CN111759824B - 一种他达那非超分子纳米颗粒及其制备方法和应用 - Google Patents

一种他达那非超分子纳米颗粒及其制备方法和应用 Download PDF

Info

Publication number
CN111759824B
CN111759824B CN202010847359.8A CN202010847359A CN111759824B CN 111759824 B CN111759824 B CN 111759824B CN 202010847359 A CN202010847359 A CN 202010847359A CN 111759824 B CN111759824 B CN 111759824B
Authority
CN
China
Prior art keywords
solution
icg
tadalafil
tad
drug
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN202010847359.8A
Other languages
English (en)
Other versions
CN111759824A (zh
Inventor
许志刚
梁梦云
张天
马宪彬
康跃军
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Southwest University
Original Assignee
Southwest University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Southwest University filed Critical Southwest University
Priority to CN202010847359.8A priority Critical patent/CN111759824B/zh
Publication of CN111759824A publication Critical patent/CN111759824A/zh
Application granted granted Critical
Publication of CN111759824B publication Critical patent/CN111759824B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/48Preparations in capsules, e.g. of gelatin, of chocolate
    • A61K9/50Microcapsules having a gas, liquid or semi-solid filling; Solid microparticles or pellets surrounded by a distinct coating layer, e.g. coated microspheres, coated drug crystals
    • A61K9/51Nanocapsules; Nanoparticles
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/495Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with two or more nitrogen atoms as the only ring heteroatoms, e.g. piperazine or tetrazines
    • A61K31/4985Pyrazines or piperazines ortho- or peri-condensed with heterocyclic ring systems
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K41/00Medicinal preparations obtained by treating materials with wave energy or particle radiation ; Therapies using these preparations
    • A61K41/0057Photodynamic therapy with a photosensitizer, i.e. agent able to produce reactive oxygen species upon exposure to light or radiation, e.g. UV or visible light; photocleavage of nucleic acids with an agent
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Epidemiology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Chemical & Material Sciences (AREA)
  • Biomedical Technology (AREA)
  • Nanotechnology (AREA)
  • Optics & Photonics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Biochemistry (AREA)
  • Molecular Biology (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Medicinal Preparation (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)

Abstract

本发明具体是一种他达那非超分子纳米颗粒及其制备方法和应用。具体制备方法包括:(1)利用Fe3+与光疗药物吲哚菁绿ICG通过配位相互作用结合;(2)免疫抑制剂他达那非TAD通过与ICG/Fe3+苯环之间的π‑π堆积相互作用自组装形成Fe3+/ICG@TAD纳米颗粒。制备方法简便易行,所得的纳米颗粒具有高胶束稳定性、高药物上载量,且在肿瘤微环境高的GSH还原条件下,Fe3+被还原,纳米颗粒分解,进而选择性地释放出药物。该策略有效解决了药物递送系统中疏水药物分子的水溶性差、毒副作用大等缺点。免疫抑制剂和光疗药物的协同作用显示出增强的肿瘤抑制能力,在协同的免疫治疗方面有广阔的应用前景。

Description

一种他达那非超分子纳米颗粒及其制备方法和应用
技术领域
本发明涉及化学药物及生物应用领域,具体涉及一种他达那非超分子纳米颗粒及其制备方法和应用。
背景技术
癌症作为一种高死亡率的疾病是人类面临的重大健康问题。目前,临床上的癌症治疗手段主要包括外科手术、放疗和化疗,这些疗法对于一些原发性的肿瘤有一定程度的治愈能力。然而,90% 因癌症引发的死亡都与肿瘤的转移相关,而这些传统的疗法却很难克服肿瘤转移这一难题。免疫治疗通过调节自身免疫系统和增强免疫应答,有助于提高患者生存率,防止肿瘤复发转移,在癌症治疗领域带来了革命性的进步。免疫检查点阻断能够促进肿瘤浸润CD8+ T淋巴细胞的增殖,从而调控抗肿瘤的免疫应答,以诱导持久的肿瘤生长抑制。
髓源抑制性细胞(MDSCs)是肿瘤免疫抑制微环境的主要诱因之一,不仅抑制T淋巴细胞介导的抗肿瘤免疫反应,还会直接促进肿瘤的生长和转移。他达那非(TAD)是一种经FDA批准的PDE5免疫抑制剂,同传统的化疗药物相比,TAD具有低毒、廉价的优势,并且能够对MDSCs起抑制作用,从而增强T淋巴细胞免疫反应,进而增强肿瘤的免疫治疗。
吲哚菁绿(ICG)是一种常见的抗肿瘤光疗药物,因具有近红外光学成像和光热治疗的功能受到广泛应用。临床应用中,ICG不仅可以作为一种近红外(NIR) -Ⅱ荧光成像剂,而且是一种光敏剂,即在特定的近红外光触发下,产生具有细胞毒性的活性氧(ROS)。有研究表明,光疗包括光热疗法(PTT)和光动力疗法(PDT)可在短时间内激发释放肿瘤相关的抗原,从而诱导免疫原性细胞死亡(ICD),能够改善肿瘤的T细胞应答。
基于纳米技术构建的药物递送系统,因其独特的尺寸优势,能够高效地从血液循环系统向肿瘤部位累积,并向肿瘤组织内部渗透,从而在肿瘤细胞内部释放药物,实现高效率、低毒副作用的治疗效果。大量研究表明MDSCs的高浸润和肿瘤抗原的缺乏是影响肿瘤免疫治疗和免疫检查点阻滞性的主要因素。因此,在肿瘤免疫抑制微环境中,对MDSCs进行抑制并且诱导ICD效应是提高免疫治疗效果的优良策略。设计构建多功能的纳米药物递送系统来实现免疫抑制剂和光疗药物的共同递送,不仅能够很好地改善治疗剂的生物利用率,靶向肿瘤病灶部位,同时免疫抑制剂和光疗药物的协同作用能够高效地提升免疫治疗效果,在癌症的免疫治疗领域极具潜力。
发明内容
本发明所解决的技术问题提供一种免疫抑制剂和光疗药物共同递送的超分子自组装纳米颗粒的制备方法,探讨肿瘤细胞内高浓度GSH环境下免疫抑制剂和光疗药物的选择性释放所产生的协同免疫治疗效果,研究还原条件下药物的释放量、细胞毒性。此方法制备的GSH敏感的超分子纳米颗粒具有较高药物释放量及细胞毒性,从而实现药物的有效递送及高效释放,增强协同免疫治疗效果,进而达到抑制肿瘤的目的。
本发明的技术方案具体如下:
一种他达那非超分子纳米颗粒的制备方法,包括以下步骤:
(1)在室温25℃条件下,将一定量的吲哚菁绿ICG固体粉末溶于甲醇和水的混合溶剂中得到ICG溶液,而后向其加入一定浓度的Fe3+溶液,避光搅拌4h,得到含有Fe3+的ICG溶液;
(2)将一定量的他达那非TAD固体粉末溶于氯仿溶剂中,并超声5min,得到TAD溶液;
(3)在超声条件下,将步骤(2)所得TAD溶液逐滴滴加到步骤(1)的含有Fe3+的ICG溶液中,继续超声5min后,静置一段时间,得到混合溶液;
(4)使用旋转蒸发仪将上述混合溶液在60℃下蒸发旋干,经冷冻干燥后得到绿色固体粉末Fe3+/ICG @TAD纳米颗粒,简称FIT NPs;
(5)取一定量步骤(4)得到的FIT NPs溶于适量的二甲亚砜DMSO中,在超声条件下缓慢滴加到一定量的去离子水中,继续超声约2-5min;随后用去离子水透析除去有机溶剂和游离药物,得到GSH敏感的球状的他达那非超分子纳米颗粒的水溶液。
进一步的,所述步骤(1)中ICG溶液的摩尔浓度范围为0.6~1.2 mmol·L-1;所述混合溶剂中的甲醇和水的体积比为2:1;所述Fe3+溶液的浓度范围为0.04~0.08 mmol·L-1
进一步的,所述步骤(2)中所述步骤(2)中TAD溶液的摩尔浓度范围为5~10 mmol·L-1
进一步的,所述步骤(3)中所述步骤(3)中混合溶液中的ICG与TAD的摩尔比为1:1~1:5。
进一步的,所述步骤(5)中球状的他达那非超分子纳米颗粒的水溶液的浓度范围为0.01 ~1500 mg·L-1;所述的DMSO和水的体积比例范围为1:3~1:1000;球状的他达那非超分子纳米颗粒的水溶液的粒径范围为50~1000 nm。
本发明的主要优点在于:
1. 针对免疫抑制剂和光疗药物高效的协同免疫治疗效果,本发明创造性地提出了一种免疫抑制剂他达那非TAD和光疗药物吲哚菁绿ICG共同递送的超分子纳米颗粒的制备方法。此制备方法简便易行,所得的纳米颗粒具有高胶束稳定性、高药物上载量,有效解决了药物递送系统中疏水药物分子的水溶性差、毒副作用大等缺点,使得药物在肿瘤部位有效累积,进而达到抑制肿瘤的目的,在协同免疫治疗方面有广阔的应用前景。
2. 该纳米颗粒以Fe3+粒子作为媒介,两种药物分子自组装成超分子纳米颗粒,在肿瘤部位高的GSH还原环境下,Fe3+表现出更高的亲和性,Fe3+和巯基的强结合力使得纳米颗粒发生解离,从而实现药物的选择性释放,提供了一种高效靶向的药物输送系统,使肿瘤的精准治疗成为可能。
附图说明
为了使本发明的目的、技术方案和有益效果更加清楚,本发明提供如下附图:
图1为实施例1中他达那非超分子纳米颗粒的合成示意图。
图2为实施例1中他达那非超分子纳米颗粒的红外光谱图。
图3为实施例1中他达那非超分子纳米颗粒的透射电镜图TEM和动态光散射粒径分布图DLS。
图4为实施例1中他达那非超分子纳米颗粒在不同GSH浓度下的体外释放示意图。
图5为实施例1中他达那非超分子纳米颗粒不同实验组对CT26结肠癌细胞的毒性对比图。
具体实施方式
以下实施例用于说明本发明,但不用来限制本发明的范围。
实施例1 制备他达那非超分子纳米颗粒
如图1所示的合成示意图制备GSH敏感的他达那非超分子纳米颗粒,包括以下步骤:
(1)在室温25℃条件下,将4 mg的吲哚菁绿ICG固体粉末溶于5 mL甲醇和水的混合溶剂中得到ICG溶液,甲醇和水的体积比为2:1,而后向其加入 5 mL Fe3+(64.5μM,FeCl3)溶液,避光搅拌4h,得到含有Fe3+的ICG溶液;
(2)将8 mg的他达那非TAD固体粉末溶于2 mL氯仿溶液中,并超声5min,得到TAD溶液;
(3)在超声条件下,将步骤(2)所得TAD溶液逐滴滴加到步骤(1)的含有Fe3+的ICG溶液中,继续超声5min后,再静置5min,得到混合溶液;
(4)使用旋转蒸发仪将上述混合溶液在60℃下蒸发旋干,经冷冻干燥后得到绿色固体粉末Fe3+/ICG @TAD纳米颗粒,简称FIT NPs。FIT NPs的红外光谱图如图2所示,1675 cm−1和1095 cm−1分别为他达那非TAD和吲哚菁绿ICG的特征伸缩振动吸收峰,充分证明了超分子纳米颗粒的成功合成;
(5)取5 mg步骤(4)得到的FIT NPs溶于1 mL二甲亚砜DMSO中,在超声条件下缓慢滴加到5 mL的去离子水中,继续超声2-5min。随后用去离子水透析24 h除去有机溶剂,得到GSH敏感的球状他达那非超分子纳米颗粒的水溶液。所得纳米颗粒的形貌特征、尺寸大小如图3中的透射电镜图TEM和动态光散射粒径分布图DLS所示,可以看出纳米颗粒的尺寸分布均匀,为大小均一的球状纳米颗粒,水合粒径为87.97 ± 2.33 nm,TEM所测平均直径为72.89 ± 2.91 nm。
敏感的他达那非超分子纳米颗粒体外释放实验
为了验证合成的GSH敏感的他达那非超分子纳米颗粒能够在肿瘤部位选择性地释放药物,我们通过透析的方式在体外模拟了肿瘤微环境中免疫抑制剂他达那非TAD的释放。以pH为7.4的磷酸盐缓冲液(PBS)作为释放介质,在37℃条件下,考察高浓度的GSH对超分子纳米颗粒的体外释放情况。将1 ml FIT NPs胶束加入到透析袋中(MWCO=1000),然后将透析袋放置于20 mL含有不同浓度的GSH(0,10mM)溶液中,释放在37℃恒温摇床上进行(120rpm/min),在选定的时间点,从样品瓶取出1 ml样品,并加入1 ml相应的释放介质。最后,根据TAD的标准曲线,将在各个时间点取得样品并用紫外可见分光光度计定量所释放的TAD浓度。
实验结果如图4所示,超分子纳米颗粒FIT NPs在PBS中,释放的TAD小于25%,说明该纳米颗粒在正常的生理环境中不易泄露,有较高的稳定性。而在模拟肿瘤细胞内高GSH浓度下(10 mM),48h药物释放了约90%,说明该纳米颗粒可在肿瘤微环境中可选择性地释放药物,使得药物能够在肿瘤部位有效累积。
敏感的他达那非超分子纳米颗粒细胞毒性实验
为了进一步验证合成的GSH敏感的他达那非超分子纳米颗粒对肿瘤细胞的杀伤作用,采用MTT方法测定超分子自组装纳米颗粒对结肠癌细胞(CT26)的细胞毒性。首先,将生长状态良好的细胞消化后,以1×104细胞/孔在96孔板上培养,待细胞贴壁后,加入含有不同浓度的实验组,进一步孵育48h。用PBS洗涤细胞后加入含有5 μg/ml的MTT溶液,继续培养4h后,使用酶标仪进行定量。未经药物处理的细胞作为对照组,其理论存活率为100%。参照对照组,计算不同时间点,不同浓度药物处理后的细胞存活率,并绘制曲线。
结果如图5所示,在他达那非TAD和吲哚菁绿ICG的协同作用下,FIT NPs纳米颗粒对CT26细胞的细胞毒性明显增强。与游离药物相比,用纳米颗粒光照处理后的细胞增殖明显受到抑制,48h后细胞存活率仅为8.3%,证实了免疫抑制剂TAD和光疗药物ICG优良的协同免疫治疗效果。
最后说明的是,以上优选实施例仅用以说明本发明的技术方案而非限制,尽管通过上述优选实施例已经对本发明进行了详细的描述,但本领域技术人员应当理解,可以在形式上和细节上对其作出各种各样的改变,而不偏离本发明权利要求书所限定的范围。

Claims (3)

1.一种他达那非超分子纳米颗粒的制备方法,其特征在于,包括以下步骤:
(1)在室温25℃条件下,将一定量的吲哚菁绿ICG固体粉末溶于甲醇和水的混合溶剂中得到ICG溶液,而后向其加入一定浓度的Fe3+溶液,避光搅拌4h,得到含有Fe3+的ICG溶液;所述ICG溶液的摩尔浓度范围为0.6~1.2 mmol·L-1;所述混合溶剂中的甲醇和水的体积比为2:1;所述Fe3+溶液的浓度范围为0.04~0.08 mmol·L-1;
(2)将一定量的他达那非TAD固体粉末溶于氯仿溶剂中,并超声5min,得到TAD溶液;所述TAD溶液的摩尔浓度范围为5~10 mmol·L-1;
(3)在超声条件下,将步骤(2)所得TAD溶液逐滴滴加到步骤(1)的含有Fe3+的ICG溶液中,继续超声5min后,静置一段时间,得到混合溶液;
(4)使用旋转蒸发仪将上述混合溶液在60℃下蒸发旋干,经冷冻干燥后得到绿色固体粉末Fe3+/ICG @TAD纳米颗粒,简称FIT NPs;
(5)取一定量步骤(4)得到的FIT NPs溶于适量的二甲亚砜DMSO中,在超声条件下缓慢滴加到一定量的去离子水中,继续超声2-5min;随后用去离子水透析除去有机溶剂和游离药物,得到GSH敏感的球状的他达那非超分子纳米颗粒的水溶液。
2.根据权利要求1所述的一种他达那非超分子纳米颗粒的制备方法,其特征在于:所述步骤(3)中混合溶液中的ICG与TAD的摩尔比为1:1~1:5。
3.根据权利要求1所述的一种他达那非超分子纳米颗粒的制备方法,其特征在于:所述步骤(5)中球状的他达那非超分子纳米颗粒的水溶液的浓度范围为0.01 ~1500 mg·L-1;所述的DMSO和水的体积比例范围为1:3~1:1000;球状的他达那非超分子纳米颗粒的水溶液的粒径范围为50~1000 nm。
CN202010847359.8A 2020-08-21 2020-08-21 一种他达那非超分子纳米颗粒及其制备方法和应用 Expired - Fee Related CN111759824B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010847359.8A CN111759824B (zh) 2020-08-21 2020-08-21 一种他达那非超分子纳米颗粒及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010847359.8A CN111759824B (zh) 2020-08-21 2020-08-21 一种他达那非超分子纳米颗粒及其制备方法和应用

Publications (2)

Publication Number Publication Date
CN111759824A CN111759824A (zh) 2020-10-13
CN111759824B true CN111759824B (zh) 2021-12-24

Family

ID=72729032

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010847359.8A Expired - Fee Related CN111759824B (zh) 2020-08-21 2020-08-21 一种他达那非超分子纳米颗粒及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN111759824B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115025248B (zh) * 2021-02-22 2024-01-23 西安电子科技大学 一种铁基ICG金属有机纳米复合物(MONs)及其制备方法和应用

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109091452A (zh) * 2018-09-17 2018-12-28 郑州大学 一种基于海藻酸钠的粒径可变门控型抗肿瘤药物递送系统的制备及应用
CN110575545A (zh) * 2019-08-12 2019-12-17 湖北大学 具有电荷翻转能力的氧化应激性药物系统及其制备方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108159422B (zh) * 2016-12-07 2020-09-15 上海时莱生物技术有限公司 一种自组装载药系统及其复合制剂的制备方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109091452A (zh) * 2018-09-17 2018-12-28 郑州大学 一种基于海藻酸钠的粒径可变门控型抗肿瘤药物递送系统的制备及应用
CN110575545A (zh) * 2019-08-12 2019-12-17 湖北大学 具有电荷翻转能力的氧化应激性药物系统及其制备方法

Also Published As

Publication number Publication date
CN111759824A (zh) 2020-10-13

Similar Documents

Publication Publication Date Title
Zhou et al. Rational design of a minimalist nanoplatform to maximize immunotherapeutic efficacy: Four birds with one stone
Cui et al. In vivo targeted deep-tissue photodynamic therapy based on near-infrared light triggered upconversion nanoconstruct
KR101035269B1 (ko) 고분자 유도체-광감작제 복합체를 이용한 새로운 광역학치료제
CN108159422B (zh) 一种自组装载药系统及其复合制剂的制备方法
Liang et al. Homologous-targeted and tumor microenvironment-activated hydroxyl radical nanogenerator for enhanced chemoimmunotherapy of non-small cell lung cancer
CN110522910B (zh) 基于金属有机框架纳米给药系统及其制备方法和应用
Cao et al. Surface PEGylation of MIL-101 (Fe) nanoparticles for co-delivery of radioprotective agents
Su et al. Hierarchical nanocomposites of graphene oxide and PEGylated protoporphyrin as carriers to load doxorubicin hydrochloride for trimodal synergistic therapy
CN111956801B (zh) 光控释放co和阿霉素的纳米药物系统及其制备和应用
Ma et al. Rationally integrating peptide-induced targeting and multimodal therapies in a dual-shell theranostic platform for orthotopic metastatic spinal tumors
Chen et al. Palladium hydride nanourchins with amplified photothermal therapeutic effects through controlled hydrogen release and antigen-assisted immune activation
CN110448699B (zh) 包含功能性多肽修饰七甲川花菁素类染料的肿瘤细胞核靶向载药纳米粒子及制备方法
CN113663079B (zh) 一种无载体自组装纳米粒子及其制备方法和应用
Dong et al. A CuS-and BODIPY-loaded nanoscale covalent organic framework for synergetic photodynamic and photothermal therapy
Chen et al. A multifunctional SN38-conjugated nanosystem for defeating myelosuppression and diarrhea induced by irinotecan in esophageal cancer
CN113616803A (zh) 一种gsh响应型吉西他滨纳米粒子及其制备方法与应用
CN111759824B (zh) 一种他达那非超分子纳米颗粒及其制备方法和应用
CN113648401B (zh) 一种蛋白酶体抑制增敏光动力治疗的杂化纳米组装体及其制备与应用
Zhou et al. IR780/Gemcitabine-conjugated metal-phenolic network enhanced photodynamic cancer therapy
Li et al. A multifunctional nano-delivery system against rheumatoid arthritis by combined phototherapy, hypoxia-activated chemotherapy, and RNA interference
CN113633784B (zh) 一种热休克蛋白抑制增敏光热治疗的杂化纳米组装体及其制备与应用
CN113616806B (zh) 一种铂-艾考糊精-聚己内酯大分子化合物、纳米载药系统及其应用
CN109481418B (zh) 抗肿瘤纳米颗粒及其制备方法和应用
CN115192708A (zh) 负载抗肿瘤药物的纳米复合材料、纳米载药体系及制备与应用
Lee et al. C-Phycoycanin-Doxorubicin Nanoparticles for Chemo-Photodynamic Cancer Therapy

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20211224

CF01 Termination of patent right due to non-payment of annual fee