在该实施例中优选工业控制计算机,如图8所示,所述控制模块包括:处理器31、信号转换模块32、开关量输入输出模块33和模拟量输入模块34。所述供气装置工作时通过处理器对各个模块进行控制。处理器31通过信号转换模块32与开关量输入输出模块33、模拟量输入模块34、第一气体流量控制器281、大流量气体流量控制器292和小流量气体流量控制器294连接,实现对气体电磁阀模块的各个电磁阀和真空泵20的控制,并获取第一气源压力表261和析氢室压力表30传回的压力信号数据。Described control module can be PLC, industrial control computer, personal computer or embedded processor, preferred industrial control computer in this embodiment, as shown in Figure 8, described control module comprises:
可以理解的是,在本发明该实施例中,所述信号转换模块、开关量输入输出模块和模拟量输入模块的种类不受特别限制,只要能实现其对应的功能即可。It can be understood that, in this embodiment of the present invention, the types of the signal conversion module, digital input and output module and analog input module are not particularly limited, as long as their corresponding functions can be realized.
实施例4:根据本发明的该实施例,提供了一种利用前述实施例3所述的供气装置进行固态金属中氢含量检测时的供气方法,具体包括:开始对固态金属中氢含量进行检测前,控制模块控制开关量输入输出模块关闭第一含氢标定气电磁阀252和第二含氢标定气电磁阀253,打开载气电磁阀251,调节第一减压阀241,同时观察第二气源压力表262,直到压力达到略大于一个大气压。将固态金属样品放入析氢室的样品预放区101后,关闭第一气体电磁阀282、大流量气体电磁阀291和小流量气体电磁阀293,打开出气电磁阀35,设置第一气体流量控制器281达到一定的气体流速,再打开真空泵20对析氢室进行抽真空,使大部分空气从析氢室内排尽,然后关闭出气电磁阀35和真空泵20,使析氢室处于一定真空状态,随后再打开第一气体电磁阀282,使载气气源231中的载气经第一气体电磁阀282流入析氢室内,流入过程中析氢室压力表30的压力逐渐变大,当压力大于一个大气压时打开出气电磁阀35,载气不断经析氢室吹扫流出,实现对固态金属样品表面吸附杂质气体的吹扫清除,且析氢室内充满流动载气。吹扫一定时间后,将固态金属样品从析氢室的样品预放区101移入析氢室的加热区102后,根据测试需要的载气流速打开大流量气体电磁阀291或小流量气体电磁阀293,并关闭第一气体电磁阀282,调节大流量气体流量控制器292或小流量气体流量控制器294,从而实现载气在析氢室内达到合适的流量,在析氢室内以一定的流速流动,在氢析出过程中,载气逐渐将析出的氢气经出气电磁阀35带离析氢室。待金属样品中氢全部析出后将大流量气体电磁阀291或小流量气体电磁阀293处于关闭状态,然后打开第一气体电磁阀282,实现载气对析氢室内部的快速冷却,为下一个样品测试做准备。Embodiment 4: According to this embodiment of the present invention, there is provided a gas supply method when using the gas supply device described in
实施例5:根据本发明的该实施例,提供了一种利用前述实施例3所述的供气装置进行高温氢气传感器标定时的供气方法,具体包括:在开始对氢含量检测装置进行标定前,控制模块控制开关量输入输出模块打开第一含氢标定气电磁阀252或第二含氢标定气电磁阀253,并关闭载气电磁阀251(如果需要用高氢浓度标定气时则打开第一含氢标定气电磁阀252并关闭第二含氢标定气电磁阀253,如果需要用低氢浓度标定气时则打开第二含氢标定气电磁阀253并关闭第一含氢标定气电磁阀252)。相应调节第二减压阀242或第三减压阀243,同时观察第二气源压力表262显示的压力值,直到压力值略大于一个大气压。关闭第一气体电磁阀282、大流量气体电磁阀291和小流量气体电磁阀293,打开出气电磁阀35,控制模块设置第一气体流量控制器281达到一定的气体流速,再打开真空泵20对析氢室进行抽真空,使大部分空气从析氢室内排尽,然后关闭出气电磁阀35和真空泵20,使析氢室处于一定真空状态,随后再打开第一气体电磁阀282,使高氢浓度标定气源232或低氢浓度标定气源233中的含氢标定气经第一气体电磁阀282流入析氢室内,流入过程中析氢室压力表30的压力逐渐变大,当压力大于一个大气压时打开出气电磁阀35,含氢标定气不断经析氢室吹扫流出,析氢室内充满流动的含氢标定气。吹扫一定时间后,根据标定时需要的含氢标定气气体流速打开大流量气体电磁阀291或小流量气体电磁阀293,并关闭第一气体电磁阀282,调节大流量气体流量控制器292或小流量气体流量控制器294使含氢标定气达到合适的流量,实现含氢标定气以一定流速在析氢室内流动。待析氢室内部温度升温达到高温氢气传感器6测试温度时,高温氢气传感器6对析氢室内氢浓度进行检测,将检测结果与含氢标定气的实际氢浓度进行对比,实现对高温氢气传感器6的标定。Embodiment 5: According to this embodiment of the present invention, a gas supply method for calibrating a high-temperature hydrogen sensor using the gas supply device described in
可以理解的是,该实施例中,在进行固态金属中氢含量进行检测前先通过对高温氢气传感器的标定,可以提高实施例1中检测装置的检测数据,进而实现了对固态金属中氢含量数据的标定。It can be understood that, in this embodiment, the detection data of the detection device in
综上所述,本发明采用能在高温下直接使用的高温氢气传感器为测氢元件,使固态金属中氢的析出与检测同步进行,无需收集析出的氢气之后再进行氢含量检测,该设计方案使装置更便携简易;采用筒体上开设筒体分支的结构形式,为析氢室设置样品预放区和加热区,加热析氢前待测金属样品暂放于样品预放区被载气充分吹扫,可极大减弱样品表面吸附气体对氢含量检测结果的干扰;冷却元件可给析氢室快速降温,加快样品分析时间,提高测试效率;通过增加空白测试,减小了检测装置自身因素对金属氢含量检测准确性的影响,提高了数据的检测精度;供气装置既可为固态金属样品氢含量检测时提供载气,也可为检测装置中高温氢气传感器标定时提供含氢标定气,供气流程与测试流程匹配,自动化程度高;可提供高氢浓度标定气或低氢浓度标定气,满足不同氢浓度的标定需求,实现对高温氢气传感器的标定,避免传感器自身因素对金属氢含量检测准确性的影响,提高了数据的检测精度;通过选择大流量流量控制器和小流量流量控制器,可满足进入析氢室不同气体流量的要求,提高气体流量控制准确性,进一步提高标定过程和固态金属氢含量检测准确性。In summary, the present invention adopts a high-temperature hydrogen sensor that can be used directly at high temperature as a hydrogen measuring element, so that the precipitation and detection of hydrogen in solid metal can be carried out simultaneously, and there is no need to collect the precipitated hydrogen before detecting the hydrogen content. This design scheme Make the device more portable and simple; adopt the structural form of the cylinder branch on the cylinder, set the sample pre-release area and heating area for the hydrogen evolution chamber, and the metal sample to be tested is temporarily placed in the sample pre-release area before heating and hydrogen evolution to be fully purged by the carrier gas , which can greatly reduce the interference of the gas adsorbed on the sample surface on the detection results of the hydrogen content; the cooling element can quickly cool down the hydrogen evolution chamber, speed up the sample analysis time, and improve the test efficiency; by adding a blank test, the detection device's own factors have reduced the metal hydrogen The influence of content detection accuracy improves the detection accuracy of data; the gas supply device can not only provide carrier gas for the detection of hydrogen content in solid metal samples, but also provide hydrogen-containing calibration gas for calibration of the high-temperature hydrogen sensor in the detection device. The process matches the test process and has a high degree of automation; high hydrogen concentration calibration gas or low hydrogen concentration calibration gas can be provided to meet the calibration requirements of different hydrogen concentrations, realize the calibration of high-temperature hydrogen sensors, and avoid the sensor's own factors from accurately detecting the metal hydrogen content The influence of nature improves the detection accuracy of the data; by selecting a large flow flow controller and a small flow flow controller, it can meet the requirements of different gas flow rates entering the hydrogen evolution chamber, improve the accuracy of gas flow control, and further improve the calibration process and solid metal Hydrogen content detection accuracy.
在本发明中,除非另有明确的规定和限定,术语“相连”、“连接”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本发明中的具体含义。In the present invention, unless otherwise clearly specified and limited, terms such as "connected" and "connected" should be understood in a broad sense, for example, it can be a fixed connection, a detachable connection, or an integral body; it can be a mechanical A connection can also be an electrical connection; it can be a direct connection or an indirect connection through an intermediary, and it can be an internal communication between two elements or an interaction relationship between two elements. Those of ordinary skill in the art can understand the specific meanings of the above terms in the present invention according to specific situations.
在本发明的描述中,需要理解的是,术语“第一”、“第二”、“第三”等描述语仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”、“第三”的特征可以明示或者隐含地包括一个或者更多个该特征。In the description of the present invention, it should be understood that the terms "first", "second", "third" and other descriptors are used for descriptive purposes only, and should not be understood as indicating or implying relative importance or implying The number of technical characteristics indicated. Thus, a feature defined as "first", "second" and "third" may explicitly or implicitly include one or more of these features.
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本发明的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不必针对的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任一个或多个实施例或示例中以合适的方式结合。此外,在不相互矛盾的情况下,本领域的技术人员可以将本说明书中描述的不同实施例或示例以及不同实施例或示例的特征进行结合和组合。In the description of this specification, descriptions with reference to the terms "one embodiment", "some embodiments" and the like mean that a specific feature, structure, material, or characteristic described in connection with the embodiment or example is included in at least one embodiment of the present invention or example. In this specification, the schematic representations of the above terms are not necessarily directed to the same embodiment or example. Furthermore, the described specific features, structures, materials or characteristics may be combined in any suitable manner in any one or more embodiments or examples. In addition, those skilled in the art can combine and combine different embodiments or examples and features of different embodiments or examples described in this specification without conflicting with each other.
尽管上面已经示出和描述了本发明的实施例,可以理解的是,上述实施例是示例性的,不能理解为对本发明的限制,本领域的普通技术人员在本发明的范围内可以对上述实施例进行变化、修改、替换和变型,同时,对于本领域的一般技术人员,依据本申请的思想,在具体实施方式及应用范围上均会有改变之处。Although the embodiments of the present invention have been shown and described above, it can be understood that the above embodiments are exemplary and should not be construed as limiting the present invention, those skilled in the art can make the above-mentioned The embodiment can be changed, modified, replaced and modified. Meanwhile, for those skilled in the art, there will be changes in the specific implementation and application scope according to the idea of the application.
Claims (7)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010672082.XA CN111781088B (en) | 2020-07-14 | 2020-07-14 | Method for detecting hydrogen content in solid metal |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010672082.XA CN111781088B (en) | 2020-07-14 | 2020-07-14 | Method for detecting hydrogen content in solid metal |
Publications (2)
Publication Number | Publication Date |
---|---|
CN111781088A CN111781088A (en) | 2020-10-16 |
CN111781088B true CN111781088B (en) | 2023-05-12 |
Family
ID=72767648
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202010672082.XA Active CN111781088B (en) | 2020-07-14 | 2020-07-14 | Method for detecting hydrogen content in solid metal |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN111781088B (en) |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6491047A (en) * | 1987-10-02 | 1989-04-10 | Nippon Steel Corp | Method and apparatus for analyzing hydrogen in molten metal |
CN102507779A (en) * | 2011-09-20 | 2012-06-20 | 中国石油化工股份有限公司 | Method for measuring hydrogen sulfide content in desulfurized amine |
CN103454125A (en) * | 2012-06-04 | 2013-12-18 | 波音公司 | System and method for measuring hydrogen content in a sample |
CN106568673A (en) * | 2015-10-12 | 2017-04-19 | 哈尔滨理工大学 | Negative pressure back-rising rate method used for rapidly detecting melt gas content |
CN106568676A (en) * | 2015-10-08 | 2017-04-19 | 陕西宏远航空锻造有限责任公司 | Method for measuring content of trace hydrogen in low alloy steel |
CN109659587A (en) * | 2017-10-12 | 2019-04-19 | 大连融科储能技术发展有限公司 | Flow battery capacity attenuation control system and method |
CN110687249A (en) * | 2019-01-30 | 2020-01-14 | 杭州超钜科技有限公司 | Hydrogen detector detection device and detection method thereof |
-
2020
- 2020-07-14 CN CN202010672082.XA patent/CN111781088B/en active Active
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6491047A (en) * | 1987-10-02 | 1989-04-10 | Nippon Steel Corp | Method and apparatus for analyzing hydrogen in molten metal |
CN102507779A (en) * | 2011-09-20 | 2012-06-20 | 中国石油化工股份有限公司 | Method for measuring hydrogen sulfide content in desulfurized amine |
CN103454125A (en) * | 2012-06-04 | 2013-12-18 | 波音公司 | System and method for measuring hydrogen content in a sample |
CN106568676A (en) * | 2015-10-08 | 2017-04-19 | 陕西宏远航空锻造有限责任公司 | Method for measuring content of trace hydrogen in low alloy steel |
CN106568673A (en) * | 2015-10-12 | 2017-04-19 | 哈尔滨理工大学 | Negative pressure back-rising rate method used for rapidly detecting melt gas content |
CN109659587A (en) * | 2017-10-12 | 2019-04-19 | 大连融科储能技术发展有限公司 | Flow battery capacity attenuation control system and method |
CN110687249A (en) * | 2019-01-30 | 2020-01-14 | 杭州超钜科技有限公司 | Hydrogen detector detection device and detection method thereof |
Non-Patent Citations (2)
Title |
---|
周海收 等.金属材料中氢、氧、氮、碳和硫分析方法通则.《中华人民共和国国家标准 GB/T14265—2017》.中国标准出版社,2017, * |
铝熔体含氢量的浓差电池法在线连续检测技术研究;陈建勋;《中国博士学位论文全文数据库 (工程科技Ⅰ辑)》;20190415(第04期);第1-146页 * |
Also Published As
Publication number | Publication date |
---|---|
CN111781088A (en) | 2020-10-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN106226138B (en) | The sampler and analysis method of trace metal impurity content in electron level arsine | |
CN212964485U (en) | Hydrogen content detection device in solid metal | |
CN111751247A (en) | A device for detecting hydrogen content in solid metal | |
JP5363408B2 (en) | Generated gas analyzer | |
CN109838686A (en) | A kind of steel cylinder processing system and its application method and application | |
CN115032114A (en) | Hydrogen storage material performance testing device and testing method thereof | |
CN105080427B (en) | A kind of HTHP water-cooled can weigh reactor | |
CN111781088B (en) | Method for detecting hydrogen content in solid metal | |
CN111751246B (en) | A gas supply method and device for detecting hydrogen content in solid metal | |
CN212964484U (en) | Gas supply device for detecting hydrogen content in solid metal | |
CN116087313A (en) | Online detection system and method for atmospheric heavy metal pollutants | |
CN104215554A (en) | Rapid hydrogen measurement device and hydrogen measurement method for aluminium alloy | |
CN111485113B (en) | Alkali metal impurity pretreatment device | |
CN106841482A (en) | A kind of gas chromatograph application process of vacuum sampling device | |
CN103234853A (en) | Testing apparatus for research on reducibility of single-particle iron ore | |
CN206420726U (en) | Gas absorption is desorbed test device | |
CN206420834U (en) | A kind of gas chromatograph vacuum sampling device | |
US4214473A (en) | Gaseous trace impurity analyzer and method | |
CN204856240U (en) | Trace living beings heat is split and sulphide collection device | |
CN210219313U (en) | Steel bottle processing system | |
US5618996A (en) | Metal sampling method and system for non-hydrolyzable gases | |
CN104849174B (en) | The weightless device and method determined is reduced in a kind of simple hydrogen gas | |
CN204594827U (en) | The weightless device measured of reduction in a kind of simple hydrogen gas | |
CN205748561U (en) | A kind of atmosphere difference weight stove | |
CN104932570B (en) | Micro biomass thermal is split and sulfide collection device and method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |