CN111771167B - 光刻工艺中的对齐标记定位 - Google Patents

光刻工艺中的对齐标记定位 Download PDF

Info

Publication number
CN111771167B
CN111771167B CN201980015650.4A CN201980015650A CN111771167B CN 111771167 B CN111771167 B CN 111771167B CN 201980015650 A CN201980015650 A CN 201980015650A CN 111771167 B CN111771167 B CN 111771167B
Authority
CN
China
Prior art keywords
alignment mark
substrate
control action
layer
field
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201980015650.4A
Other languages
English (en)
Other versions
CN111771167A (zh
Inventor
R·J·F·范哈伦
L·P·范迪克
O·J·P·莫莱勒
A·M·帕斯特尔
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ASML Holding NV
Original Assignee
ASML Holding NV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ASML Holding NV filed Critical ASML Holding NV
Publication of CN111771167A publication Critical patent/CN111771167A/zh
Application granted granted Critical
Publication of CN111771167B publication Critical patent/CN111771167B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F9/00Registration or positioning of originals, masks, frames, photographic sheets or textured or patterned surfaces, e.g. automatically
    • G03F9/70Registration or positioning of originals, masks, frames, photographic sheets or textured or patterned surfaces, e.g. automatically for microlithography
    • G03F9/7088Alignment mark detection, e.g. TTR, TTL, off-axis detection, array detector, video detection
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F9/00Registration or positioning of originals, masks, frames, photographic sheets or textured or patterned surfaces, e.g. automatically
    • G03F9/70Registration or positioning of originals, masks, frames, photographic sheets or textured or patterned surfaces, e.g. automatically for microlithography
    • G03F9/7073Alignment marks and their environment
    • G03F9/7084Position of mark on substrate, i.e. position in (x, y, z) of mark, e.g. buried or resist covered mark, mark on rearside, at the substrate edge, in the circuit area, latent image mark, marks in plural levels
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70483Information management; Active and passive control; Testing; Wafer monitoring, e.g. pattern monitoring
    • G03F7/70605Workpiece metrology
    • G03F7/70616Monitoring the printed patterns
    • G03F7/70633Overlay, i.e. relative alignment between patterns printed by separate exposures in different layers, or in the same layer in multiple exposures or stitching
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70691Handling of masks or workpieces
    • G03F7/70783Handling stress or warp of chucks, masks or workpieces, e.g. to compensate for imaging errors or considerations related to warpage of masks or workpieces due to their own weight
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/708Construction of apparatus, e.g. environment aspects, hygiene aspects or materials
    • G03F7/70858Environment aspects, e.g. pressure of beam-path gas, temperature
    • G03F7/70866Environment aspects, e.g. pressure of beam-path gas, temperature of mask or workpiece
    • G03F7/70875Temperature, e.g. temperature control of masks or workpieces via control of stage temperature
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/708Construction of apparatus, e.g. environment aspects, hygiene aspects or materials
    • G03F7/70858Environment aspects, e.g. pressure of beam-path gas, temperature
    • G03F7/70883Environment aspects, e.g. pressure of beam-path gas, temperature of optical system
    • G03F7/70891Temperature
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F9/00Registration or positioning of originals, masks, frames, photographic sheets or textured or patterned surfaces, e.g. automatically
    • G03F9/70Registration or positioning of originals, masks, frames, photographic sheets or textured or patterned surfaces, e.g. automatically for microlithography
    • G03F9/7003Alignment type or strategy, e.g. leveling, global alignment
    • G03F9/7046Strategy, e.g. mark, sensor or wavelength selection

Abstract

用于通过如下方式确定对齐标记的位置的方法和装置,对齐标记使用光刻工艺而被施加到衬底上的第一层的区域:获得对齐标记的预期位置;获得该区域的由校正光刻工艺的控制动作导致的几何变形;获得对齐标记的由几何变形导致的平移;基于预期位置和平移,确定对齐标记的位置。

Description

光刻工艺中的对齐标记定位
相关申请的交叉引用
本申请要求2018年02月27日提交的欧洲申请18158779.1的优先权,其全部内容通过引用并入本文。
技术领域
本发明涉及使用光刻工艺确定施加到衬底上的层的区域的对齐标记的位置。在一些特定的布置中,本发明还可以涉及基于所确定的位置将衬底定位在光刻装置内。
背景技术
光刻装置是被构造成将期望的图案施加到衬底上的机器。光刻装置可以用在例如集成电路(IC)的制造中。光刻装置可以例如在图案形成装置(例如,掩模)处将图案(通常也被称为“设计布局”或“设计”)投影到被提供在衬底(例如,晶片)上的辐射敏感材料(抗蚀剂)的层上。
为了将图案投影在衬底上,光刻装置可以使用电磁辐射。该辐射的波长确定了可以在衬底上形成的特征的最小尺寸。当前使用的典型波长是365nm(i线)、248nm、193nm和13.5nm。与使用例如具有193nm的波长的辐射的光刻装置相比,使用具有在4nm-20nm(例如6.7nm或13.5nm)范围内的波长的极紫外(EUV)辐射的光刻装置可以用于在衬底上形成更小的特征。
低k1光刻可以用于处理具有小于光刻装置的经典分辨率极限的尺寸的特征。在这种过程中,分辨率公式可以被表示为CD=k1×λ/NA,其中λ是所采用的辐射的波长,NA是光刻装置中投影光学器件的数值孔径,CD是“临界尺寸”(通常是所打印的最小特征尺寸,但在这种情况下为半节距),并且k1是经验分辨率因子。通常,k1越小,越难以在衬底上再现与电路设计者计划的形状和尺寸相似的图案,以便实现特定的电气功能和性能。为了克服这些困难,可以将复杂的微调步骤应用于光刻投影装置和/或设计布局。例如,这些包括但不限于:NA的优化、定制的照射方案、相移图案形成装置的使用、设计布局的各种优化(诸如,光学邻近校正(OPC,有时也被称为“光学和过程校正”))或通常被定义为“分辨率增强技术”(RET)的其他方法。备选地,可以使用用于控制光刻装置的稳定性的紧密控制环来改善在低k1下的图案的再现。
通常,对齐标记被制造在衬底上的层中,并且允许衬底被正确地定位在光刻装置内。对齐标记的位置的准确确定对后续层可以在衬底上曝光的精确度具有直接影响。
当前,当在第一层中制造对齐标记时,在曝光作业(或条件手段)中定义对齐标记的位置。对齐标记场坐标可以从掩模版设计文件(GDS)中获取。对齐标记场坐标以及场曝光布局将用于定义曝光网格。在光刻装置内的晶片对齐期间,对齐标记位置可以利用在扫描仪参考网格中的对齐传感器而被测量,并且被映射到如曝光作业(或条件手段)中定义的位置。通常通过套刻反馈控制回路来测量和校正静态偏移(例如,由于掩模版写入误差、透镜狭缝指纹或所施加的如iHOPC的校正而引起的静态偏移)。
然而,在确定对齐标记的位置时,仍然存在误差,并且期望改善该确定的准确性。
发明内容
根据本发明的一个方面,提供了一种用于确定对齐标记的位置的方法,对齐标记使用光刻工艺而被施加到衬底上的第一层的区域,方法包括:获得对齐标记的预期位置;获得区域的由校正光刻工艺的控制动作导致的几何变形;获得对齐标记的由几何变形导致的平移;以及基于预期位置和平移确定对齐标记的位置。
可选地,控制动作已经基于由量测装置获得的量测数据被确定。
可选地,控制动作已经被确定为高级过程控制(APC)策略的一部分。
可选地,控制动作包括与以下项中的一个或多个有关的因素:光刻装置的透镜的加热;光刻装置内的掩模版的加热;以及衬底的加热。
可选地,对齐标记的位置基于与第一场相关联的控制动作来确定,并且还包括基于与第二场相关联的控制动作来更新对齐标记的所确定的位置。
可选地,与第一场相关联的控制动作不同于与第二场相关联的控制动作。
可选地,控制动作用于校正光刻工艺的场几何性质。
可选地,场几何属性包括套刻。
可选地,对齐标记的预期位置从曝光条件手段中获得。
可选地,获得区域的几何变形包括:在曝光第一层之后,测量对齐标记的位置,和/或基于控制动作来计算区域的几何变形。
可选地,该方法还包括曝光在衬底上的包括对齐标记的第一层。
根据本发明的一个方面,提供了一种用于定位经受光刻工艺的衬底的方法,包括:根据任一前述实施例确定作为第一层的一部分而被制造的对齐标记在衬底上的位置,并且还包括基于对齐标记的所确定的位置来定位衬底。
可选地,该方法还包括曝光衬底的第二层。
根据本发明的一个方面,提供一种用于确定对齐标记的位置的装置,对齐标记使用光刻工艺而被施加到衬底上的第一层的区域,装置包括处理器,处理器被配置成执行计算机程序代码以执行以下方法:获得对齐标记的预期位置;获得区域的由校正光刻工艺的控制动作导致的几何变形;获得对齐标记的由几何变形导致的平移;以及基于预期位置和平移,确定对齐标记的位置。
可选地,控制动作已经基于由量测装置获得的量测数据而被确定。
可选地,控制动作已经被确定为高级过程控制(APC)策略的一部分。
可选地,控制动作包括与以下项中的一个或多个有关的因素:光刻装置的透镜的加热;光刻装置内的掩模版的加热;以及衬底的加热。
可选地,对齐标记的位置基于与第一场相关联的控制动作来确定,
可选地,该方法还包括基于与第二场相关联的控制动作来更新对齐标记的所确定的位置。
可选地,与第一场相关联的控制动作不同于与第二场相关联的控制动作。
可选地,控制动作用于校正光刻工艺的场几何性质。
可选地,场几何属性包括套刻。
可选地,对齐标记的预期位置从曝光条件手段中获得。
可选地,获得区域的几何变形包括:在曝光第一层之后,测量对齐标记的位置,和/或基于控制动作来计算区域的几何变形。
可选地,该方法还包括曝光在衬底上的包括对齐标记的第一层。
根据本发明的一个方面,提供一种用于对经受光刻工艺的衬底进行定位的装置,装置包括处理器,处理器被配置成执行计算机程序代码以执行一方法,方法包括:根据本文公开的任一方法,确定作为第一层的一部分制造的对齐标记在衬底上的位置,并且还包括控制该装置,以基于对齐标记的所确定的位置来定位衬底。
可选地,该方法还包括曝光衬底的第二层。
根据本发明的一个方面,提供了一种计算机程序,包括指令,指令在至少一个处理器上被执行时,使得至少一个处理器控制装置以实施根据本文公开的任一项的方法。
根据本发明的一个方面,提供了一种载体,包含上述计算机程序,其中载体是电子信号、光学信号、无线电信号或非暂态计算机可读存储介质中的一个。
根据本发明的一个方面,提供一种量测装置,包括根据本文公开的任何装置。
根据本发明的一个方面,提供一种光刻装置,包括上面公开的量测装置。
根据本发明的一个方面,提供一种包括上述装置的光刻单元。
附图说明
现在将仅通过示例的方式,参考所附的示意图来描述本发明的实施例,其中:
图1描绘了光刻装置的示意概览;
图2描绘了光刻单元的示意概览;
图3描绘了整体光刻的示意表示,其表示三个关键技术之间的协作以优化半导体制造;
图4描绘了由于曝光场的几何变形而导致的对齐标记的平移;
图5描绘了根据本公开的一个实施例的方法的流程图。
具体实施方式
在本文档中,术语“辐射”和“束”用于涵盖所有类型的电磁辐射,包括紫外辐射(例如,具有365nm、248nm、193nm、157nm或126nm的波长)和EUV(极紫外辐射,例如具有在约5nm-100nm范围内的波长)。
如本文中采用的术语“掩模版”、“掩模”或“图案形成装置”可以被广义地解释为指代可以用于向入射辐射束赋予图案化的横截面的通用图案形成装置,该图案化的横截面对应于要在衬底的目标部分中创建的图案。在本上下文中,也可以使用术语“光阀”。除了经典的掩模(透射式或反射式、二元、相移、混合等)以外,其他这种图案形成装置的示例还包括可编程反射镜阵列和可编程LCD阵列。
图1示意性地描绘了光刻装置LA。光刻装置LA包括:照射系统(也称为照射器)IL,被配置成调节辐射束B(例如,UV辐射、DUV辐射或EUV辐射);掩模支撑件(例如,掩模台)MT,被构造成支撑图案形成装置(例如,掩模)MA并且连接到第一定位器PM,第一定位器PM被配置成根据某些参数精确地定位图案形成装置MA;衬底支撑件(例如,晶片台)WT,被构造成保持衬底(例如,涂覆抗蚀剂的晶片)并且连接到第二定位器PW,第二定位器PW被配置成根据某些参数精确地定位衬底支撑件;以及投影系统(例如,折射式投影透镜系统)PS,被配置成将欧通过图案形成装置MA而被赋予辐射束B的图案投影到衬底W的目标部分C(例如,包括一个或多个管芯)上。
在操作中,照射系统IL例如经由光束传递系统BD从辐射源SO接收辐射束。照射系统IL可以包括用于定向、整形和/或控制辐射的各种类型的光学组件,诸如,折射、反射、磁性、电磁、静电或其他类型的光学组件或其任何组合。照射器IL可以用于调节辐射束B,以使该辐射束B在图案形成装置MA的平面处的横截面中具有期望的空间和角度强度分布。
本文所使用的术语“投影系统”PS应当被广义地解释为涵盖适于所使用的曝光辐射和/或适于诸如浸没液体的使用或真空的使用的其他因素的各种类型的投影系统,包括折射、反射、反射折射、磁性、电磁以及静电光学系统或其任何组合。可以认为本文对术语“投影透镜”的任何使用与更一般术语“投影系统”同义。
光刻装置LA可以是其中衬底的至少一部分可以被具有相对较高的折射率的液体(例如水)覆盖,以便填充投影系统PS与衬底W之间的空间的类型,其也被称为浸没式光刻。关于浸没技术的更多信息在US6952253中给出,其通过引用并入本文。
光刻装置LA也可以是具有两个以上的衬底支撑件WT的类型(也被称为“双平台”)。在这种“多平台”机器中,可以并行地使用衬底支撑件WT,和/或在其他衬底支撑件WT上的另一衬底W正被用于曝光在另一衬底W上的图案的同时,可以在位于衬底支撑件WT中的一个上的衬底W上实施该衬底W的随后曝光的准备步骤。
除了衬底支撑件WT之外,光刻装置LA可以包括测量台。测量台被布置成保持传感器和/或清洁装置。传感器可以被布置成测量投影系统PS的性质或辐射束B的性质。测量台可以保持多个传感器。清洁装置可以被布置,以清洁光刻装置的一部分,例如投影系统PS的一部分或提供浸没液体的系统的一部分。当衬底支撑件WT远离投影系统PS时,测量台可以在投影系统PS下方移动。
在操作中,辐射束B入射在图案形成装置上,(例如掩模MA,掩模被保持在掩模支撑件MT上),并且通过在图案形成装置MA上存在的图案(设计布局)而被图案化。在穿过掩模MA之后,辐射束B穿过投影系统PS,投影系统PS将该束聚焦到衬底W的目标部分C上。在第二定位器PW和位置测量系统IF的辅助下,衬底支撑件WT可以精确地移动,例如,以便在辐射束B的路径中将不同的目标部分C定位在被聚焦和被对齐位置处。类似地,第一定位器PM和可能的另一位置传感器(在图1中未明确描绘)可以用于相对于辐射束B的路径精确地定位图案形成装置MA。图案形成装置MA和衬底W可以使用掩模对齐标记M1、M2和衬底对齐标记P1、P2对齐。尽管所图示的衬底对齐标记P1、P2可以占据专用的目标部分,但是它们可以位于目标部分之间的空间中。当衬底对齐标记P1、P2位于目标部分C之间时,它们被称为划线对齐标记。
如图2中所示,光刻装置LA可以形成光刻单元LC的一部分,光刻单元LC有时也被称为光刻单元或(光刻)簇,其通常还包括用于在衬底上执行曝光前和曝光后过程的装置。常规地,这些包括:用于沉积抗蚀剂层的旋涂器SC;用于将曝光的抗蚀剂显影的显影剂DE;激冷板CH和烘烤板BK,例如用于调节衬底W的温度以例如用于调节抗蚀剂层中的溶剂。衬底处理器或机器人RO从输入/输出端口I/O1、I/O2拾取衬底W、在不同的处理装置之间移动衬底W,并且将衬底W递送到光刻装置LA的装载台LB。光刻单元中的装置(通常也被统称为轨道)通常受轨道控制单元TCU的控制,轨道控制单元TCU本身可以由管理控制系统SCS控制,管理控制系统SCS也可以例如经由光刻控制单元LACU来控制光刻装置LA。
为了使由光刻装置LA曝光的衬底W被正确且一致地曝光,期望检查衬底,以测量图案化的结构的性质,诸如线厚度、临界尺寸(CD)、后续层之间的重叠误差等。为此,可以将检查工具(未示出)包括在光刻单元LC中。如果检测到误差,则例如可以对后续的衬底的曝光或要在衬底W上执行的其他处理步骤进行调整,特别是在在仍要被曝光或被处理的相同批次(batch)或批号(lot)的其他衬底W之前完成检查的情况下。
检查装置(其也可以被称为量测装置)用于确定衬底W的性质,并且具体地用于确定不同衬底W的性质如何变化或与相同衬底的不同层相关联的性质如何逐层变化。检查装置可以备选地被构造成标识衬底W上的缺陷,并且可以例如是光刻单元LC的一部分,或者可以被集成到光刻装置LA中,或者甚至可以是独立的装置。检查装置可以测量关于潜像(曝光之后的抗蚀剂层中的图像)的性质、或关于半潜像(在曝光后烘烤步骤PEB之后的抗蚀剂层中的图像)的性质、或关于被显影的抗蚀剂图像(其中已经去除抗蚀剂的被曝光部分或未被曝光的部分)的性质、或甚至关于被蚀刻的图像(在诸如蚀刻的图案转移步骤之后)的性质。
通常地,光刻装置LA中的图案化过程是过程中的最关键的步骤之一,该过程要求以高精确度规定结构在衬底W上的尺寸和放置。为了确保这种高精确度,可以将三个系统组合在所谓的“整体”控制环境中,如图3中示意性地描绘的。这些系统中的一个系统是光刻装置LA,其(虚拟)连接到量测工具MT(第二系统)并且连接到计算机系统CL(第三系统)。这种“整体”环境的关键是优化这三个系统之间的协作,以强化整个过程窗口并且提供紧密的控制环,以确保由光刻装置LA执行的图案化保持在过程窗口内。过程窗口定义了一系列的过程参数(例如,剂量、焦距、套刻),在该一系列的过程参数内,特定的制造过程会产生所定义的结果(例如,功能性半导体器件),通常允许光刻过程中的过程参数或图案化过程中的过程参数在该一系列的过程参数内变化。
计算机系统CL可以使用要被图案化的设计布局(的一部分),来预测哪种分辨率增强技术将使用并且执行计算机光刻仿真和计算,以确定哪些掩模布局和光刻装置设定实现图案化过程的最大整体过程窗口(在图3中由第一标尺SC1中的双箭头描绘)。通常,分辨率增强技术被布置成匹配光刻装置LA的图案化可能性。计算机系统CL还可以用于:检测光刻装置LA当前正在过程窗口内的哪个位置操作(例如,使用来自量测工具MT的输入),以预测是否由于例如次优处理而存在缺陷(在图3中由第二标尺SC2中的箭头指向“0”描绘)。
量测工具MT可以向计算机系统CL提供输入,以实现精确的仿真和预测,并且可以例如在光刻装置LA的校准状态中,向光刻装置LA提供反馈,以标识可能的漂移(在图3中由第三标尺SC3中的多个箭头描绘)。
光刻装置LA被配置成将图案精确地再现到衬底上。所施加的特征的位置和尺寸必须在一定的公差范围内。位置误差可能是由于重叠误差(overlay error)(通常称为“套刻”)引起的。套刻是相对于第二曝光期间的第二特征来放置第一曝光期间的第一特征的误差。光刻装置通过在图案化之前使每个晶片与参考精确对齐来最小化重叠误差。这是通过使用对齐传感器测量衬底上的对齐标记的位置,或者通过从曝光条件手段获得预期位置来完成的。关于对齐步骤的更多信息可以在美国专利申请公开号US20100214550中找到,其通过引用并入本文。例如,当衬底相对于光刻装置的焦平面未正确定位时,可能发生图案尺寸标注(例如,CD)误差。这些聚焦位置误差可以与衬底表面的不平坦有关。光刻装置通过在进行图案化之前使用水平传感器测量衬底表面形貌来最小化这些聚焦位置误差。在后续图案化期间,应用衬底高度校正,以确保图案形成装置到衬底上的正确成像(聚焦)。关于水平传感器系统的更多信息可以在美国专利申请公开号US20070085991中找到,其通过引用并入本文。
除了光刻装置LA和量测装置MT,在IC生产期间也可以使用其他处理装置。在将图案曝光到抗蚀剂中之后,蚀刻站(未示出)处理衬底。蚀刻站将图案从抗蚀剂转移到抗蚀剂层下面的一个或多个层中。通常,蚀刻是基于等离子体介质的施加。例如,使用衬底的温度控制或通过使用压控环来引导等离子体介质,可以控制局部蚀刻特性。关于蚀刻控制的更多信息可以在国际专利申请公开号WO2011081645和美国专利申请公开号US2006016561中找到,其通过引用并入本文。
在IC的制造期间,非常重要的是使用处理装置(诸如光刻装置或蚀刻站)来处理衬底的处理条件保持稳定,使得特征的性质保持在某些控制限制内。过程的稳定性对于IC功能部件的特征(产品特征)尤为重要。为了确保稳定的处理,过程控制能力需要就位。过程控制涉及对处理数据的监控和用于过程校正的手段的实施,例如基于处理数据的特性控制处理装置。过程控制可以是基于周期性测量,该周期性测量由通常被称为“高级过程控制”(另外也被称为APC)的量测装置MT进行。关于APC的更多信息可以在美国专利申请公开号US20120008127中找到,其通过引用并入本文。
通常的APC实施方式涉及对衬底上的量测特征进行周期性测量,以通过采取控制动作(如下所述)来监控和校正与一个或多个处理装置相关联的漂移。量测特征反映了产品特征对光刻工艺变化的响应。与产品特征相比,量测特征对过程变化的敏感性可以不同。在那种情况下,可以确定所谓的“对装置的量测”偏移(另外也被称为MTD)。为了模仿产品特征的行为,量测目标可以合并分段特征、辅助特征或具有特定几何形状和/或尺寸的特征。精心设计的量测目标应当以与产品特征类似的方式响应于过程变化。关于量测目标设计的更多信息可以在国际专利申请公开号WO2015101458中找到,其通过引用并入本文。
横跨衬底和/或图案形成装置(量测目标存在于衬底和/或图案形成装置上,并且被测量)的位置的分布通常被称为“采样方案”。通常,基于相关的过程参数的预期指纹来选择采样方案;与过程参数预期将稳定的区域相比,过程参数预期将发生波动的衬底上的区域通常被更密集地采样。此外,对的数目存在限制,基于所允许的量测测量对光刻过程的生产量的影响,可以执行这些数目的量测测量。精心选择的采样方案非常重要,以在不影响生产量、和/或在掩模版或衬底上不为量测特征分配太大的面积的情况下,能够准确控制光刻过程。与最佳定位和/或测量量测目标相关的技术通常称为“方案优化”。关于方案优化的更多信息能够在国际专利申请公开号WO2015110191和欧洲专利申请,申请号EP16193903.8中找到,其通过引用并入本文。
除了量测测量数据之外,上下文数据也可以用于过程控制。上下文数据可以包括与以下一个或多个有关的数据:所选择的处理工具(在处理装置的池之外)、处理装置的特定特性、处理装置的设定、电路图案的设计以及与处理条件(例如,晶片的几何形状)相关的测量数据。将上下文数据用于过程控制目的的示例可以在欧洲专利申请,申请号EP16156361.4和国际专利申请,申请号PCT/EP2016/072363中找到,其通过引用并入本文。在上下文数据涉及在当前控制的过程步骤之前执行的过程步骤的情况下,上下文数据可以用于以前馈方式控制或预测处理。通常,上下文数据与产品特征性质在统计上相关。鉴于实现最佳产品特征性质,这使得能够对处理装置进行上下文驱动的控制。上下文数据和量测数据也可以被组合,例如以将稀疏量测数据丰富到可以获取更详细(密集)数据的程度,这对于控制和/或诊断目的更加有用。关于组合上下文数据和量测数据的更多信息可以在美国专利临时申请号62/382,764中找到,其通过引用并入本文。
如所述的,对过程进行监控是基于获取与过程相关的数据。所需要的数据采样率(每批或每个衬底)和采样密度取决于所需要的图案再现的精确度水平。对于低k1光刻工艺,即使较小的衬底到衬底过程变化也可以显著。然后,上下文数据和/或量测数据需要实现针对每个衬底的过程控制。附加地,当过程变化引起跨衬底的特性变化时,上下文和/或量测数据需要跨衬底足够密集地分布。然而,鉴于过程的所需生产量,可用于量测(测量)的时间是有限的。该限制迫使,量测工具只可以在所选择的衬底和/或所选择的跨衬底的位置上进行测量。用于确定需要测量哪些衬底的策略在欧洲专利申请,申请号EP16195047.2和EP16195049.8中进一步描述,其通过引用并入本文。
在实践中,经常有必要从与过程参数(跨一个或多个衬底)有关的稀疏的测量值集中导出与衬底相关联的较密集的值映射图。通常,可以结合与过程参数的预期指纹相关联的模型,从稀疏测量数据中,导出这种密集的测量值映射图。关于建模测量数据的更多信息可以在国际专利申请公开号WO2013092106中找到,其通过引用并入本文。
发明人已经认识到,在生产环境中,校正光刻工艺中的误差的控制动作是动态的。它们可以随时间和/或逐批次地变化。尽管目标是实现每个场的稳定/静态校正,但对齐标记的测量位置和预期位置之间仍可能存在小的残留波动。例如,尽管当前的场内(过程)校正可以达到三阶多项式,并且可以逐场地变化,但对齐标记将获得平移偏移(translationoff-set)。因此,在测量的套刻趋势图中观察到的平移噪声可能直接与动态施加的(较高阶)过程校正相关联。
可以基于图4来考虑本文公开的示例性方法和装置。在图4a中,用于第一层的掩模版400a(阴影矩形)包括对齐标记402a。对齐标记402a包括一对线,其指示第二层掩模版404a(围绕第一层掩模版400a的阴影矩形的线)可以对齐的坐标(在这种情况下为0,0)。在图4a中,使用对齐标记402a将第二层掩模版404a相对于第一层掩模版400a完美地对齐。
然而,如图4b中所示,可以使第一层掩模版400b经受控制动作,以校正制造第一层的光刻工艺。可以在第一层的曝光期间实施控制动作。在图4b的示例中,控制动作包括放大率y-偏移406,其增加了曝光的掩模版400b的y尺寸。该控制动作可以是如上所述并且是本领域技术人员已知的APC校正的结果。控制动作可以是用于改善场几何性质的过程的一部分,并且可以具体地用于改善套刻参数。控制动作可以采取多种形式,并且放大率y-偏移仅用作示例。例如,控制动作可以包括以下中的任意一个或多个:提供场失真校正的透镜操纵器;提供场放大率校正的透镜操纵器;以及在时间上对台(台移动轮廓)进行控制以实现所需的特征的定位(示例:对台先进行加速然后再对台进行减速以有效地引起场Y的放大,因为扫描开始期间的特征比台在其最大速度时曝光的特征密度更低地分布)。
如前所述,对齐标记402a的位置在曝光作业或条件手段中被定义。由于所应用的控制动作,对齐标记位置可能偏离预期位置(例如,由条件手段定义)。这在图4b中示出,其中对齐标记402b由于放大率y-偏移406而经历了平移。平移可以被计算并且等于Δy=My·YField,其中My是在y轴中应用的放大率,并且YField是场坐标,作为示例,在这种情况下是(0,YField)。因此,对齐标记的真实位置为(0,Δy)。
如果第二层掩模版404b与对齐标记对齐,则由于在曝光第一层时采取的控制动作,第二层将相对于第一层被不正确地定位。第二层将基于曝光作业(或条件手段)中的设计的(预期的)对齐标记(0,YField)的坐标而被曝光。即,第二层掩模版404b相对于第一层掩模版400b的左下角对齐。这意味着除了预期的My套刻损失之外,还将观察到平移损失Ty=(0,Δy)。
发明人已经认识到,基于对控制动作的了解,第二层中的与第一层套刻相比的平移损失Ty可以被消除或至少被减轻。可以基于由于控制动作导致的平移Δy,例如,通过将平移Δy添加到对齐标记的预期位置(可以在曝光作业(或条件手段)中定义),来确定对齐标记402b在曝光的第一层中的位置。
可以基于所确定的对齐标记的平移来重新对齐第二层掩模版402b。在图4中所示的情况下,这导致第二掩模版402b在y方向上移动到由阴影矩形408所示的位置。如果在第二层的曝光中也采用应用于第一层掩模版402的控制动作(例如,场放大率y-偏移),则所测量的套刻损失不会被控制动作影响(或效果会降低)。在该示例中,场放大率被用于说明该思想,但是其他的控制动作被所公开的方法涵盖。
通常,用于第一和/或第二层400a、400b、404a、404b的掩模版包括产品特征以及对齐标记402a、402b,尽管这对于本文公开的布置的实施不是必需的。
图5示出了用于在衬底上曝光第一和第二层的方法的流程图。图5的方法包括用于确定施加到衬底的区域的对齐标记的位置的方法。
作为第一步,将第一层曝光500到衬底上,尽管这不是必要步骤,并且不必包括在本文公开的方法中。第一层可以使用本文公开的装置或其他装置来曝光,并且包括对齐标记。在大多数实际实施方式中,第一层还包括用于制造器件的产品特征,尽管这不是必需的。而且,衬底的区域可以是场。
如上所述,可以使第一层的曝光经受控制动作,以校正用于曝光第一层的光刻工艺中的误差。如上所述,可以基于由量测装置获得的量测数据来确定控制动作。在一个特定示例中,可以将控制动作确定为APC策略的一部分。控制动作可以校正由光刻装置引入到光刻工艺中的一个或多个误差,诸如由以下中的任一项引入:光刻装置的透镜的加热;光刻装置内的掩模版的加热;以及衬底的加热。控制动作可以用于校正诸如重叠误差的场几何性质。
获得502对齐标记的预期位置。这通常通过参考曝光作业(或条件手段)来完成。预期位置可以是坐标或其他参考,其基于在第一层的曝光期间使用的掩模版来定义对齐标记在衬底的区域中的位置。预期位置可以假设未采取任何控制措施。
基于在第一层的曝光期间采取的控制动作,可以确定504由控制动作导致的第一层的几何变形。这可以通过计算来完成,如上面参考图4所讨论的。备选地,可以通过测量对齐标记在曝光的第一层中的位置来确定几何变形。基于几何变形确定506对齐标记的平移。可以基于所确定的平移来确定508对齐标记的真实位置。
在一些示例性布置中,所确定的对齐标记的真实位置可以用于在第二层被曝光512之前对衬底进行对齐510。
在一些示例性布置中,衬底在第二层的曝光之前的对齐可以考虑与在第一层的曝光期间进行的控制动作相同的控制动作。在其他示例性布置中,衬底在第二层的曝光之前的对齐可以是基于第二控制动作,第二控制动作将在曝光第二层时进行并且与第一层的控制动作不同。在另外的布置中,衬底的区域可以是场,并且可以基于与第一场相关联的第一控制动作来确定对齐标记的真实位置,并且方法还可以包括基于另外的控制动作来更新所确定的真实位置,该另外的控制动作与另外的场相关联并且可以不同于第一控制动作。
本发明还可应用于防止所施加的场校正与晶片校正之间的串扰。当场校正因场而异时,就是这种情况。示例为透镜加热、掩模版加热、可能逐场变化的更高阶过程校正、基线校正。除了平移以外,其他晶片参数也会受到影响。在一些示例性布置中,由于在单个晶片的曝光期间出现的热效应,可能出现依赖于时间的场几何形状改变。实际上,由于每个场在略微不同的时间被曝光,因此晶片上的每个场可能稍微不同地变形。因此,在实践中,每个场将接受专门的控制动作(每次曝光控制=CPE),因此对齐标记平移稍有不同。因此,跨第一层的标记移动(平移)不是常数,而是场(索引)的函数。对于第二次曝光(第二层),需要考虑这一点,同时还要考虑加热对特征到第二层的定位的潜在影响。
在下面的编号实施例的列表中公开了本公开的另外的实施例:
1.一种用于确定对齐标记的位置的方法,所述对齐标记使用光刻工艺而被施加到衬底上的第一层的区域,所述方法包括:
获得所述对齐标记的预期位置;
获得由于校正所述光刻工艺的控制动作导致的所述区域的几何变形;
获得由于所述几何变形导致的所述对齐标记的平移;以及
基于所述预期位置和所述平移确定所述对齐标记的所述位置。
2.根据实施例1所述的方法,其中所述控制动作已经基于由量测装置获得的量测数据被确定。
3.根据实施例1或2所述的方法,其中所述控制动作已经被确定为高级过程控制(APC)策略的一部分。
4.根据任一前述实施例所述的方法,其中所述控制动作包括与以下中的一个或多个有关的因素:光刻装置的透镜的加热;光刻装置内的掩模版的加热;以及衬底的加热。
5.根据任一前述实施例所述的方法,其中所述对齐标记的所述位置基于与第一场相关联的控制动作来确定,
并且还包括基于与第二场相关联的控制动作来更新所述对齐标记的所述确定的位置。
6.根据实施例5所述的方法,其中与第一场相关联的所述控制动作不同于与第二场相关联的所述控制动作。
7.根据任一前述实施例所述的方法,其中所述控制动作用于校正所述光刻工艺的场几何性质。
8.根据实施例7所述的方法,其中所述场几何性质包括套刻。
9.根据任一前述实施例所述的方法,其中所述对齐标记的所述预期位置从曝光条件手段获得。
10.根据任一前述实施例所述的方法,其中获得所述区域的所述几何变形包括:在曝光所述第一层之后,测量所述对齐标记的位置,和/或基于所述控制动作来计算所述区域的所述几何变形。
11.根据任一前述实施例所述的方法,还包括曝光在所述衬底上的包括所述对齐标记的所述第一层。
12.一种用于定位经受光刻工艺的衬底的方法,包括:根据任一前述实施例确定作为第一层的一部分制造的对齐标记在所述衬底上的位置,并且还包括基于所述对齐标记的所述确定的位置来定位所述衬底。
13.根据实施例12所述的方法,还包括曝光所述衬底的第二层。
14.一种用于确定对齐标记的位置的装置,所述对齐标记使用光刻工艺而被施加到衬底上的第一层的区域,所述装置包括处理器,所述处理器被配置成执行计算机程序代码以采取以下方法:
获得所述对齐标记的预期位置;
获得由于校正所述光刻工艺的控制动作导致的所述区域的几何变形;
获得由于所述几何变形导致的所述对齐标记的平移;以及
基于所述预期位置和所述平移确定所述对齐标记的所述位置。
15.根据实施例14所述的装置,其中所述控制动作已经基于由量测装置获得的量测数据被确定。
16.根据实施例14或15所述的装置,其中所述控制动作已经被确定为高级过程控制(APC)策略的一部分。
17.根据实施例14至16中任一项所述的装置,其中所述控制动作包括与以下中的一个或多个有关的因素:光刻装置的透镜的加热;光刻装置内的掩模版的加热;以及衬底的加热。
18.根据实施例14至17中任一项所述的装置,其中所述对齐标记的所述位置基于与第一场相关联的控制动作来确定,
所述方法还包括基于与第二场相关联的控制动作来更新所述对齐标记的所述确定的位置。
19.根据实施例18所述的装置,其中与第一场相关联的所述控制动作不同于与第二场相关联的所述控制动作。
20.根据实施例14至19中任一项所述的装置,其中所述控制动作用于校正所述光刻工艺的场几何性质。
21.根据实施例20所述的装置,其中所述场几何特性包括套刻。
22.根据实施例14至21中任一项所述的装置,其中所述对齐标记的所述预期位置从曝光条件手段获得。
23.根据实施例14至22中任一项所述的装置,其中获得所述区域的所述几何变形包括:在曝光所述第一层之后,测量所述对齐标记的位置,和/或基于所述控制动作来计算所述区域的所述几何变形。
24.根据实施例14至23中任一项所述的装置,所述方法还包括曝光在所述衬底上的包括所述对齐标记的所述第一层。
25.一种用于对经受光刻工艺的衬底进行定位的装置,所述装置包括处理器,所述处理器被配置成执行计算机程序代码以进行一方法,所述方法包括:根据实施例1至13中的任一项,确定作为第一层的一部分制造的对齐标记在所述衬底上的位置,并且还包括控制所述装置以基于所述对齐标记的所述确定的位置来定位所述衬底。
26.根据实施例25所述的装置,其中所述方法还包括曝光所述衬底的第二层。
27.一种计算机程序,包括指令,所述指令在至少一个处理器上执行时,使得所述至少一个处理器控制装置以实施根据实施例1至13中任一项所述的方法。
28.一种载体,包含根据实施例27所述的计算机程序,其中所述载体是电子信号、光学信号、无线电信号或非暂态计算机可读存储介质中的一个。
29.一种量测装置,包括根据实施例14至26中任一项所述的装置。
30.一种光刻装置,包括根据实施例29所述的量测装置。
31.一种光刻单元,包括根据实施例30所述的装置。
计算机程序可以被配置成提供上文描述的方法中的任何一个。该计算机程序可以被提供在计算机可读介质上。计算机程序可以是计算机程序产品。该产品可以包括非暂态计算机可用储存介质。该计算机程序产品可以具有被实施在配置成执行方法的介质中的计算机可读程序代码。计算机程序产品可以被配置成使得至少一个处理器执行方法中的一些或全部。
各种方法和装置在本文中参考计算机实施的方法、装置(系统和/或装置)和/或计算机程序产品的框图或流程图进行描述。应当理解,框图和/或流程图的框以及框图和/或流程图中的框的组合可以通过由一个或多个计算机电路执行的计算机程序指令来实施。可以将这些计算机程序指令提供给通用计算机电路、专用计算机电路和/或其它可编程数据处理电路的处理器电路,以产生机器,使得经由计算机的处理器和/或其它可编程数据处理装置的处理器执行的指令对以下各项进行变换和控制:晶体管、储存在存储器位置中的值以及这种电路装置中的其它硬件组件,以实施框图和/或流程图的一个或多个框中指定的功能/动作,从而产生用于实施框图和/或流程图的框中指定的功能/动作的部件(功能)和/或结构。
计算机程序指令也可以被储存在计算机可读介质中,该计算机可读介质可以引导计算机或其它可编程数据处理装置以特定方式起作用,使得储存在计算机可读介质中的指令产生制品,制品包括实施框图和/或流程图的一个或多个框中指定的功能/动作的指令。
有形的非暂态计算机可读介质可以包括电子、磁性、光学、电磁或半导体数据储存系统、装置或设备。计算机可读介质的更具体的示例包括以下:便携式计算机磁盘、随机存取存储器(RAM)电路、只读存储器(ROM)电路、可擦可编程只读存储器(EPROM或闪存)电路、便携式光盘只读存储器(CD-ROM)和便携式数字视频光盘只读存储器(DVD/Blu-ray)。
计算机程序指令也可以被加载到计算机和/或其它可编程数据处理装置上,以使得在该计算机和/或其它可编程装置上执行一系列操作步骤以产生计算机实施的过程,使得在该计算机或其它可编程装置上执行的指令提供用于实施框图和/或流程图的一个或多个框中指定的功能/动作的步骤。
因此,本发明可以被实施在在硬件和/或处理器上运行的软件(包括固件、常驻软件、微代码等)上,处理器可以被统称为“电路装置”、“模块”或其变型。
还应当注意,在一些备选实施方式中,框中标注的功能/动作可以不按照流程图中标注的顺序发生。例如,根据所涉及的功能/动作,实际上可以基本同时执行连续示出的两个框,或者有时可以以相反的顺序执行这些框。此外,流程图和/或框图的给定框的功能可以被分成多个框,和/或流程图和/或框图的两个以上框的功能可以被至少部分地集成。最后,可以在所图示的框之间添加/插入其它框。
在不会脱离所附权利要求的范围的情况下,本领域技术人员将能够预期其他实施例。

Claims (15)

1.一种用于确定对齐标记的位置的方法,所述对齐标记使用光刻工艺而被施加到衬底上的第一层的区域,所述方法包括:
获得所述对齐标记的预期位置;
获得所述区域的由校正所述光刻工艺的控制动作导致的几何变形;
获得所述对齐标记的由所述几何变形导致的平移;以及
基于所述预期位置和所述平移,确定所述对齐标记的所述位置。
2.根据权利要求1所述的方法,其中所述控制动作已经基于由量测装置获得的量测数据被确定。
3.根据权利要求1所述的方法,其中所述控制动作已经被确定为高级过程控制(APC)策略的一部分。
4.根据权利要求1所述的方法,其中所述控制动作包括与以下项中的一个或多个有关的因素:光刻装置的透镜的加热;光刻装置内的掩模版的加热;以及所述衬底的加热。
5.根据权利要求1所述的方法,其中所述对齐标记的所述位置基于与第一场相关联的控制动作被确定,
并且还包括基于与第二场相关联的控制动作来更新所述对齐标记的所确定的位置。
6.根据权利要求5所述的方法,其中与第一场相关联的所述控制动作不同于与第二场相关联的所述控制动作。
7.根据权利要求1所述的方法,其中所述控制动作用于校正所述光刻工艺的场几何性质。
8.根据权利要求7所述的方法,其中所述场几何性质包括套刻。
9.根据权利要求1所述的方法,其中所述对齐标记的所述预期位置被从曝光条件手段中获得。
10.根据权利要求1所述的方法,其中获得所述区域的所述几何变形包括:在曝光所述第一层之后,测量所述对齐标记的位置,和/或基于所述控制动作来计算所述区域的所述几何变形。
11.根据权利要求1所述的方法,还包括曝光在所述衬底上的包括所述对齐标记的所述第一层。
12.一种用于定位经受光刻工艺的衬底的方法,包括:根据权利要求1所述的方法确定作为第一层的一部分而被制造的对齐标记在所述衬底上的位置,并且还包括基于所述对齐标记的所确定的位置来定位所述衬底。
13.根据权利要求12所述的方法,还包括曝光所述衬底的第二层。
14.一种用于确定对齐标记的位置的装置,所述对齐标记使用光刻工艺而被施加到衬底上的第一层的区域,所述装置包括处理器,所述处理器被配置成执行计算机程序代码以执行以下方法:
获得所述对齐标记的预期位置;
获得所述区域的由校正所述光刻工艺的控制动作导致的几何变形;
获得所述对齐标记的由所述几何变形导致的平移;以及
基于所述预期位置和所述平移,确定所述对齐标记的所述位置。
15.一种计算机可读存储介质,包括计算机程序,所述计算机程序包括指令,所述指令在至少一个处理器上被执行时,使得所述至少一个处理器控制装置以实施根据权利要求1所述的方法。
CN201980015650.4A 2018-02-27 2019-02-06 光刻工艺中的对齐标记定位 Active CN111771167B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP18158779.1A EP3531207A1 (en) 2018-02-27 2018-02-27 Alignment mark positioning in a lithographic process
EP18158779.1 2018-02-27
PCT/EP2019/052839 WO2019166201A1 (en) 2018-02-27 2019-02-06 Alignment mark positioning in a lithographic process

Publications (2)

Publication Number Publication Date
CN111771167A CN111771167A (zh) 2020-10-13
CN111771167B true CN111771167B (zh) 2023-12-19

Family

ID=61386765

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201980015650.4A Active CN111771167B (zh) 2018-02-27 2019-02-06 光刻工艺中的对齐标记定位

Country Status (6)

Country Link
US (1) US11294294B2 (zh)
EP (2) EP3531207A1 (zh)
KR (1) KR102481770B1 (zh)
CN (1) CN111771167B (zh)
TW (1) TWI700562B (zh)
WO (1) WO2019166201A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11481922B2 (en) * 2020-04-07 2022-10-25 Kla Corporation Online navigational drift correction for metrology measurements

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017009166A1 (en) * 2015-07-16 2017-01-19 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method

Family Cites Families (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4053723B2 (ja) * 2000-09-27 2008-02-27 株式会社東芝 露光用マスクの製造方法
JP2003031477A (ja) * 2001-07-17 2003-01-31 Hitachi Ltd 半導体装置の製造方法およびシステム
JP3977324B2 (ja) 2002-11-12 2007-09-19 エーエスエムエル ネザーランズ ビー.ブイ. リソグラフィ装置
KR100610010B1 (ko) 2004-07-20 2006-08-08 삼성전자주식회사 반도체 식각 장치
US7408618B2 (en) * 2005-06-30 2008-08-05 Asml Netherlands B.V. Lithographic apparatus substrate alignment
US7239371B2 (en) 2005-10-18 2007-07-03 International Business Machines Corporation Density-aware dynamic leveling in scanning exposure systems
NL1036351A1 (nl) 2007-12-31 2009-07-01 Asml Netherlands Bv Alignment system and alignment marks for use therewith cross-reference to related applications.
KR101841378B1 (ko) 2009-12-15 2018-03-22 램 리써치 코포레이션 Cd 균일성을 향상시키기 위한 기판 온도의 조절
EP2392970A3 (en) * 2010-02-19 2017-08-23 ASML Netherlands BV Method and apparatus for controlling a lithographic apparatus
US9177219B2 (en) 2010-07-09 2015-11-03 Asml Netherlands B.V. Method of calibrating a lithographic apparatus, device manufacturing method and associated data processing apparatus and computer program product
NL2007615A (en) 2010-11-30 2012-05-31 Asml Netherlands Bv Method of operating a patterning device and lithographic apparatus.
NL2009719A (en) * 2011-12-02 2013-06-05 Asml Netherlands Bv Alignment mark deformation estimating method, substrate position predicting method, alignment system and lithographic apparatus.
NL2009853A (en) 2011-12-23 2013-06-26 Asml Netherlands Bv Methods and apparatus for measuring a property of a substrate.
NL2010691A (en) * 2012-05-29 2013-12-02 Asml Netherlands Bv A method to determine the usefulness of alignment marks to correct overlay, and a combination of a lithographic apparatus and an overlay measurement system.
US10401279B2 (en) * 2013-10-29 2019-09-03 Kla-Tencor Corporation Process-induced distortion prediction and feedforward and feedback correction of overlay errors
WO2015101458A1 (en) 2013-12-30 2015-07-09 Asml Netherlands B.V. Method and apparatus for design of a metrology target
NL2013677A (en) 2014-01-24 2015-07-29 Asml Netherlands Bv Method of determining a measurement subset of metrology points on a substrate, associated apparatus and computer program.
US10509329B2 (en) * 2014-09-03 2019-12-17 Kla-Tencor Corporation Breakdown analysis of geometry induced overlay and utilization of breakdown analysis for improved overlay control
TWI703402B (zh) 2015-03-25 2020-09-01 日商尼康股份有限公司 布局方法、標記檢測方法、曝光方法、測量裝置、曝光裝置、以及元件製造方法
CN108369412B (zh) 2015-10-08 2020-10-16 Asml荷兰有限公司 用于控制工业过程的方法和设备
JP6630839B2 (ja) 2016-02-18 2020-01-15 エーエスエムエル ネザーランズ ビー.ブイ. リソグラフィ装置、デバイス製造方法ならびに関連データ処理装置およびコンピュータプログラム製品
KR102350572B1 (ko) 2016-02-22 2022-01-11 에이에스엠엘 네델란즈 비.브이. 계측 데이터에 대한 기여도들의 분리
CN113467195A (zh) 2016-05-12 2021-10-01 Asml荷兰有限公司 获得测量的方法、用于执行过程步骤的设备和计量设备
EP3255493A1 (en) * 2016-06-08 2017-12-13 ASML Netherlands B.V. Method of determining pellicle compensation corrections for a lithographic process, metrology apparatus and computer program
EP3309617A1 (en) 2016-10-14 2018-04-18 ASML Netherlands B.V. Selecting a set of locations associated with a measurement or feature on a substrate
EP3312672A1 (en) 2016-10-21 2018-04-25 ASML Netherlands B.V. Methods of determining corrections for a patterning process, device manufacturing method, control system for a lithographic apparatus and lithographic apparatus
EP3312693A1 (en) 2016-10-21 2018-04-25 ASML Netherlands B.V. Methods & apparatus for controlling an industrial process
CN107561875B (zh) 2017-09-06 2019-12-24 上海华力微电子有限公司 一种套刻误差量测和问题评估的方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017009166A1 (en) * 2015-07-16 2017-01-19 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method

Also Published As

Publication number Publication date
US11294294B2 (en) 2022-04-05
US20210048758A1 (en) 2021-02-18
EP3759552A1 (en) 2021-01-06
KR102481770B1 (ko) 2022-12-26
CN111771167A (zh) 2020-10-13
TWI700562B (zh) 2020-08-01
KR20200111243A (ko) 2020-09-28
WO2019166201A1 (en) 2019-09-06
TW201942689A (zh) 2019-11-01
EP3531207A1 (en) 2019-08-28

Similar Documents

Publication Publication Date Title
KR102269301B1 (ko) 리소그래피 방법 및 리소그래피 장치
US20220236647A1 (en) Method for controlling a semiconductor manufacturing process
JP7198912B2 (ja) 基板全体の面内ディストーション(ipd)を決定する方法、及びコンピュータプログラム
CN111771167B (zh) 光刻工艺中的对齐标记定位
US11809088B2 (en) Method for controlling a lithographic apparatus
US20220365450A1 (en) Non-correctable error in metrology
TWI811952B (zh) 度量衡方法及設備
KR20190124787A (ko) 기판 내의 응력을 결정하는 방법들, 리소그래피 공정을 제어하는 제어 시스템, 리소그래피 장치 및 컴퓨터 프로그램 제품
EP3848757A1 (en) Method for controlling a lithographic apparatus
EP3786711A1 (en) Non-correctable error in metrology
EP3702840A1 (en) Alignment method and associated metrology device
EP3617800A1 (en) Method and apparatus for configuring spatial dimensions of a beam during a scan
WO2023198376A1 (en) Methods of metrology and associated devices
NL2024657A (en) Method for controlling a lithographic apparatus
WO2023198381A1 (en) Methods of metrology and associated devices
WO2023160972A1 (en) Height measurement sensor
CN116888460A (zh) 半导体制造过程的量测偏差的预测方法
WO2019219285A1 (en) Estimating a parameter of a substrate

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant