CN111769777A - 永磁同步电机离散域电流环二自由度控制方法 - Google Patents

永磁同步电机离散域电流环二自由度控制方法 Download PDF

Info

Publication number
CN111769777A
CN111769777A CN202010500673.9A CN202010500673A CN111769777A CN 111769777 A CN111769777 A CN 111769777A CN 202010500673 A CN202010500673 A CN 202010500673A CN 111769777 A CN111769777 A CN 111769777A
Authority
CN
China
Prior art keywords
current
permanent magnet
magnet synchronous
synchronous motor
stator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202010500673.9A
Other languages
English (en)
Other versions
CN111769777B (zh
Inventor
杨淑英
王奇帅
谢震
张兴
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hefei University of Technology
Original Assignee
Hefei University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hefei University of Technology filed Critical Hefei University of Technology
Priority to CN202010500673.9A priority Critical patent/CN111769777B/zh
Publication of CN111769777A publication Critical patent/CN111769777A/zh
Application granted granted Critical
Publication of CN111769777B publication Critical patent/CN111769777B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/22Current control, e.g. using a current control loop
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/0003Control strategies in general, e.g. linear type, e.g. P, PI, PID, using robust control

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Ac Motors In General (AREA)

Abstract

本发明涉及永磁同步电机控制领域,具体涉及一种永磁同步电机离散域电流环二自由度控制方法。该方法通过永磁同步电机在旋转dq坐标系下的离散域数学模型的系数矩阵F和输入矩阵G,设计电流控制器,并考虑了补偿数字控制一拍延迟造成的角度滞后问题。本发明使得永磁同步电机电流环跟随快速性的设计不受抗扰性能的约束,而且额外参数自由度的引入能够实现抗扰性能的主动配置,同时较好地克服了永磁同步电机电流跟踪快速性和参数鲁棒性之间的矛盾,在获得快速或最少拍电流响应的同时,较大程度地提升了系统的参数鲁棒性,进而提升了永磁同步电机电流控制系统的运行品质。

Description

永磁同步电机离散域电流环二自由度控制方法
技术领域
本发明涉及永磁同步电机控制领域,具体涉及一种永磁同步电机离散域电流环二自由度控制方法。
背景技术
永磁同步电机因其高效率、高功率密度和比功率、高起动转矩等特点被广泛应用于新能源汽车和工业伺服系统等高性能驱动场合。多年来,基于转子磁场定向同步旋转坐标系下的比例积分(PI)控制器,因其调速范围宽,零稳态误差等优点,一直是交流电机电流控制的工业标准。然而,当前常用电流控制器在面向高速低载波比运行状态时会出现以下几方面的问题:1)d、q轴子系统间因旋转坐标变换而引入的交叉耦合扰动项随着运行转速的增高而增高,甚至成为d、q轴电流分量的主要决定因素,给d、q轴子系统控制性能带来较大扰动;2)受功率器件容许开关频率和散热条件的限制,高转速运行对应的载波比较低,使得离散化误差凸显,采样和控制延时影响加剧,严重时甚至导致系统失稳。
基于电机离散域数学模型,直接在离散域设计控制器,成为提升电机控制系统低载波比运行性能的有效途径。近年来,随着永磁同步电机高速化运行需求的增加,离散域控制系统设计受到重视。
参考文献1:“Discrete-time current regulator design for ac machinedrives,”(H.Kim,M.W.Degner,J.M.Guerrero,F.Briz,and R.D.Lorenz,IEEETransactions on Industry Applications,vol.46,no.4,pp.1425–1435,July 2010.)(“交流电机驱动离散域电流调节器设计”(H.Kim,M.W.Degner,J.M.Guerrero,F.Briz,andR.D.Lorenz,电气和电子工程师协会工业应用学报,2010第46卷第4期1425-1435页))的文章。该文章给出了表贴式永磁同步电机电流环的离散化数学模型,同时基于该模型直接在离散域中按照零极点对消原理设计了电流控制器。此方法较好地提升了表贴式永磁同步电机高速低载波比运行时的跟随性能,但却无法兼顾系统的抗扰性能,致使其跟随性能在实际应用中亦然不高。另外,该设计方案不适用于内置式永磁同步电机电流控制器设计。
参考文献2:“A synchronous reference frame PI current controller withdead beat response”(Claudio A.Busada,Sebastian Gomez Jorge
Figure BDA0002524565770000021
and JorgeA.Solsona,IEEE Transactions on Power Electronics,vol.35,no.3,pp.3097-3105,March 2020.)(“一种具有最少拍响应的同步参考坐标系PI电流控制器”(ClaudioA.Busada,Sebastian Gomez Jorge
Figure BDA0002524565770000022
and Jorge A.Solsona,电气和电子工程师协会电力电子学报,2020第35卷第3期3097-3105页))的文章。该文章基于表贴式永磁同步电机电流环的离散化数学模型,在离散域设计了二自由度电流控制器,此方法解决了表贴式永磁同步电机在低载波比条件下系统跟随性能降低的问题,而且可实现电流环的最少拍响应,同时改善了系统的抗扰性能,增加了系统的控制自由度。但对于内置式永磁同步电机难以直接适用。
参考文献3:“Current Control for Synchronous Motor Drives:DirectDiscrete-Time Pole-Placement Design”(M.Hinkkanen,H.Asad Ali Awan,Z.Qu,T.Tuovinen and F.Briz,IEEE Transactions on Industry Applications,vol.52,no.2,pp.1530-1541,March-April 2016.)(“同步电机驱动系统的电流控制:直接离散域极点配置设计”(M.Hinkkanen,H.Asad Ali Awan,Z.Qu,T.Tuovinen and F.Briz,电气和电子工程师协会工业应用学报,2016第52卷第2期1530-1541页))的文章。该文章给出了内置式永磁同步电机电流环的离散化数学模型,基于该模型在离散域设计了结构改进的电流控制器,此方法解决了内置式永磁同步电机在低载波比条件下系统跟随性能降低的问题,而且理论上可实现电流环的最少拍响应,但实际跟随响应速度受到抗扰性能和参数鲁棒性的制约,致使其实际运行效果不佳。
综上所述,现有技术存在以下问题:
1、内置式永磁同步电机气隙不均匀使得交、直轴电感不相等,无法用复矢量技术将永磁电机电压模型简化为单输入单输出模型,而现有离散域设计方案多以复矢量描述的单输入单输出控制对象为基础,电流控制器离散域设计方案不适用于内置式永磁同步电机;
2、参考文献3报道的针对内置式永磁同步电机离散域电流控制器设计,存在电流环跟随性能与抗扰性能不能同时兼顾的问题,且在实际使用中参数偏差严重制约着所容许的控制带宽,系统参数鲁棒性不足。
发明内容
本发明所要解决的技术问题在于如何在高速低载波比条件下实现具有强参数鲁棒性的内置式永磁同步电机电流环跟随性和抗扰性的二自由度设计,从而在获得快速电流跟随响应的同时,兼顾电流控制系统的抗扰特性和参数鲁棒性。
本发明的目的是这样实现的,本发明提供了一种永磁同步电机离散域电流环二自由度控制方法,包括下述步骤:
步骤1,采集永磁同步电机的转子电角速度ωe和转子电角度θe,采集永磁同步电机的定子A相电流ia、定子B相电流ib、定子C相电流ic,再经过坐标变换得到永磁同步电机在旋转dq坐标系下的定子电流dq分量id,iq
步骤2,记id,ref为d轴给定电流、iq,ref为q轴给定电流、
Figure BDA0002524565770000031
为电流控制器d轴输出电压、
Figure BDA0002524565770000032
为电流控制器q轴输出电压、在离散域中通过复变量z,在z域中设计电流控制器,电流控制器的表达式如下:
Figure BDA0002524565770000033
其中,
Figure BDA0002524565770000034
表示积分作用,z-1表示延迟一拍;
Kp为比例系数矩阵,Kp=G-11β212+1);
Ki为积分系数矩阵,Ki=G-1(1-α1)(β1β212+1);
M为电流反馈系数矩阵,M=G-1(F2-(α112-1)F+α112-1)I);
A为电流控制器延迟输出反馈系数矩阵,A=G-1(F-(α112-1)I)G;
在比例系数矩阵Kp、积分系数矩阵Ki、电流反馈系数矩阵M和电流控制器延迟输出反馈系数矩阵A中,
I为单位矩阵,
Figure BDA0002524565770000041
β1为控制系统期望的跟随和抗扰闭环极点一,β2为控制系统期望的跟随和抗扰闭环极点二,α1为控制系统期望的抗扰闭环极点三,β1,β2,α1的取值满足限制:0≤β1<1,0≤β2<1,0≤α1<1;
F为永磁同步电机在旋转dq坐标系下的离散域数学模型的系数矩阵,记为系数矩阵F;
G为永磁同步电机在旋转dq坐标系下的离散域数学模型的输入矩阵,记为输入矩阵G;
步骤3,求解步骤2的电流控制器表达式得到电流控制器d轴输出电压
Figure BDA0002524565770000042
和电流控制器q轴输出电压
Figure BDA0002524565770000043
经过坐标变换并补偿数字控制一拍延迟造成的角度滞后得到静止αβ坐标系下的α轴输出电压uα,ref和β轴输出电压uβ,ref,其表达式为:
Figure BDA0002524565770000044
其中,Ts为采样周期;
步骤4,将步骤3获得的α轴输出电压uα,,ref和β轴输出电压uβ,,ref输入SVPWM模块进行空间矢量脉宽调制,输出PWM波至逆变器模块。
优选地,步骤1所述永磁同步电机在旋转dq坐标系下的定子电流dq分量id,iq的获取方式如下:
步骤1.1,采集永磁同步电机的定子A相电流ia、定子B相电流ib、定子C相电流ic
步骤1.2,对步骤1.1采集得到的永磁同步电机定子A相电流ia、定子B相电流ib、定子C相电流ic进行三相静止坐标系到两相静止坐标系的变换得到永磁同步电机在两相静止αβ坐标系下的定子电流αβ分量iα,iβ
Figure BDA0002524565770000051
步骤1.3,将步骤1.2得到的永磁同步电机在两相静止αβ坐标系下的定子电流αβ分量iα,iβ进行两相静止坐标系到旋转坐标系的变换得到永磁同步电机在旋转dq坐标系下的定子电流dq分量id,iq
Figure BDA0002524565770000052
优选地,步骤2所述系数矩阵F和输入矩阵G的计算如下:
(1)系数矩阵F的表达式如下:
Figure BDA0002524565770000053
其中,Ld为定子直轴电感,Lq为定子交轴电感,Φ11为系数矩阵F中的变量1,Φ12为系数矩阵F中的变量2,Φ21为系数矩阵F中的变量3,Φ21=-Φ12,Φ22为系数矩阵F中的变量4;
Figure BDA0002524565770000054
Figure BDA0002524565770000055
Figure BDA0002524565770000061
在上述3个公式中,
Figure BDA0002524565770000062
为指数函数运算,sinh(),cosh()为双曲函数运算,Rs为定子电阻;
(2)输入矩阵G的表达式如下:
Figure BDA0002524565770000063
其中,γ11为输入矩阵G中的变量1,γ12为输入矩阵G中的变量2,γ21为输入矩阵G中的变量3,γ22为输入矩阵G中的变量4,其表达式分别如下:
Figure BDA0002524565770000064
Figure BDA0002524565770000065
Figure BDA0002524565770000071
Figure BDA0002524565770000072
与现有技术相比,本发明的有益效果体现在:
1、与传统表贴式永磁同步电机离散域电流控制器相比,本发明利用基于内置式永磁同步电机离散域数学模型进行设计,设计结果适用于表贴式永磁同步电机和内置式永磁同步电机;
2、与参考文献3中的内置式永磁同步电机离散域电流控制器相比,本发明所设计的电流控制器,具有额外参数自由度,不仅使得跟随快速性的设计不受抗扰性能的约束,而且额外参数自由度的引入能够实现抗扰性能的主动配置;
3、与参考文献3中内置式永磁同步电机离散域电流控制器相比,本发明所设计的电流控制器,通过额外参数自由度的合理配置能够实现稳定区域明显增大,即便在最少拍跟随响应设计参数下,亦然能够确保控制系统的参数鲁棒性。
附图说明
图1为本发明中永磁同步电机电流环控制系统的控制框图。
图2为本发明中永磁同步电机电流控制器结构框图。
图3为本发明中永磁同步电机电流环控制系统在旋转dq坐标系下的等效结构框图。
图4为电机运行在额定频率,电机电感参数准确情况下,参考文献3所述技术方案电流环带宽为100Hz时的电流响应仿真图。
图5为电机运行在额定频率,电机电感参数准确情况下,本发明技术方案的电流响应仿真图1(控制系统期望的跟随和抗扰闭环极点一β1=0,控制系统期望的跟随和抗扰闭环极点二β2=0.7304,控制系统期望的抗扰闭环极点三α1=0.7304,对应电流环带宽为100Hz)。
图6为电机运行在额定频率,电机电感参数准确情况下,本发明技术方案的电流响应仿真图2(控制系统期望的跟随和抗扰闭环极点一β1=0,控制系统期望的跟随和抗扰闭环极点二β2=0.7304,控制系统期望的抗扰闭环极点三α1=0.3,对应电流环带宽为100Hz)。
图7为电机运行在额定频率,电机电感参数准确情况下,本发明技术方案的电流响应仿真图3(选择控制系统期望的跟随和抗扰闭环极点一β1=0,控制系统期望的跟随和抗扰闭环极点二β2=0.7304,控制系统期望的抗扰闭环极点三α1=0,对应电流环带宽为100Hz)。
图8为电机运行在额定频率,定子交轴电感Lq发生偏差情况下,参考文献3所述技术方案配置为最少拍响应情况下的电流响应仿真图。
图9为电机运行在额定频率,定子交轴电感Lq发生偏差情况下,本发明技术方案配置为最少拍响应情况下的电流响应仿真图(控制系统期望的跟随和抗扰闭环极点一β1=0,控制系统期望的跟随和抗扰闭环极点二β2=0,控制系统期望的抗扰闭环极点三α1=0.8)。
具体实施方式
下面结合附图和实施例,对本发明永磁同步电机离散域电流环二自由度控制方法进行详细说明。
图1为本发明中永磁同步电机电流环控制系统的控制框图,图2为本发明中永磁同步电机电流控制器结构框图,图3为本发明中永磁同步电机电流环控制系统在旋转dq坐标系下的等效结构框图。由图1、图2和图3可见,本发明包括下述步骤:
步骤1,采集永磁同步电机的转子电角速度ωe和转子电角度θe,采集永磁同步电机的定子A相电流ia、定子B相电流ib、定子C相电流ic,再经过坐标变换得到永磁同步电机在旋转dq坐标系下的定子电流dq分量id,iq
步骤1.1,采集永磁同步电机的定子A相电流ia、定子B相电流ib、定子C相电流ic
步骤1.2,对步骤1.1采集得到的永磁同步电机定子A相电流ia、定子B相电流ib、定子C相电流ic进行三相静止坐标系到两相静止坐标系的变换得到永磁同步电机在两相静止αβ坐标系下的定子电流αβ分量iα,iβ
Figure BDA0002524565770000091
步骤1.3,将步骤1.2得到的永磁同步电机在两相静止αβ坐标系下的定子电流αβ分量iα,iβ进行两相静止坐标系到旋转坐标系的变换得到永磁同步电机在旋转dq坐标系下的定子电流dq分量id,iq
Figure BDA0002524565770000092
步骤2,记id,ref为d轴给定电流、iq,ref为q轴给定电流、
Figure BDA0002524565770000093
为电流控制器d轴输出电压、
Figure BDA0002524565770000094
为电流控制器q轴输出电压、在离散域中通过复变量z,在z域中设计电流控制器,电流控制器的表达式如下:
Figure BDA0002524565770000095
其中,
Figure BDA0002524565770000096
表示积分作用,z-1表示延迟一拍;
Kp为比例系数矩阵,Kp=G-11β212+1);
Ki为积分系数矩阵,Ki=G-1(1-α1)(β1β212+1);
M为电流反馈系数矩阵,M=G-1(F2-(α112-1)F+α112-1)I);
A为电流控制器延迟输出反馈系数矩阵,A=G-1(F-(α112-1)I)G;
在比例系数矩阵Kp、积分系数矩阵Ki、电流反馈系数矩阵M和电流控制器延迟输出反馈系数矩阵A中,
I为单位矩阵,
Figure BDA0002524565770000101
β1为控制系统期望的跟随和抗扰闭环极点一,β2为控制系统期望的跟随和抗扰闭环极点二,α1为控制系统期望的抗扰闭环极点三,β1,β2,α1的取值满足限制:0≤β1<1,0≤β2<1,0≤α1<1;
F为永磁同步电机在旋转dq坐标系下的离散域数学模型的系数矩阵,记为系数矩阵F;
G为永磁同步电机在旋转dq坐标系下的离散域数学模型的输入矩阵,记为输入矩阵G;
步骤3,求解步骤2的电流控制器表达式得到电流控制器d轴输出电压
Figure BDA0002524565770000102
和电流控制器q轴输出电压
Figure BDA0002524565770000103
经过坐标变换并补偿数字控制一拍延迟造成的角度滞后得到静止αβ坐标系下的α轴输出电压uα,ref和β轴输出电压uβ,ref,其表达式为:
Figure BDA0002524565770000104
其中,Ts为采样周期。
步骤4,将步骤3获得的α轴输出电压uα,,ref和β轴输出电压uβ,,ref输入SVPWM模块进行空间矢量脉宽调制,输出PWM波至逆变器模块。
在上述步骤中,步骤2中的系数矩阵F和输入矩阵G的计算如下:
(1)系数矩阵F的表达式如下:
Figure BDA0002524565770000111
其中,Ld为定子直轴电感,Lq为定子交轴电感,Φ11为系数矩阵F中的变量1,Φ12为系数矩阵F中的变量2,Φ21为系数矩阵F中的变量3,Φ21=-Φ12,Φ22为系数矩阵F中的变量4。
Figure BDA0002524565770000112
Figure BDA0002524565770000113
Figure BDA0002524565770000114
在上述3个公式中,
Figure BDA0002524565770000115
为指数函数运算,sinh(),cosh()为双曲函数运算,Rs为定子电阻。
(2)输入矩阵G的表达式如下:
Figure BDA0002524565770000116
其中,γ11为输入矩阵G中的变量1,γ12为输入矩阵G中的变量2,γ21为输入矩阵G中的变量3,γ22为输入矩阵G中的变量4,其表达式分别如下:
Figure BDA0002524565770000121
Figure BDA0002524565770000122
Figure BDA0002524565770000123
Figure BDA0002524565770000124
为了验证本发明的有效性,对本发明进行了仿真验证。控制系统仿真参数:电机额定功率pn=10kW,额定电压UN=220V,定子电阻Rs=0.428Ω,定子直轴电感Ld=4.5mH,定子交轴电感Lq=8.5mH,极对数P=5,额定频率fe=200Hz,开关频率fs=2000Hz,采样周期Ts=0.5ms。
图4为参考文献3在控制系统参数准确情况下,选择内模设计,并将控制系统带宽设为100Hz条件下的仿真图。控制系统先施加阶跃给定,稳定后,再在q轴输出电压
Figure BDA0002524565770000131
上施加10V的阶跃扰动,实线波形为定子电流dq分量id,iq中的q轴电流分量iq的波形,虚线波形为定子电流dq分量id,iq中的d轴电流分量id的波形。
图5为电机运行在额定频率,电机电感参数准确情况下,本发明技术方案的电流响应仿真图1(控制系统期望的跟随和抗扰闭环极点一β1=0,控制系统期望的跟随和抗扰闭环极点二β2=0.7304,控制系统期望的抗扰闭环极点三α1=0.7304,对应电流环带宽为100Hz)。控制系统先施加阶跃给定,稳定后,再在q轴输出电压
Figure BDA0002524565770000132
上施加10V的阶跃扰动,实线波形为定子电流dq分量id,iq中的q轴电流分量iq的波形,虚线波形为定子电流dq分量id,iq中的d轴电流分量id的波形。
图6为电机运行在额定频率,电机电感参数准确情况下,本发明技术方案的电流响应仿真图2(控制系统期望的跟随和抗扰闭环极点一β1=0,控制系统期望的跟随和抗扰闭环极点二β2=0.7304,控制系统期望的抗扰闭环极点三α1=0.3,对应电流环带宽为100Hz)。控制系统先施加阶跃给定,稳定后,再在q轴输出电压
Figure BDA0002524565770000133
上施加10V的阶跃扰动,实线波形为定子电流dq分量id,iq中的q轴电流分量iq的波形,虚线波形为定子电流dq分量id,iq中的d轴电流分量id的波形。
图7为电机运行在额定频率,电机电感参数准确情况下,本发明技术方案的电流响应仿真图3(选择控制系统期望的跟随和抗扰闭环极点一β1=0,控制系统期望的跟随和抗扰闭环极点二β2=0.7304,控制系统期望的抗扰闭环极点三α1=0,对应电流环带宽为100Hz)。控制系统先施加阶跃给定,稳定后,再在q轴输出电压
Figure BDA0002524565770000134
上施加10V的阶跃扰动,实线波形为定子电流dq分量id,iq中的q轴电流分量iq的波形,虚线波形为定子电流dq分量id,iq中的d轴电流分量id的波形。
对比图4,图5,图6,图7,可以看到在参数准确条件下参考文献3和本发明技术方案在控制系统带宽一样的情况下,控制系统的跟随性能是相同的,但是参考文献3技术方案在突加阶跃扰动的情况下,控制系统需要一定时间才能逐渐稳定,而本发明技术方案可通过灵活设计控制系统期望的抗扰闭环极点三α1的值,使得这个动态时间减少,提高了控制系统抵抗扰动的快速性,说明本发明技术方案在不改变控制系统跟随性能的情况下,可通过控制系统期望的抗扰闭环极点三α1的灵活设计,提高控制系统的抗扰性能。
图8为电机运行在额定频率,定子交轴电感Lq发生偏差情况下,参考文献3所述技术方案配置为最少拍响应情况下的电流响应仿真图。控制系统施加阶跃给定,稳定后,再在q轴输出电压
Figure BDA0002524565770000141
上施加10V的阶跃扰动,实线波形为定子电流dq分量id,iq中的q轴电流分量iq的波形,虚线波形为定子电流dq分量id,iq中的d轴电流分量id的波形。
图9为电机运行在额定频率,定子交轴电感Lq发生偏差情况下,本发明技术方案配置为最少拍响应情况下的电流响应仿真图(控制系统期望的跟随和抗扰闭环极点一β1=0,控制系统期望的跟随和抗扰闭环极点二β2=0,控制系统期望的抗扰闭环极点三α1=0.8)。控制系统施加阶跃给定,稳定后,再在q轴输出电压
Figure BDA0002524565770000142
上施加10V的阶跃扰动,实线波形为定子电流dq分量id,iq中的q轴电流分量iq的波形,虚线波形为定子电流dq分量id,iq中的d轴电流分量id的波形。
对比图8,图9,可以看到控制系统配置为最少拍响应时,在参数不准条件下,参考文献3的技术方案已经失稳,而本发明技术方案可通过控制系统期望的抗扰闭环极点三α1的灵活设计,使控制系统仍然能够稳定,说明本发明技术方案在不改变控制系统跟随快速性的情况下,可通过控制系统期望的抗扰闭环极点三α1的灵活设计,提高控制系统的参数鲁棒性。

Claims (3)

1.一种永磁同步电机离散域电流环二自由度控制方法,其特征在于,包括下述步骤:
步骤1,采集永磁同步电机的转子电角速度ωe和转子电角度θe,采集永磁同步电机的定子A相电流ia、定子B相电流ib、定子C相电流ic,再经过坐标变换得到永磁同步电机在旋转dq坐标系下的定子电流dq分量id,iq
步骤2,记id,ref为d轴给定电流、iq,ref为q轴给定电流、
Figure FDA0002524565760000011
为电流控制器d轴输出电压、
Figure FDA0002524565760000012
为电流控制器q轴输出电压、在离散域中通过复变量z,在z域中设计电流控制器,电流控制器的表达式如下:
Figure FDA0002524565760000013
其中,
Figure FDA0002524565760000014
表示积分作用,z-1表示延迟一拍;
Kp为比例系数矩阵,Kp=G-11β212+1);
Ki为积分系数矩阵,Ki=G-1(1-α1)(β1β212+1);
M为电流反馈系数矩阵,M=G-1(F2-(α112-1)F+α112-1)I);
A为电流控制器延迟输出反馈系数矩阵,A=G-1(F-(α112-1)I)G;
在比例系数矩阵Kp、积分系数矩阵Ki、电流反馈系数矩阵M和电流控制器延迟输出反馈系数矩阵A中,
I为单位矩阵,
Figure FDA0002524565760000015
β1为控制系统期望的跟随和抗扰闭环极点一,β2为控制系统期望的跟随和抗扰闭环极点二,α1为控制系统期望的抗扰闭环极点三,β1,β2,α1的取值满足限制:0≤β1<1,0≤β2<1,0≤α1<1;
F为永磁同步电机在旋转dq坐标系下的离散域数学模型的系数矩阵,记为系数矩阵F;
G为永磁同步电机在旋转dq坐标系下的离散域数学模型的输入矩阵,记为输入矩阵G;
步骤3,求解步骤2的电流控制器表达式得到电流控制器d轴输出电压
Figure FDA0002524565760000021
和电流控制器q轴输出电压
Figure FDA0002524565760000022
经过坐标变换并补偿数字控制一拍延迟造成的角度滞后得到静止αβ坐标系下的α轴输出电压uα,ref和β轴输出电压uβ,ref,其表达式为:
Figure FDA0002524565760000023
其中,Ts为采样周期;
步骤4,将步骤3获得的α轴输出电压uα,ref和β轴输出电压uβ,ref输入SVPWM模块进行空间矢量脉宽调制,输出PWM波至逆变器模块。
2.根据权利要求1所述的永磁同步电机离散域电流环二自由度控制方法,其特征在于,步骤1所述永磁同步电机在旋转dq坐标系下的定子电流dq分量id,iq的获取方式如下:
步骤1.1,采集永磁同步电机的定子A相电流ia、定子B相电流ib、定子C相电流ic
步骤1.2,对步骤1.1采集得到的永磁同步电机定子A相电流ia、定子B相电流ib、定子C相电流ic进行三相静止坐标系到两相静止坐标系的变换得到永磁同步电机在两相静止αβ坐标系下的定子电流αβ分量iα,iβ
Figure FDA0002524565760000024
步骤1.3,将步骤1.2得到的永磁同步电机在两相静止αβ坐标系下的定子电流αβ分量iα,iβ进行两相静止坐标系到旋转坐标系的变换得到永磁同步电机在旋转dq坐标系下的定子电流dq分量id,iq
Figure FDA0002524565760000031
3.根据权利要求1所述的永磁同步电机离散域电流环二自由度控制方法,其特征在于,步骤2所述系数矩阵F和输入矩阵G的计算如下:
(1)系数矩阵F的表达式如下:
Figure FDA0002524565760000032
其中,Ld为定子直轴电感,Lq为定子交轴电感,Φ11为系数矩阵F中的变量1,Φ12为系数矩阵F中的变量2,Φ21为系数矩阵F中的变量3,Φ21=-Φ12,Φ22为系数矩阵F中的变量4;
Figure FDA0002524565760000033
Figure FDA0002524565760000034
Figure FDA0002524565760000035
在上述3个公式中,
Figure FDA0002524565760000036
为指数函数运算,sinh(),cosh()为双曲函数运算,Rs为定子电阻;
(2)输入矩阵G的表达式如下:
Figure FDA0002524565760000041
其中,γ11为输入矩阵G中的变量1,γ12为输入矩阵G中的变量2,γ21为输入矩阵G中的变量3,γ22为输入矩阵G中的变量4,其表达式分别如下:
Figure FDA0002524565760000042
Figure FDA0002524565760000043
Figure FDA0002524565760000044
Figure FDA0002524565760000051
CN202010500673.9A 2020-06-04 2020-06-04 永磁同步电机离散域电流环二自由度控制方法 Active CN111769777B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010500673.9A CN111769777B (zh) 2020-06-04 2020-06-04 永磁同步电机离散域电流环二自由度控制方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010500673.9A CN111769777B (zh) 2020-06-04 2020-06-04 永磁同步电机离散域电流环二自由度控制方法

Publications (2)

Publication Number Publication Date
CN111769777A true CN111769777A (zh) 2020-10-13
CN111769777B CN111769777B (zh) 2021-08-10

Family

ID=72720036

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010500673.9A Active CN111769777B (zh) 2020-06-04 2020-06-04 永磁同步电机离散域电流环二自由度控制方法

Country Status (1)

Country Link
CN (1) CN111769777B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113098258A (zh) * 2021-05-12 2021-07-09 湖州师范学院 一种基于pfc系统电流环平衡点的最少拍精确控制方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160065108A1 (en) * 2014-08-29 2016-03-03 Electro Standards Laboratories Electric Motor Current Controller with Negative Sequence Harmonic Suppression
CN106160613A (zh) * 2016-08-05 2016-11-23 北方工业大学 一种离散域电流调节器的设计方法
CN108964555A (zh) * 2018-06-05 2018-12-07 燕山大学 基于复矢量调节器的永磁同步电机低载波比控制方法
CN110323983A (zh) * 2019-07-23 2019-10-11 广东工业大学 一种永磁同步电机的电流解耦方法、装置、设备及介质
CN111193450A (zh) * 2020-01-15 2020-05-22 合肥工业大学 一种永磁同步电机复矢量电流调节器的pi参数设计方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160065108A1 (en) * 2014-08-29 2016-03-03 Electro Standards Laboratories Electric Motor Current Controller with Negative Sequence Harmonic Suppression
CN106160613A (zh) * 2016-08-05 2016-11-23 北方工业大学 一种离散域电流调节器的设计方法
CN108964555A (zh) * 2018-06-05 2018-12-07 燕山大学 基于复矢量调节器的永磁同步电机低载波比控制方法
CN110323983A (zh) * 2019-07-23 2019-10-11 广东工业大学 一种永磁同步电机的电流解耦方法、装置、设备及介质
CN111193450A (zh) * 2020-01-15 2020-05-22 合肥工业大学 一种永磁同步电机复矢量电流调节器的pi参数设计方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
MARKO HINKKANEN等: "Current Control for Synchronous Motor Drives:Direct Discrete-Time Pole-Placement Design", 《IEEE TRANSACTIONS ON INDUSTRY APPLICATIONS》 *
朱洪志等: "感应电机驱动系统的离散域电流调节器分析和设计", 《电气传动》 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113098258A (zh) * 2021-05-12 2021-07-09 湖州师范学院 一种基于pfc系统电流环平衡点的最少拍精确控制方法

Also Published As

Publication number Publication date
CN111769777B (zh) 2021-08-10

Similar Documents

Publication Publication Date Title
Bu et al. Speed ripple reduction of direct-drive PMSM servo system at low-speed operation using virtual cogging torque control method
CN209844868U (zh) 永磁同步电机无差拍电流预测控制系统
CN112532133B (zh) 一种适用于永磁同步电机滤波补偿滑模自抗扰控制方法
Li et al. Robust predictive current control with parallel compensation terms against multi-parameter mismatches for PMSMs
US11522480B2 (en) SPMSM sensorless composite control method with dual sliding-mode observers
CN110995102A (zh) 一种永磁同步电机直接转矩控制方法及系统
Zhang et al. Robust plug-in repetitive control for speed smoothness of cascaded-PI PMSM drive
CN111726048B (zh) 基于滑模观测器的永磁同步电机转子位置和速度估算方法
CN111987961A (zh) 一种永磁同步电机无位置传感器直接转矩控制方法
CN115864928A (zh) 一种基于校正电流预测的pmsm模型参考自适应转速估算方法
CN109067276B (zh) 一种永磁同步电机高动态鲁棒预测电流控制方法
CN110677089A (zh) 一种交流伺服系统高响应电流控制方法
CN111769777B (zh) 永磁同步电机离散域电流环二自由度控制方法
CN111740675B (zh) 永磁同步电机离散域电流环强鲁棒性二自由度控制方法
CN112019121B (zh) 基于离散扩张状态观测器的永磁同步电机电流环控制方法
CN112019120B (zh) 引入超前拍电流的永磁同步电机离散域电流环控制方法
Kakodia et al. A comparative study of DFOC and IFOC for IM drive
CN114301361B (zh) 一种基于母线电流控制的无电解电容永磁同步电机驱动系统控制方法
CN112019119B (zh) 可调阻尼的永磁同步电机离散域电流环控制方法
Ma et al. Dichotomy solution based model predictive control for permanent magnet linear synchronous motors
Cui et al. Research on pmsm speed control system based on improved reaching law
CN112491318B (zh) 一种永磁同步电机系统预测转矩控制方法
CN117254735B (zh) 基于高频方波注入的无位置传感器自抗扰控制方法
Huixuan et al. A New Time Sequence for Predictive Current Control in PMSM Drives
CN114400935B (zh) 基于快速有限时间控制的感应电机复合控制方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant