CN111766642A - Daily precipitation forecast system for landfall tropical cyclone - Google Patents
Daily precipitation forecast system for landfall tropical cyclone Download PDFInfo
- Publication number
- CN111766642A CN111766642A CN202010549020.XA CN202010549020A CN111766642A CN 111766642 A CN111766642 A CN 111766642A CN 202010549020 A CN202010549020 A CN 202010549020A CN 111766642 A CN111766642 A CN 111766642A
- Authority
- CN
- China
- Prior art keywords
- historical
- module
- path
- target
- precipitation
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000001556 precipitation Methods 0.000 title claims abstract description 117
- JTJMJGYZQZDUJJ-UHFFFAOYSA-N phencyclidine Chemical class C1CCCCN1C1(C=2C=CC=CC=2)CCCCC1 JTJMJGYZQZDUJJ-UHFFFAOYSA-N 0.000 claims description 14
- 238000004364 calculation method Methods 0.000 claims description 12
- 230000002776 aggregation Effects 0.000 claims description 9
- 238000004220 aggregation Methods 0.000 claims description 9
- 238000004458 analytical method Methods 0.000 claims description 5
- 238000010586 diagram Methods 0.000 description 6
- 238000005516 engineering process Methods 0.000 description 4
- 238000000034 method Methods 0.000 description 3
- 238000010276 construction Methods 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 230000008569 process Effects 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01W—METEOROLOGY
- G01W1/00—Meteorology
- G01W1/10—Devices for predicting weather conditions
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F18/00—Pattern recognition
- G06F18/20—Analysing
- G06F18/22—Matching criteria, e.g. proximity measures
Landscapes
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Data Mining & Analysis (AREA)
- Life Sciences & Earth Sciences (AREA)
- Environmental & Geological Engineering (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Bioinformatics & Computational Biology (AREA)
- Evolutionary Biology (AREA)
- Evolutionary Computation (AREA)
- Physics & Mathematics (AREA)
- General Engineering & Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Artificial Intelligence (AREA)
- Atmospheric Sciences (AREA)
- Biodiversity & Conservation Biology (AREA)
- Ecology (AREA)
- Environmental Sciences (AREA)
- Management, Administration, Business Operations System, And Electronic Commerce (AREA)
Abstract
本发明涉及一种本发明一种登陆热带气旋日降水预报系统,其中,包括:广义初值构建模块,接收历史TC的路径,获取目标TC在某路径起报时刻下的预报路径,并将目标TC的预报路径该路径起报时刻之前的观测路径合并成为目标TC路径;处理得到目标TC和历史TC在特定日尺度时间段上的TC移速信息;初值相似性判别模块构建日尺度相似区域,识别历史TC最近点和最短距离,计算历史TC路径和目标TC路径的相似程度,标记与目标TC移速差值达到阈值的历史TC,并标记最短距离大于某一定阈值的历史TC,选择m个最佳相似历史TC发给集合预报模块;集合预报模块获取最佳历史TC的特定日降水场并将之集合。本发明具有对登陆中国TC日降水的良好预报性能。
The invention relates to a daily precipitation forecasting system for a landing tropical cyclone according to the present invention, which includes: a generalized initial value building module, receiving the path of a historical TC, obtaining the forecast path of a target TC at the starting time of a certain path, and converting the target Prediction path of TC The observation path before the starting time of the path is merged into the target TC path; the TC speed information of the target TC and the historical TC in a specific daily-scale time period is obtained by processing; the initial value similarity discrimination module constructs the daily-scale similar area , identify the closest point and the shortest distance of the historical TC, calculate the similarity between the historical TC path and the target TC path, mark the historical TC whose moving speed difference with the target TC reaches the threshold, and mark the historical TC whose shortest distance is greater than a certain threshold, select m The best similar historical TCs are sent to the ensemble forecasting module; the ensemble forecasting module obtains the specific daily precipitation fields of the best historical TCs and assembles them. The present invention has good prediction performance for the daily precipitation of landfalling TC in China.
Description
技术领域technical field
本发明涉及一种天气预报技术,特别涉及基于动力-统计-相似集合预报模型的登陆热带气旋日降水预报系统。The invention relates to a weather forecast technology, in particular to a daily precipitation forecast system for landing tropical cyclones based on a dynamic-statistic-similar ensemble forecast model.
背景技术Background technique
针对天气预报,有学者基于准确模式提出了动力统计相似集合预报(DSAEF)理论(模型),该理论的思想为广义初值构建、初值相似性判别以及集合预报。随后,针对登陆热带气旋过程降水的DSAEF预报技术(DSAEF_LTP_A 1.0系统)应运而生,并且实例证明该系统预报性能良好。然而,目前缺乏针对登陆热带气旋日降水的DSAEF模型的预报技术。本发明的登陆热带气旋日降水预报系统即为DSAEF模型针对登陆热带气旋日降水的预报技术(DSAEF_LTP_D 1.0系统)。For weather forecasting, some scholars have proposed the Dynamic Statistical Similarity Ensemble Prediction (DSAEF) theory (model) based on accurate models. Subsequently, the DSAEF forecasting technology (DSAEF_LTP_A 1.0 system) for precipitation in the process of landfalling tropical cyclones came into being, and the example proved that the forecasting performance of this system is good. However, there is currently a lack of forecasting techniques for DSAEF models for the daily precipitation of landfalling tropical cyclones. The daily precipitation forecasting system of the landing tropical cyclone of the present invention is the forecasting technology of the DSAEF model for the daily precipitation of the landing tropical cyclone (DSAEF_LTP_D 1.0 system).
发明内容SUMMARY OF THE INVENTION
本发明的目的在于提供一种登陆热带气旋日降水预报系统,用于解决上述现有技术的问题。The purpose of the present invention is to provide a daily precipitation forecasting system for landing tropical cyclones, which is used to solve the above-mentioned problems of the prior art.
本发明一种登陆热带气旋日降水预报系统,其中,包括:广义初值构建模块,接收历史TC的路径,获取目标TC在某路径起报时刻下的预报路径,并将目标TC的预报路径该路径起报时刻之前的观测路径合并成为目标TC路径;处理得到目标TC和历史TC在特定日尺度时间段上的TC移速信息;初值相似性判别模块构建日尺度相似区域,识别历史TC最近点和最短距离,计算历史TC路径和目标TC路径的相似程度,标记与目标TC移速差值达到阈值的历史TC,并标记最短距离大于某一定阈值的历史TC,选择m个最佳相似历史TC发给集合预报模块;集合预报模块获取最佳历史TC的特定日降水场并将之集合。The present invention is a daily precipitation forecasting system for landing tropical cyclones, which includes: a generalized initial value building module, which receives the path of the historical TC, obtains the forecast path of the target TC at the starting time of a certain path, and uses the forecast path of the target TC according to the forecast path of the target TC. The observation paths before the path start time are merged into the target TC path; the TC speed information of the target TC and the historical TC in a specific daily-scale time period is obtained by processing; the initial value similarity judgment module constructs the daily-scale similar area, and identifies the nearest historical TC. Points and the shortest distance, calculate the similarity between the historical TC path and the target TC path, mark the historical TC whose moving speed difference with the target TC reaches the threshold, and mark the historical TC whose shortest distance is greater than a certain threshold, and select m best similar histories The TC is sent to the ensemble forecast module; the ensemble forecast module obtains the specific daily precipitation field of the best historical TC and assembles it.
根据本发明的登陆热带气旋日降水预报系统的一实施例,其中,广义初值构建模块包括TC路径获取模块和TC日移速获取模块;TC路径获取模块用于从数值天气预报模式中获取目标TC在某路径起报时刻下的预报路径,并将目标TC的预报路径与该路径起报时刻之前的观测路径合并成为目标TC路径,TC路径获取模块还获取所有历史TC的路径,并且将目标TC路径和历史TC路径发送给初值相似性判别模块;TC日移速获取模块用于获取目标TC和历史TC在某个24小时时间段上的TC移速信息。According to an embodiment of the landfall tropical cyclone daily precipitation forecast system of the present invention, the generalized initial value building module includes a TC path acquisition module and a TC daily movement speed acquisition module; the TC path acquisition module is used to acquire targets from a numerical weather forecast model The forecast path of the TC at the start time of a certain path, and the forecast path of the target TC and the observation path before the start time of the path are merged into the target TC path. The TC path and the historical TC path are sent to the initial value similarity determination module; the TC daily movement speed acquisition module is used to obtain the TC movement speed information of the target TC and the historical TC in a certain 24-hour time period.
根据本发明的登陆热带气旋日降水预报系统的一实施例,其中,初值相似性判别模块包括日尺度相似区域构建模块,其将目标TC日降水预报起点取目标TC路径上的任意一点,相似区域对角线的一端点A,在端点A之前的点A1及其之前的几个TC位置滑动,相似区域对角线的另一端点B在点A1之后的TC位置滑动,最远为最大预报时刻所在点。According to an embodiment of the daily precipitation forecasting system for landing tropical cyclones of the present invention, the initial value similarity determination module includes a daily-scale similar area building module, which takes the target TC daily precipitation forecast starting point as any point on the target TC path, and is similar to One end point A of the diagonal line of the area slides at the point A1 before the end point A and several TC positions before it, and the other end point B of the diagonal line of the similar area slides at the TC position after the point A1, and the farthest is the maximum forecast point of time.
根据本发明的登陆热带气旋日降水预报系统的一实施例,其中,初值相似性判别模块还包括:将构建的相似区域信息发送给路径相似指数计算模块和最短距离识别模块;路径相似指数计算模块,用于在相似区域内就目标TC与所有历史TC逐一进行路径相似面积指数的计算,并根据TSAI的大小将历史TC从低到高排列,并将排序结果发送给最佳相似历史TC确定模块;最短距离识别模块,用于在相似区域内识别出每个历史TC的相距目标TC日降水预报起点最近的观测点,以及相应的最短距离,并且剔除最短距离大于某一设定值的历史TC;TC移速相似性判别模块,接收TC日移速获取模块产生的目标TC和历史TC的移速信息;然后一一计算所有历史TC和目标TC移速的差值,标记差值绝对值大于一定阈值的历史TC,将被标记的历史TC编号发送给最佳相似历史TC确定模块;最佳相似历史TC确定模块,首先接收TC路径相似计算模块中产生的所有历史TC之TSAI值排序结果,接收历史TC编号,剔除所有被标记的历史TC;剩余的历史TC确定为最佳相似历史TC,并将TC编号发送给TC集合预报模块。According to an embodiment of the landfall tropical cyclone daily precipitation forecasting system of the present invention, the initial value similarity determination module further includes: sending the constructed similar area information to the path similarity index calculation module and the shortest distance identification module; the path similarity index calculation module The module is used to calculate the path similarity area index for the target TC and all historical TCs one by one in the similar area, and arrange the historical TCs from low to high according to the size of the TSAI, and send the sorting result to the best similar historical TC for determination Module; the shortest distance identification module is used to identify the observation point of each historical TC that is closest to the starting point of the daily precipitation forecast of the target TC in a similar area, as well as the corresponding shortest distance, and eliminate the history whose shortest distance is greater than a certain set value. TC; TC movement speed similarity discrimination module, receives the movement speed information of target TC and historical TC generated by the TC daily movement speed acquisition module; then calculates the difference between all historical TC and target TC movement speed one by one, and marks the absolute value of the difference For historical TCs greater than a certain threshold, the marked historical TC numbers are sent to the best similar historical TC determination module; the best similar historical TC determination module first receives the TSAI value sorting results of all historical TCs generated in the TC path similarity calculation module , receive the historical TC number, and remove all marked historical TCs; the remaining historical TCs are determined as the best similar historical TCs, and the TC numbers are sent to the TC ensemble forecasting module.
根据本发明的登陆热带气旋日降水预报系统的一实施例,其中,最短距离识别模块包括最近点识别模块和最短距离判别模块;最近点识别模块在某一选定相似区域内,依次计算所有历史TC的所有观测点与目标TC日降水预报起点的距离,将计算所得之所有历史TC的最近点信息发给TC日降水获取模块,将最短距离信息发给最短距离判别模块;最短距离判别模块则在接收到最短距离信息之后,标记历史TC,并将被标记的历史TC编号发送给最佳相似历史TC确定模块。According to an embodiment of the landfall tropical cyclone daily precipitation forecasting system of the present invention, the shortest distance identification module includes a closest point identification module and a shortest distance identification module; the closest point identification module in a selected similar area, calculates all historical records in turn The distance between all the observation points of the TC and the starting point of the target TC daily precipitation forecast, send the calculated closest point information of all historical TCs to the TC daily precipitation acquisition module, and send the shortest distance information to the shortest distance discrimination module; the shortest distance discrimination module then After receiving the shortest distance information, mark the historical TC, and send the marked historical TC number to the best similar historical TC determination module.
根据本发明的登陆热带气旋日降水预报系统的一实施例,其中,TC降水集合预报模块包括相似TC日降水获取模块和降水集合模块;相似TC日降水获取模块用于接收最佳相似历史TC确定模块中产生的最佳相似历史TC的编号,计算各自在其最近点后的24小时累计降水,紧接着运用客观天气图分析法进行TC降水识别,从而获得相应的相似TC日降水场,并将其发送给降水集合模块;降水集合模块用于将相似TC日降水获取模块中产生的TC日降水场集合为一个降水场,集合方案为每站取最大值,集合所得之降水场即为目标TC在日降水预报起点之后24小时内的降水预报结果。According to an embodiment of the landfall tropical cyclone daily precipitation forecasting system of the present invention, the TC precipitation ensemble forecasting module includes a similar TC daily precipitation acquisition module and a precipitation ensemble module; the similar TC daily precipitation acquisition module is used to receive the best similar historical TC to determine The number of the best similar historical TC generated in the module, calculate the accumulated precipitation in 24 hours after its closest point, and then use the objective weather map analysis method to identify the TC precipitation, so as to obtain the corresponding similar TC daily precipitation field, and use It is sent to the precipitation aggregation module; the precipitation aggregation module is used to aggregate the TC daily precipitation fields generated in the similar TC daily precipitation acquisition modules into one precipitation field. The precipitation forecast results within 24 hours after the start of the daily precipitation forecast.
根据本发明的登陆热带气旋日降水预报系统的一实施例,其中,TC日移速获取模块接收最近点识别模块产生的所有历史TC的最近点信息,计算目标TC在目标TC日降水预报起点后24小时内的平均移速作为目标TC的移速、计算所有历史TC在其最近点后24小时内的平均移速作为各自的移速,将目标TC和所有历史TC的移速信息发送给TC移速相似性判别模块。According to an embodiment of the daily precipitation forecasting system for landing tropical cyclones of the present invention, the TC daily moving speed acquisition module receives the closest point information of all historical TCs generated by the closest point identification module, and calculates that the target TC is after the starting point of the target TC daily precipitation forecast. The average moving speed within 24 hours is used as the moving speed of the target TC, the average moving speed of all historical TCs within 24 hours after the closest point is calculated as their respective moving speeds, and the moving speed information of the target TC and all historical TCs is sent to the TC Movement speed similarity discrimination module.
根据本发明的登陆热带气旋日降水预报系统的一实施例,其中,TC移速相似性判别模块接收TC日移速获取模块中产生的目标TC和所有历史TC的移速信息,计算所有历史TC和目标TC移速的差值,并标记差值满足一定条件的历史TC,将被标记的历史TC编号发送给最佳相似历史TC确定模块。According to an embodiment of the daily precipitation forecasting system for landing tropical cyclones of the present invention, the TC moving speed similarity determination module receives the moving speed information of the target TC and all historical TCs generated in the TC daily moving speed acquisition module, and calculates all historical TCs The difference between the moving speed of the target TC and the target TC is marked, and the historical TC whose difference meets a certain condition is marked, and the marked historical TC number is sent to the best similar historical TC determination module.
根据本发明的登陆热带气旋日降水预报系统的一实施例,其中,最佳相似历史TC确定模块接收TC路径相似计算模块中产生的所有历史TC之TSAI值排序结果,并接收最短距离判别模块和TC移速相似性判别模块中所有被标记的历史TC编号,剔除所有被标记的历史TC,将剩余的前m个历史TC确定为最佳相似历史TC,并将TC编号发送给TC集合预报模块。According to an embodiment of the daily precipitation forecasting system for landfall tropical cyclones of the present invention, the best similar historical TC determination module receives the TSAI value ranking results of all historical TCs generated in the TC path similarity calculation module, and receives the shortest distance discrimination module and All the marked historical TC numbers in the TC moving speed similarity discrimination module, remove all marked historical TCs, determine the remaining top m historical TCs as the best similar historical TCs, and send the TC numbers to the TC ensemble forecasting module .
根据本发明的登陆热带气旋日降水预报系统的一实施例,其中,相似TC日降水获取模块接收最佳相似历史TC确定模块中产生的m个最佳相似历史TC的编号,计算各自在其最近点后的24小时累计降水,紧接着运用客观天气图分析法对它们进行TC降水识别,从而获得相应的m个相似TC日降水场,发送给TC降水集合预报模块。According to an embodiment of the landfall tropical cyclone daily precipitation forecasting system of the present invention, the similar TC daily precipitation acquisition module receives the numbers of m best similar historical TCs generated in the best similar historical TC determination module, and calculates the number of the m best similar historical TCs generated in the best similar historical TC determination module, The accumulated precipitation in the 24 hours after the point, and then use the objective synoptic map analysis method to identify the TC precipitation, so as to obtain the corresponding m similar TC daily precipitation fields, and send them to the TC precipitation ensemble forecasting module.
本发明的基于动力-统计-相似集合预报模型的登陆热带气旋日降水预报系统,具有对登陆中国TC日降水(特别是对登陆前一天的TC降水)的良好预报性能。The landfalling tropical cyclone daily precipitation forecasting system based on the dynamic-statistics-similar ensemble forecasting model of the present invention has good forecasting performance for the landfalling Chinese TC daily precipitation (especially the TC precipitation one day before the landfall).
附图说明Description of drawings
图1所示为本发明的基于动力-统计-相似集合预报模型的登陆热带气旋日降水预报系统之模块图;Fig. 1 shows the module diagram of the daily precipitation forecasting system of landfall tropical cyclone based on the dynamic-statistics-similar ensemble forecasting model of the present invention;
图2a所示为日尺度相似区域构建示意图;Figure 2a shows a schematic diagram of the construction of similar areas on a daily scale;
图2b所示为最短距离识别示意图。Figure 2b shows a schematic diagram of the shortest distance identification.
具体实施方式Detailed ways
为使本发明的目的、内容、和优点更加清楚,下面结合附图和实施例,对本发明的具体实施方式作进一步详细描述。In order to make the purpose, content, and advantages of the present invention clearer, the specific embodiments of the present invention will be further described in detail below with reference to the accompanying drawings and embodiments.
图1所示为本发明的基于动力-统计-相似集合预报模型的登陆热带气旋(登陆TC)日降水预报系统的模块图,如图1所示,本发明的登陆热带气旋日降水预报系统包括:广义初值构建模块1、初值相似性判别模块2以及TC降水集合预报模块3。Fig. 1 shows the module diagram of the landfall tropical cyclone (landfall TC) daily precipitation forecast system based on the dynamic-statistics-similar ensemble forecast model of the present invention. As shown in Fig. 1, the landfall tropical cyclone daily precipitation forecast system of the present invention includes: : Generalized initial value building module 1, initial value similarity discrimination module 2 and TC precipitation ensemble forecasting module 3.
如图1所示,广义初值构建模块1,其接收历史TC的路径,并用于处理得到目标TC路径、目标TC和历史TC在特定日尺度时间段上的TC移速信息,本发明系统(DSAEF_LTP_D 1.0)的广义初值含有TC路径、TC移速两个因子。进一步,广义初值构建模块1包括TC路径获取模块11和TC日移速获取模块12;TC路径获取模块11,其用于从数值天气预报模式中获取目标TC在某路径起报时刻下的预报路径,并将目标TC的预报路径与该路径起报时刻之前的观测路径合并成为一条完整路径,是为目标TC路径,另外TC路径获取模块11亦用于获取所有历史TC的路径(如1960年至今),并且将目标TC路径和历史TC路径发送给初值相似性判别模块2;TC日移速获取模块12用于获取目标TC和历史TC在某个24小时时间段上的TC移速信息,其受制于初值相似性判别模块2中的最短距离识别模块23的识别结果。As shown in Figure 1, the generalized initial value building module 1, which receives the path of the historical TC, and is used for processing to obtain the TC moving speed information of the target TC path, the target TC and the historical TC on a specific daily scale time period, the system of the present invention ( The generalized initial value of DSAEF_LTP_D 1.0) contains two factors: TC path and TC speed. Further, the generalized initial value building module 1 includes a TC path acquisition module 11 and a TC daily movement speed acquisition module 12; a TC path acquisition module 11, which is used to obtain the forecast of the target TC at the start time of a certain path from the numerical weather forecast model. It combines the forecast path of the target TC and the observation path before the start time of the path into a complete path, which is the target TC path. In addition, the TC path acquisition module 11 is also used to obtain the paths of all historical TCs (such as the 1960 TC path). Up to now), and send the target TC path and the historical TC path to the initial value similarity judgment module 2; the TC daily movement speed acquisition module 12 is used to obtain the TC movement speed information of the target TC and the historical TC in a certain 24-hour time period , which is subject to the identification result of the shortest distance identification module 23 in the initial value similarity identification module 2 .
如图1所示的初值相似性判别模块2,其用于判别广义初值所包含的TC路径和TC移速的相似性,最终选择5个(5个之设置仅为示例)最佳相似历史TC发给TC降水集合预报模块3。进一步,初值相似性判别模块2包括日尺度相似区域构建模块21、路径相似指数计算模块22、最短距离识别模块23、TC移速相似性判别模块24和最佳相似历史TC确定模块25。As shown in Figure 1, the initial value similarity judgment module 2 is used to judge the similarity of the TC path and the TC moving speed contained in the generalized initial value, and finally select 5 (the setting of 5 is only an example) the best similarity The historical TC is sent to the TC precipitation ensemble forecasting module 3. Further, the initial value similarity judging module 2 includes a daily-scale similar area building module 21 , a path similarity index calculation module 22 , a shortest distance identification module 23 , a TC moving speed similarity judging module 24 and a best similar historical
如图1所示的日尺度相似区域构建模块21,其通过目标TC路径构建日尺度(指TC一天之内移动距离的尺度)的相似区域(矩形框),该区域受目标TC日降水预报起点和路径最远预报点制约,但其选择也应包含各种可能性。具体地,如图2a所示的日尺度相似区域构建示意图,原则上目标TC日降水预报起点(A1)可取目标TC路径(图中线)上的任意一点(间隔若干小时的TC观测或预报位置,如间隔六小时),其取决于预报需求。相似区域对角线的一端(点A)可在点A1及其之前的几个TC位置(实心点)滑动,另一端(点B)则可在点A1之后的TC位置(空心点)滑动,最远为最大预报时刻所在地(点B1,即路径最远预报点),例如A端可取点A1前0、12或24小时所在地,A端可取点A1后18、24、30、36小时所在地或者点B1前0、6、12小时所在地,其取决于实际预报需求(图2a所示之相似区域仅为示例)。最终,将构建的相似区域信息发送给路径相似指数计算模块22和最短距离识别模块23。As shown in Fig. 1, the daily-scale similar area building module 21, which constructs a similar area (rectangular box) on a daily scale (referring to the scale of the moving distance of the TC within a day) through the target TC path, and this area is affected by the target TC daily precipitation forecast starting point and the farthest forecast point of the path, but its selection should also include various possibilities. Specifically, as shown in Fig. 2a, a schematic diagram of the construction of similar areas on a daily scale is shown. In principle, the starting point (A1) of the target TC daily precipitation forecast can be any point on the target TC path (the line in the figure) (the TC observation or forecast position at intervals of several hours, such as six-hour intervals), depending on forecast requirements. One end (point A) of the diagonal line of the similar area can be slid at several TC positions (solid dots) before and after point A1, and the other end (point B) can be slid at the TC position (hollow dots) after point A1, The farthest is the location of the maximum forecast time (point B1, that is, the farthest forecast point on the path), for example, the A-side can be the location 0, 12 or 24 hours before point A1, and the A-side can be the location 18, 24, 30, 36 hours after point A1 or The location 0, 6, 12 hours before point B1, which depends on the actual forecast demand (the similar area shown in Fig. 2a is just an example). Finally, the constructed similar area information is sent to the path similarity index calculation module 22 and the shortest distance identification module 23 .
如图1所示的路径相似指数计算模块22,其用于在相似区域内就目标TC与所有历史TC逐一进行路径相似面积指数(TSAI)的计算,并根据TSAI的大小将历史TC从低到高排列,并将排序结果发送给最佳相似历史TC确定模块25。The path similarity index calculation module 22 shown in FIG. 1 is used to calculate the path similarity area index (TSAI) one by one for the target TC and all the historical TCs in the similar area, and according to the size of the TSAI, the historical TC is calculated from low to low High ranking, and send the ranking result to the best similar historical
如图1所示的最短距离识别模块23,其用于在相似区域内识别出每个历史TC的相距目标TC日降水预报起点(A1)最近的观测点(C1),以及相应的最短距离(d0),并且剔除最短距离大于某一设定值的历史TC。具体地,最短距离识别模块23包括最近点识别模块231和最短距离判别模块232;如图2b所示的最短距离识别示意图,最近点识别模块231指在某一选定相似区域内,依次计算所有历史TC(线为一示例历史TC路径)的所有观测点(蓝色点)与目标TC日降水预报起点(A1)的距离,距离最近的观测点标为点C1,点C1与点A1的直线距离d0为该历史TC与目标TC的最短距离,最后将计算所得之所有历史TC的最近点(C1)信息发给TC日降水获取模块12,将最短距离(d0)信息发给最短距离判别模块232;最短距离判别模块232则在接收到最短距离(d0)信息之后,标记d0大于190km(大于190km之设置仅为示例,亦可设置为0km到500km不等,或者设置为无穷大)的历史TC,并将被标记的历史TC编号发送给最佳相似历史TC确定模块25。The shortest distance identification module 23 shown in FIG. 1 is used to identify the observation point (C1) closest to the target TC daily precipitation forecast starting point (A1) of each historical TC in a similar area, and the corresponding shortest distance ( d0), and remove the historical TC whose shortest distance is greater than a certain set value. Specifically, the shortest distance identification module 23 includes the closest point identification module 231 and the shortest distance identification module 232; as shown in the schematic diagram of the shortest distance identification in Figure 2b, the closest point identification module 231 refers to a selected similar area, and calculates all the The distance between all observation points (blue dots) of the historical TC (the line is an example historical TC path) and the starting point (A1) of the daily precipitation forecast of the target TC, the closest observation point is marked as point C1, and the straight line between point C1 and point A1 The distance d0 is the shortest distance between the historical TC and the target TC. Finally, the calculated closest point (C1) information of all historical TCs is sent to the TC daily precipitation acquisition module 12, and the shortest distance (d0) information is sent to the shortest distance discrimination module. 232; the shortest distance discrimination module 232, after receiving the shortest distance (d0) information, marks the historical TC of d0 greater than 190km (the setting greater than 190km is only an example, and can also be set to range from 0km to 500km, or set to infinity). , and send the marked historical TC number to the best similar historical
如图1所示的TC日移速获取模块12,其首先接收最近点识别模块231产生的所有历史TC的最近点信息;而后,计算目标TC在目标TC日降水预报起点(图2b的点A1)后24小时内的平均移速作为目标TC的移速、计算所有历史TC在其最近点(图2b的点C1)后24小时内的平均移速作为它们各自的移速;最终,将目标TC和所有历史TC的移速信息发送给TC移速相似性判别模块24。As shown in FIG. 1, the TC daily moving speed acquisition module 12 first receives the closest point information of all historical TCs generated by the closest point identification module 231; ) within 24 hours as the moving speed of the target TC, calculate the average moving speed of all historical TCs within 24 hours after its closest point (point C1 in Figure 2b) as their respective moving speeds; finally, the target The moving speed information of the TC and all historical TCs is sent to the TC moving speed similarity judging module 24 .
如图1所示的TC移速相似性判别模块24,其首先接收TC日移速获取模块12产生的目标TC和所有历史TC的移速信息;然后一一计算所有历史TC和目标TC移速的差值,标记差值绝对值大于8km/h(差值绝对值超过8km/h之设置仅为示例,亦可设置为差值绝对值大于0km/h到差值绝对值大于50km/h不等,或设置为差值大于零、差值小于零或差值无穷大)的历史TC;最后将被标记的历史TC编号发送给最佳相似历史TC确定模块25。As shown in FIG. 1, the TC speed similarity determination module 24 first receives the target TC and the speed information of all historical TCs generated by the TC daily speed acquisition module 12; then calculates the speed of all historical TCs and target TCs one by one. The difference value, mark the absolute value of the difference value is greater than 8km/h (the setting of the absolute value of the difference value exceeding 8km/h is only an example, it can also be set from the absolute value of the difference value greater than 0km/h to the absolute value of the difference value greater than 50km/h. etc., or set as a historical TC with a difference greater than zero, a difference less than zero, or a difference infinite); finally, the marked historical TC number is sent to the best similar historical
如图1所示的最佳相似历史TC确定模块25,其首先接收TC路径相似计算模块22中产生的所有历史TC之TSAI值排序结果,以及接收最短距离判别模块232和TC移速相似性判别模块24中所有被标记的历史TC编号;然后,剔除所有被标记的历史TC;最后,将剩余的前5个(前5个之设置仅为示例)历史TC确定为最佳相似历史TC,并将它们的TC编号发送给TC集合预报模块3中的相似TC日降水获取模块31。The best similar historical
如图1所示的TC降水集合预报模块3,其用于获取最佳历史TC的日降水场并采用合适集合方案将之集合。进一步,集合预报模块3包括相似TC日降水获取模块31和降水集合模块32;相似TC日降水获取模块31用于接收最佳相似历史TC确定模块25中产生的5个最佳相似历史TC的编号,而后计算它们各自在其最近点(图2b的点C1)后的24小时累计降水(原始降水场),紧接着运用客观天气图分析法(OSAT)对它们进行TC降水识别,从而获得相应的5个相似TC日降水场,并将其发送给降水集合模块32;降水集合模块32用于将相似TC日降水获取模块31中产生的5个TC日降水场集合为一个降水场,集合方案为每站取最大值(每站取最大值之设置仅为示例,也可设置为每站取平均等合理方案),集合所得之降水场即为目标TC在点A1(日降水预报起点)之后24小时内的降水预报结果。As shown in Figure 1, the TC precipitation ensemble forecasting module 3 is used to obtain the daily precipitation field of the best historical TC and use a suitable ensemble scheme to assemble it. Further, the ensemble forecast module 3 includes a similar TC daily precipitation acquisition module 31 and a precipitation aggregation module 32; the similar TC daily precipitation acquisition module 31 is used to receive the numbers of the five best similar historical TCs generated in the best similar historical
本发明名称为基于动力-统计-相似集合预报模型的登陆热带气旋日降水预报系统(DSAEF_LTP_D,Dynamical-Statistical-Analog Ensemble Forecast for LandfallingTropical cyclones Daily Precipitation),本系统是DSAEF模型针对登陆热带气旋日降水预报的应用技术的一代版本(DSAEF_LTP_D 1.0)。DSAEF模型包含广义初值构建模块、初值相似性判别模块以及集合预报模块,在DSAEF_LTP_D 1.0中,广义初值构建模块用于获取目标热带气旋(TC)和历史TC的路径信息、获取目标TC和历史TC在特定日尺度时间段上的TC移速信息,其构建的广义初值包含TC路径和TC移速两个物理因子(简称因子或变量);初值相似性判别模块用于构建日尺度相似区域、识别历史TC最近点(C1)和最短距离(d0)、计算历史TC路径和目标TC路径的相似程度、标记与目标TC移速差值满足一定条件的历史TC、标记最短距离(d0)大于某一定值的历史TC,最终选择m个最佳相似历史TC发给集合预报模块;集合预报模块(TC降水集合预报模块)用于获取最佳历史TC的特定日降水场并将之集合。The name of the invention is the Landfalling Tropical Cyclone Daily Precipitation Forecast System (DSAEF_LTP_D, Dynamical-Statistical-Analog Ensemble Forecast for LandfallingTropical cyclones Daily Precipitation) based on the dynamic-statistical-similar ensemble forecasting model. The generation version of the application technology (DSAEF_LTP_D 1.0). The DSAEF model includes a generalized initial value building module, an initial value similarity discrimination module and an ensemble forecasting module. In DSAEF_LTP_D 1.0, the generalized initial value building module is used to obtain the path information of the target tropical cyclone (TC) and historical TC, obtain the target TC and The TC speed information of historical TCs in a specific daily-scale time period, the generalized initial value constructed by the TC contains two physical factors (referred to as factors or variables) of the TC path and the TC speed; the initial value similarity discrimination module is used to construct the daily-scale Similar areas, identify the closest point (C1) and the shortest distance (d0) of the historical TC, calculate the similarity between the historical TC path and the target TC path, mark the historical TC whose moving speed difference between the target TC and the target TC meets certain conditions, and mark the shortest distance (d0) ) is greater than a certain value of historical TCs, and finally select m best similar historical TCs and send them to the ensemble forecasting module; .
本发明的基于动力-统计-相似集合预报模型的登陆热带气旋日降水预报系统,具有对登陆中国TC日降水(特别是对登陆前一天的TC降水)的良好预报性能。本发明能够更准确预报登陆TC日降水。The landfalling tropical cyclone daily precipitation forecasting system based on the dynamic-statistics-similar ensemble forecasting model of the present invention has good forecasting performance for the landfalling Chinese TC daily precipitation (especially the TC precipitation one day before the landfall). The present invention can more accurately predict the precipitation on the landing TC day.
以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明技术原理的前提下,还可以做出若干改进和变形,这些改进和变形也应视为本发明的保护范围。The above are only the preferred embodiments of the present invention. It should be pointed out that for those skilled in the art, without departing from the technical principle of the present invention, several improvements and modifications can also be made. These improvements and modifications It should also be regarded as the protection scope of the present invention.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010549020.XA CN111766642B (en) | 2020-06-16 | 2020-06-16 | Daily precipitation forecast system for landfall tropical cyclone |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010549020.XA CN111766642B (en) | 2020-06-16 | 2020-06-16 | Daily precipitation forecast system for landfall tropical cyclone |
Publications (2)
Publication Number | Publication Date |
---|---|
CN111766642A true CN111766642A (en) | 2020-10-13 |
CN111766642B CN111766642B (en) | 2021-07-23 |
Family
ID=72722740
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202010549020.XA Expired - Fee Related CN111766642B (en) | 2020-06-16 | 2020-06-16 | Daily precipitation forecast system for landfall tropical cyclone |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN111766642B (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113805252A (en) * | 2021-09-15 | 2021-12-17 | 中国气象科学研究院 | Gale forecast system for landfall tropical cyclone process based on ensemble forecast model |
CN114202104A (en) * | 2021-11-17 | 2022-03-18 | 国家海洋环境预报中心 | Method for determining similarity degree of tropical cyclone path and storage medium |
Citations (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20070223841A1 (en) * | 2006-03-23 | 2007-09-27 | Weinzapfel Robert A | Methods of characterizing the probability of wind impact |
US20070221743A1 (en) * | 2006-03-23 | 2007-09-27 | Weinzapfel Robert A | Methods of calculating impact time for storms |
CN102156308A (en) * | 2011-03-09 | 2011-08-17 | 南京恩瑞特实业有限公司 | Method for discriminating typhoon path |
CN103500278A (en) * | 2013-09-30 | 2014-01-08 | 福建四创软件有限公司 | Path similarity typhoon analysis method based on shortest path algorithm |
WO2015148887A1 (en) * | 2014-03-28 | 2015-10-01 | Northeastern University | System for multivariate climate change forecasting with uncertainty quantification |
US9230219B2 (en) * | 2010-08-23 | 2016-01-05 | Institute Of Nuclear Energy Research Atomic Energy Council, Executive Yuan | Wind energy forecasting method with extreme wind speed prediction function |
CN105488594A (en) * | 2015-12-08 | 2016-04-13 | 南京信息工程大学 | Typhoon track forecast method |
US9690007B2 (en) * | 2014-05-15 | 2017-06-27 | National Taiwan University | Device and method for comparison of multiple tropical cyclone routes |
CN107103173A (en) * | 2016-10-31 | 2017-08-29 | 陈柏宇 | A kind of Design Wave projectional technique for embodying the influence of the factor of typhoon three |
CN107292537A (en) * | 2017-07-24 | 2017-10-24 | 广西大学 | Consider the typhoon day short-term load forecasting method of path trace and the condition of a disaster Risk Evaluation |
CN107562840A (en) * | 2017-08-25 | 2018-01-09 | 北京科技大学 | A Fast Prediction Method of Typhoon Track Based on GIS |
CN107942407A (en) * | 2017-11-14 | 2018-04-20 | 中国气象科学研究院 | A kind of system for differentiating that Tropical Cyclone Route is similar |
CN109343154A (en) * | 2018-09-12 | 2019-02-15 | 中国气象科学研究院 | Precipitation Forecast System for Landfall of Tropical Cyclones |
CN111880245A (en) * | 2020-08-03 | 2020-11-03 | 中国气象科学研究院 | Precipitation Forecast System for Landfall of Tropical Cyclones |
-
2020
- 2020-06-16 CN CN202010549020.XA patent/CN111766642B/en not_active Expired - Fee Related
Patent Citations (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20070221743A1 (en) * | 2006-03-23 | 2007-09-27 | Weinzapfel Robert A | Methods of calculating impact time for storms |
US20070223841A1 (en) * | 2006-03-23 | 2007-09-27 | Weinzapfel Robert A | Methods of characterizing the probability of wind impact |
US9230219B2 (en) * | 2010-08-23 | 2016-01-05 | Institute Of Nuclear Energy Research Atomic Energy Council, Executive Yuan | Wind energy forecasting method with extreme wind speed prediction function |
CN102156308A (en) * | 2011-03-09 | 2011-08-17 | 南京恩瑞特实业有限公司 | Method for discriminating typhoon path |
CN103500278A (en) * | 2013-09-30 | 2014-01-08 | 福建四创软件有限公司 | Path similarity typhoon analysis method based on shortest path algorithm |
WO2015148887A1 (en) * | 2014-03-28 | 2015-10-01 | Northeastern University | System for multivariate climate change forecasting with uncertainty quantification |
US9690007B2 (en) * | 2014-05-15 | 2017-06-27 | National Taiwan University | Device and method for comparison of multiple tropical cyclone routes |
CN105488594A (en) * | 2015-12-08 | 2016-04-13 | 南京信息工程大学 | Typhoon track forecast method |
CN107103173A (en) * | 2016-10-31 | 2017-08-29 | 陈柏宇 | A kind of Design Wave projectional technique for embodying the influence of the factor of typhoon three |
CN107292537A (en) * | 2017-07-24 | 2017-10-24 | 广西大学 | Consider the typhoon day short-term load forecasting method of path trace and the condition of a disaster Risk Evaluation |
CN107562840A (en) * | 2017-08-25 | 2018-01-09 | 北京科技大学 | A Fast Prediction Method of Typhoon Track Based on GIS |
CN107942407A (en) * | 2017-11-14 | 2018-04-20 | 中国气象科学研究院 | A kind of system for differentiating that Tropical Cyclone Route is similar |
CN109343154A (en) * | 2018-09-12 | 2019-02-15 | 中国气象科学研究院 | Precipitation Forecast System for Landfall of Tropical Cyclones |
CN111880245A (en) * | 2020-08-03 | 2020-11-03 | 中国气象科学研究院 | Precipitation Forecast System for Landfall of Tropical Cyclones |
Non-Patent Citations (4)
Title |
---|
FUMIN REN,ET AL.: "An Objective Track Similarity Index and Its Preliminary Application to Predicting Landfalling Tropical Cyclones", 《WEATHER AND FORECASTING》 * |
WENYU QIU,ET AL.: "Characteristics of tropical cyclone extreme precipitation and its", 《METEOROLOGY AND ATMOSPHERIC PHYSICS》 * |
丁晨晨,任福民等: "基于路径相似的登陆热带气旋降水之动力-统计集合预报模型", 《气象》 * |
贾作,任福民等: "LTP_DSEF模型对2018年登陆中国热带气旋", 《中国科学:地球科学》 * |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113805252A (en) * | 2021-09-15 | 2021-12-17 | 中国气象科学研究院 | Gale forecast system for landfall tropical cyclone process based on ensemble forecast model |
CN114202104A (en) * | 2021-11-17 | 2022-03-18 | 国家海洋环境预报中心 | Method for determining similarity degree of tropical cyclone path and storage medium |
CN114202104B (en) * | 2021-11-17 | 2022-06-03 | 国家海洋环境预报中心 | Method for determining similarity degree of tropical cyclone path and storage medium |
Also Published As
Publication number | Publication date |
---|---|
CN111766642B (en) | 2021-07-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN104851300B (en) | Road condition pre-identifying system based on Internet of Things and suitable for vehicle suspension control | |
CN111766642A (en) | Daily precipitation forecast system for landfall tropical cyclone | |
CN103310651A (en) | Bus arrival prediction method based on real-time traffic status information | |
CN105868787A (en) | Electric car driving range evaluation method based on working condition identification and fuzzy energy consumption | |
CN110955288B (en) | Environment supervision system based on big data | |
CN102156308A (en) | Method for discriminating typhoon path | |
CN113222385B (en) | Method for constructing and evaluating driving condition of electric automobile | |
CN110738855A (en) | Road traffic flow condition prediction method for data sparse time periods | |
CN106803129A (en) | A kind of wind power ensemble prediction method based on multi-source numerical weather forecast | |
CN103177585B (en) | Road turning average travel speed calculating method based on floating car data | |
CN103401236A (en) | Wind power farm generator unit grouping method based on flow correlation of wind power farm | |
CN104008278A (en) | PM2.5 concentration prediction method based on feature vectors and least square support vector machine | |
CN115512538B (en) | Variable speed limiting control method and system based on carbon emission | |
CN111652835A (en) | Detection method of transmission line insulator missing based on deep learning and clustering | |
CN109767615A (en) | Road network traffic flow key flow direction and critical path analysis method | |
CN111880245A (en) | Precipitation Forecast System for Landfall of Tropical Cyclones | |
CN109489679A (en) | A kind of arrival time calculation method in guidance path | |
CN105118293A (en) | Road section traffic speed short-term prediction method in view of long-term equilibrium relationship | |
CN111325392B (en) | Precipitation forecasting system in tropical cyclone process | |
CN111506408B (en) | Edge computing task scheduling method based on associated data set | |
CN114691661B (en) | Assimilation-based cloud air guide and temperature and humidity profile pretreatment analysis method and system | |
CN114186617B (en) | Mechanical fault diagnosis method based on distributed deep learning | |
CN108832623B (en) | A physical-statistical hybrid two-stage wind power prediction method | |
CN108932554B (en) | Method and device for configuration optimization of flow field measurement points in wind farms | |
CN101281208A (en) | On-line Estimation Method of Cotton Flow Velocity Using Video Velocity Measurement in Foreign Fiber Sorting System |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20210723 |