CN111752261A - Autonomous driving test platform based on autonomous driving robot - Google Patents
Autonomous driving test platform based on autonomous driving robot Download PDFInfo
- Publication number
- CN111752261A CN111752261A CN202010673172.0A CN202010673172A CN111752261A CN 111752261 A CN111752261 A CN 111752261A CN 202010673172 A CN202010673172 A CN 202010673172A CN 111752261 A CN111752261 A CN 111752261A
- Authority
- CN
- China
- Prior art keywords
- driving
- robot
- simulation
- decision
- vehicle
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000012360 testing method Methods 0.000 title abstract description 62
- 230000007246 mechanism Effects 0.000 abstract description 49
- 238000004891 communication Methods 0.000 abstract description 16
- 238000004088 simulation Methods 0.000 description 87
- 238000003860 storage Methods 0.000 description 25
- 238000000034 method Methods 0.000 description 18
- 230000008569 process Effects 0.000 description 16
- 230000006399 behavior Effects 0.000 description 13
- 238000010586 diagram Methods 0.000 description 12
- 238000012795 verification Methods 0.000 description 10
- 230000000694 effects Effects 0.000 description 8
- 238000007781 pre-processing Methods 0.000 description 8
- 238000012549 training Methods 0.000 description 8
- 238000012937 correction Methods 0.000 description 6
- 238000010276 construction Methods 0.000 description 5
- 238000013136 deep learning model Methods 0.000 description 4
- 238000013077 scoring method Methods 0.000 description 4
- 230000001133 acceleration Effects 0.000 description 3
- 238000011161 development Methods 0.000 description 3
- 238000012986 modification Methods 0.000 description 3
- 230000004048 modification Effects 0.000 description 3
- 230000008447 perception Effects 0.000 description 3
- 230000009471 action Effects 0.000 description 2
- 238000013500 data storage Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000011156 evaluation Methods 0.000 description 2
- 125000001475 halogen functional group Chemical group 0.000 description 2
- 238000005457 optimization Methods 0.000 description 2
- ZFHGXWPMULPQSE-SZGBIDFHSA-N (Z)-(1S)-cis-tefluthrin Chemical compound FC1=C(F)C(C)=C(F)C(F)=C1COC(=O)[C@@H]1C(C)(C)[C@@H]1\C=C(/Cl)C(F)(F)F ZFHGXWPMULPQSE-SZGBIDFHSA-N 0.000 description 1
- 206010039203 Road traffic accident Diseases 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 241000625014 Vir Species 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 238000013528 artificial neural network Methods 0.000 description 1
- 238000013475 authorization Methods 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 238000013527 convolutional neural network Methods 0.000 description 1
- 125000004122 cyclic group Chemical group 0.000 description 1
- 230000006378 damage Effects 0.000 description 1
- 238000007405 data analysis Methods 0.000 description 1
- 239000000428 dust Substances 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- 230000004927 fusion Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000013178 mathematical model Methods 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B23/00—Testing or monitoring of control systems or parts thereof
- G05B23/02—Electric testing or monitoring
- G05B23/0205—Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults
- G05B23/0208—Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults characterized by the configuration of the monitoring system
- G05B23/0213—Modular or universal configuration of the monitoring system, e.g. monitoring system having modules that may be combined to build monitoring program; monitoring system that can be applied to legacy systems; adaptable monitoring system; using different communication protocols
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B17/00—Systems involving the use of models or simulators of said systems
- G05B17/02—Systems involving the use of models or simulators of said systems electric
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Automation & Control Theory (AREA)
- Processing Or Creating Images (AREA)
- Manipulator (AREA)
Abstract
本发明提供一种基于自主驾驶机器人的自动驾驶测试平台,其特征在于,包括:汽车驾驶模拟器,具有驾驶座、设置在该驾驶座前方的显示屏幕和模拟驾驶机构、以及与所述显示屏幕和所述模拟驾驶机构分别通信连接的计算机;以及驾驶机器人,坐在所述驾驶座上并对所述模拟驾驶机构进行操作,具有与所述驾驶座相配合的机器人身躯、设置在该机器人身体上的单目摄像头和驾驶操作机构、以及与所述双目摄像头、所述驾驶操作机构和所述计算机分别相通信连接的中央控制器。该自动驾驶测试平台成本低廉并且可以满足无人驾驶车辆测试中所需的各种应用场景。
The present invention provides an automatic driving test platform based on an autonomous driving robot, which is characterized by comprising: a car driving simulator with a driver's seat, a display screen and a simulated driving mechanism arranged in front of the driver's seat, and a computer respectively connected in communication with the simulated driving mechanism; and a driving robot, which sits on the driving seat and operates the simulated driving mechanism, has a robot body matched with the driving seat, and is arranged on the robot body A monocular camera and a driving operating mechanism on the device, as well as a central controller connected in communication with the binocular camera, the driving operating mechanism and the computer, respectively. The autonomous driving test platform is low-cost and can meet various application scenarios required in driverless vehicle testing.
Description
技术领域technical field
本发明属于无人驾驶领域,涉及无人驾驶算法优化以及测试,具 体涉及一种基于自主驾驶机器人的自动驾驶测试平台。The invention belongs to the field of unmanned driving, relates to the optimization and testing of unmanned driving algorithms, and in particular relates to an automatic driving test platform based on an autonomous driving robot.
背景技术Background technique
在无人驾驶车领域,技术的每一步发展都必须以保障个人安全为 丈量,目前,无人驾驶车的发展存在两个瓶颈:一是官方对于车辆最 低试验里程数的要求,二是驾驶决策模型需要不同驾驶场景下的海量 数据做测试验证。研究表明:无人驾驶的安全性要达到类人类驾驶员 相当的安全程度,实则需要数十亿英里的实验里程作证明。然而,即 使作最合理的打算,现有的无人驾驶车也需要几十年甚至数百年的时 间才能完成预定的里程测试。因此如果将测试放在现实道路上,则在 短期内将会是一个不可能完成的任务。总体而言,道路实测成本昂贵 且耗日长久,虚拟测试是必由之路,但是其虚拟环境以及测试结果的有效性还有待论证和改进。In the field of unmanned vehicles, every step of the development of technology must be measured by ensuring personal safety. At present, there are two bottlenecks in the development of unmanned vehicles: one is the official requirements for the minimum test mileage of vehicles, and the other is driving decision-making The model requires massive data in different driving scenarios for testing and verification. Studies have shown that, in order to achieve the safety level of human-like drivers, the safety of unmanned driving needs billions of miles of experimental miles to prove it. However, even with the most reasonable intentions, existing driverless cars will take decades, if not hundreds of years, to complete the intended range test. Therefore, if the test is put on the real road, it will be an impossible task in the short term. In general, road testing is expensive and time-consuming, and virtual testing is the only way to go, but its virtual environment and the validity of test results need to be demonstrated and improved.
从软件到硬件的仿真模拟被合理建模时,就会为公司测试和验证 他们的汽车模式提供可能性。这包括各种各样的应用场景,包括交通 信息、司机行为、天气以及道路环境等。谷歌、特拉斯、Zoox……还 有更多公司借助模拟的方法力图使无人驾驶车的行驶里程尽快达到 十亿英里。如今,诸如Vires、TaSS、PreScan、CarSim、Oktal、ScanNer 和ROSGazebo等产品给工程师模拟传感器及其发生机制和机械结构 提供了可能。尽管它们各有所长,但却同时忽视了对于模拟而言至关 重要的领域,这包括过分简化现有的传感器输出,以及对环境如何影 响自主模型的复杂程度的了解。另外,此类驾驶场景模拟软件不仅成 本高昂,而且模拟的场景和现实的环境存在比较大的差异,这导致模 拟大多数传感器对于外界的感知存在困难。而一旦模拟过程出现了问 题,就会导致无人驾驶车出现交通事故等容易危及生命安全的问题。Simulation from software to hardware, when properly modeled, opens up possibilities for companies to test and validate their vehicle models. This includes a variety of application scenarios, including traffic information, driver behavior, weather, and road conditions. Google, Tesla, Zoox…and many more are using simulation to try to get self-driving cars to a billion miles as quickly as possible. Today, products such as Vires, TaSS, PreScan, CarSim, Oktal, ScanNer, and ROSGazebo offer engineers the possibility to simulate sensors, their generation mechanisms, and mechanical structures. Despite their strengths, they simultaneously overlook areas critical to simulation, including oversimplification of existing sensor outputs and an understanding of how the environment affects the sophistication of autonomous models. In addition, this kind of driving scene simulation software is not only expensive, but also the simulated scene is quite different from the real environment, which makes it difficult to simulate the perception of the outside world by most sensors. Once there is a problem in the simulation process, it will lead to problems such as traffic accidents that are easily endangered to life and safety.
如上,相比于传统汽车,无人驾驶汽车由于其系统的复杂性,车 辆除了需要进行传统汽车相关的实验室仿真、常规汽车试验场的测试 试验以外还需要进行海量的各种场景下的道路试验以训练、学习其自 主驾驶能力才能达到安全性要求。现目前,测试无人驾驶汽车技术手 段主要有智能网联汽车试验场和虚拟仿真等。目前世界上有很多国家 都已经开始建设相关的智能网联汽车测试场地,服务于智能网联汽车 的开发。目前投入运营的国外智能网联汽车测试场地有:美国安娜堡 示范区(M-City),美国硅谷示范区(WillowRun),欧洲ITS走廊, 瑞典AstaZero测试场,日本筑波科学城等。通常搭建通讯测试环境 完善,集成各种测试场景,满足全工况通讯测试环境的协同式智能网 联汽车测试场的建造成本将达数亿元以上。而诸如上述的PreScan等 正版虚拟仿真测试软件除了环境还原度不足等缺点外,软件的授权费 用也在百万级以上。As above, compared with traditional cars, due to the complexity of the system of driverless cars, in addition to the laboratory simulation related to traditional cars and the test tests of conventional car proving grounds, the vehicle also needs to carry out a large number of roads in various scenarios. The test requires training and learning its autonomous driving ability to meet the safety requirements. At present, the technical means of testing driverless vehicles mainly include intelligent networked vehicle proving ground and virtual simulation. At present, many countries in the world have begun to build relevant ICV test sites to serve the development of ICVs. At present, foreign ICV test sites in operation include: Ann Arbor Demonstration Area (M-City) in the United States, Silicon Valley Demonstration Area (WillowRun) in the United States, ITS Corridor in Europe, AstaZero Test Site in Sweden, Tsukuba Science City in Japan, etc. The construction cost of a collaborative intelligent network-connected vehicle test field that can meet the communication test environment of all working conditions is usually more than hundreds of millions of yuan. In addition to the shortcomings of insufficient environmental restoration, such as the above-mentioned PreScan and other genuine virtual simulation test software, the license fee of the software is also more than one million.
发明内容SUMMARY OF THE INVENTION
为解决上述问题,提供一种成本低廉、同时满足车辆测试中所需 的各种应用场景的高逼真测试环境的自动驾驶仿真平台,本发明采用 了如下技术方案:In order to solve the above problems, a kind of automatic driving simulation platform with low cost and high fidelity test environment for various application scenarios required in vehicle testing is provided, and the present invention adopts the following technical solutions:
本发明提供了一种基于自主驾驶机器人的自动驾驶测试平台,其 特征在于,包括:汽车驾驶模拟器,具有驾驶座、设置在该驾驶座前 方的显示屏幕和模拟驾驶机构、以及与显示屏幕和模拟驾驶机构分别 通信连接的计算机;以及驾驶机器人,坐在驾驶座上并对模拟驾驶机 构进行操作,具有与驾驶座相配合的机器人身躯、设置在该机器人身 体上的双目摄像头和驾驶操作机构、以及与摄像头、驾驶操作机构和 计算机分别相通信连接的中央控制器,其中,计算机具有仿真引擎存 储部以及驾驶模拟画面生成控制部,中央控制器具有驾驶模型存储 部、控制指令生成部、驾驶控制部、驾驶模拟数据获取存储部、决策 模型迭代部以及控制器通信部,仿真引擎存储部存储有多种高仿真赛 车游戏引擎,驾驶模型存储部存储有用于生成能够对车辆驾驶操作进 行决策的驾驶决策信息的驾驶决策模型以及用于根据驾驶决策生成 相应的机器人控制指令的车辆控制模型,驾驶模拟画面生成控制部基 于高仿真赛车游戏引擎生成模拟出虚拟驾驶环境的驾驶场景图像并 控制显示屏幕进行相应显示,双目摄像头实时对显示屏幕显示的驾驶 场景图像进行拍摄并向中央控制器实时输出双目分别拍摄得到的一 对屏幕拍摄图像,一旦控制器通信部接收到屏幕拍摄图像,控制指令 生成部就实时基于屏幕拍摄图像以及驾驶决策模型生成的相应的驾 驶决策信息,并将该驾驶决策信息输入车辆控制模型得到相应的机器 人控制指令,驾驶控制部基于机器人控制指令实时控制驾驶操作机构 对模拟驾驶机构进行模拟驾驶操作,使得模拟驾驶机构将与模拟驾驶 操作相对应的驾驶模拟信息发送给计算机,进一步使得驾驶模拟画面 生成控制部基于高仿真赛车游戏引擎以及接收到的驾驶模拟信息生 成新的驾驶场景图像并控制显示屏幕进行显示更新,驾驶模拟数据获 取存储部用于至少获取控制指令生成部生成的所有机器人控制指令 以及相应的屏幕拍摄图像作为驾驶模拟数据并进行对应存储,决策模 型迭代部根据驾驶模拟数据获取存储部中存储的所有驾驶模拟数据对驾驶决策模型进行迭代更新。The present invention provides an automatic driving test platform based on an autonomous driving robot, which is characterized by comprising: a car driving simulator, which has a driver seat, a display screen and a simulated driving mechanism arranged in front of the driver seat, and a display screen and a driving mechanism. A computer that is respectively connected to the simulated driving mechanism; and a driving robot, which sits on the driver's seat and operates the simulated driving mechanism, and has a robot body matched with the driver's seat, a binocular camera and a driving operating mechanism arranged on the robot body. , and a central controller that communicates with the camera, the driving operating mechanism and the computer respectively, wherein the computer has a simulation engine storage part and a driving simulation screen generation control part, and the central controller has a driving model storage part, a control instruction generation part, a driving The control part, the driving simulation data acquisition and storage part, the decision model iteration part, and the controller communication part, the simulation engine storage part stores a variety of high-simulation racing game engines, and the driving model storage part stores the information used to generate the decision-making for the driving operation of the vehicle. The driving decision model of the driving decision information and the vehicle control model used to generate the corresponding robot control instructions according to the driving decision. The driving simulation screen generation control unit generates the driving scene image that simulates the virtual driving environment based on the high-simulation racing game engine and controls the display screen. For corresponding display, the binocular camera captures the driving scene image displayed on the display screen in real time and outputs a pair of screen capture images obtained by binocular capture in real time to the central controller. Once the controller communication part receives the screen capture image, the control instruction The generation part generates the corresponding driving decision information based on the screen shot image and the driving decision model in real time, and inputs the driving decision information into the vehicle control model to obtain the corresponding robot control instructions. The driving control part controls the driving operation mechanism in real time based on the robot control instructions. The simulated driving mechanism performs the simulated driving operation, so that the simulated driving mechanism sends the driving simulation information corresponding to the simulated driving operation to the computer, and further enables the driving simulation screen generation control unit to generate a new driving simulation based on the high simulation racing game engine and the received driving simulation information. The driving scene image and control the display screen to display and update, the driving simulation data acquisition and storage unit is used to obtain at least all the robot control instructions generated by the control instruction generation unit and the corresponding screen shot images as driving simulation data and store them accordingly. The decision model iterates The driving decision-making model is iteratively updated according to all driving simulation data stored in the driving simulation data acquisition and storage section.
本发明提供的基于自主驾驶机器人的自动驾驶测试平台,还可以 具有这样的技术特征,其中,计算机还具有驾驶模拟结果生成部,中 央控制器还具有模型验证部,驾驶评分指标生成部基于由高仿真赛车 游戏引擎根据驾驶模拟信息产生的游戏结果以及预定的评分方法生 成相应的评分指标,模型验证输出部根据评分指标对驾驶决策模型以 及车辆控制模型进行验证并输出用于评价模型好坏的模型评价结果。The autonomous driving test platform based on the autonomous driving robot provided by the present invention may also have such technical features, wherein the computer further has a driving simulation result generation unit, the central controller also has a model verification unit, and the driving score index generation unit is based on the high The simulation racing game engine generates the corresponding scoring index according to the game results generated by the driving simulation information and the predetermined scoring method. The model verification output unit verifies the driving decision model and the vehicle control model according to the scoring index, and outputs the model for evaluating the quality of the model. Evaluation results.
本发明提供的基于自主驾驶机器人的自动驾驶测试平台,还可以 具有这样的技术特征,其中,驾驶决策模型包括决策生成模块以及决 策修正模块,控制指令生成部具有:屏幕图像预处理单元,用于实时 对一对屏幕拍摄图像进行预处理,形成与虚拟驾驶环境相对应的待输 入环境图像,并从屏幕拍摄图像中识别出由高仿真赛车游戏引擎生成 的虚拟车辆的状态参数作为车辆状态数据;初步决策生成单元,用于 将待输入环境图像输入驾驶决策模型的决策生成模块从而生成初步 决策信息;驾驶决策修正单元,用于将初步决策信息以及车辆状态数 据输入决策修正模块从而输出驾驶决策信息;以及指令生成单元,用于将驾驶决策信息输入车辆控制模型生成机器人控制指令。The autonomous driving test platform based on the autonomous driving robot provided by the present invention may also have such technical features, wherein the driving decision model includes a decision generation module and a decision correction module, and the control instruction generation unit has: a screen image preprocessing unit for Preprocess a pair of screen shot images in real time to form an environment image to be input corresponding to the virtual driving environment, and identify the state parameters of the virtual vehicle generated by the high-simulation racing game engine from the screen shot image as vehicle state data; The preliminary decision generation unit is used to input the environment image to be input into the decision generation module of the driving decision model to generate preliminary decision information; the driving decision correction unit is used to input the preliminary decision information and vehicle state data into the decision correction module to output the driving decision information ; and an instruction generation unit for inputting driving decision information into a vehicle control model to generate robot control instructions.
本发明提供的基于自主驾驶机器人的自动驾驶测试平台,还可以 具有这样的技术特征,其中,驾驶机器人还可以坐在真实的待测车辆 的驾驶座上并对待测车辆的驾驶机构进行操作,驾驶机器人还具有单 目摄像头、高精定位系统以及位姿传感器,单目摄像头用于对待测车 辆的仪表盘进行拍摄并向中央控制器实时输出拍摄得到的仪表拍摄 图像,高精定位系统用于对驾驶机器人的所在位置进行定位并实时生 成相应的高精定位信息,位姿传感器用于进行位姿检测并获取待测车 辆的姿态信息,双目摄像头还用于对待测车辆行驶的道路场景进行拍 摄并向中央控制器实时输出双目分别拍摄得到的一对实景拍摄图像, 控制指令生成部还具有:实景图像预处理单元,用于实时对一对实景 拍摄图像、仪表拍摄图像、高精定位信息以及姿态信息进行预处理, 根据实景拍摄图像形成与实际驾驶环境相对应的待输入环境图像,并 识别出仪表拍摄图像中仪表信息,进一步将仪表信息、高精定位信息 以及姿态信息作为待测车辆的车辆状态数据。The automatic driving test platform based on the autonomous driving robot provided by the present invention may also have such technical features, wherein the driving robot can also sit on the driving seat of the real vehicle to be tested and operate the driving mechanism of the vehicle to be tested, driving The robot also has a monocular camera, a high-precision positioning system and a pose sensor. The monocular camera is used to shoot the dashboard of the vehicle to be tested and output the captured image of the instrument in real time to the central controller. The high-precision positioning system is used to The location of the driving robot is located and the corresponding high-precision positioning information is generated in real time. The pose sensor is used to detect the pose and obtain the attitude information of the vehicle to be tested. The binocular camera is also used to shoot the road scene of the vehicle to be tested. and output a pair of real-scene shooting images obtained by binocular shooting in real time to the central controller, and the control instruction generation part also has: a real-scene image preprocessing unit, which is used for real-time shooting of a pair of real-scene images, instrument shooting images, and high-precision positioning information. and attitude information for preprocessing, forming an environment image to be input corresponding to the actual driving environment according to the real scene shooting image, and identifying the instrument information in the instrument shooting image, and further using the instrument information, high-precision positioning information and attitude information as the vehicle to be tested vehicle status data.
本发明提供的基于自主驾驶机器人的自动驾驶测试平台,还可以 具有这样的技术特征,其中,模拟驾驶机构至少具有转向盘、调速档 以及油门刹车踏板,驾驶操作机构至少具有用于对转向盘进行操作的 转向机械手、用于对调速挡进行操作的换挡机械手以及用于对油门刹 车踏板进行操作的机械腿。The automatic driving test platform based on the autonomous driving robot provided by the present invention may also have such technical features, wherein the simulated driving mechanism at least has a steering wheel, a speed control gear and an accelerator and brake pedal, and the driving operation mechanism at least has a steering wheel Steering manipulators for operating, shifting manipulators for operating speed gears, and mechanical legs for operating accelerator and brake pedals.
本发明提供的基于自主驾驶机器人的自动驾驶测试平台,还可以 具有这样的技术特征,其中,虚拟驾驶环境至少包括动态天气、昼夜 循环、车体泥垢以及光晕中的一种或几种效果。The autonomous driving test platform based on the autonomous driving robot provided by the present invention may also have such technical features, wherein the virtual driving environment includes at least one or several effects of dynamic weather, day and night cycle, car body dirt and halo.
发明作用与效果Invention action and effect
根据本发明的基于自主驾驶机器人的自动驾驶测试平台,由于汽 车驾驶模拟器利用高仿真赛车游戏引擎生成模拟出虚拟驾驶环境的 驾驶场景图像并通过显示屏幕进行显示,而驾驶机器人通过驾驶决策 模型和车辆控制模型对摄像头拍摄得到的屏幕拍摄图像进行处理形 成相应的机器人控制指令,进一步驾驶机器人根据该指令对汽车驾驶 模拟器的模拟驾驶机构进行驾驶操作,因此,可以通过这种仿真模拟 的形式对驾驶机器人中的驾驶决策模型进行迭代训练以及验证,强化 了该模型在不同场景下的感知和决策能力。将驾驶机器人与驾驶模拟 器两者相结合,可实现从模拟器获取高保真的模拟环境到机器人驾驶 虚拟环境的汽车的整套完整虚拟驾驶行为。通过本发明的自动驾驶仿 真平台,可以利用游戏引擎对无人驾驶算法进行大量的初期训练,减 少原本需要实车试验以及构建专业软件的成本,有助于各类企业对各 类的车辆进行无人驾驶算法的构建,大大节省了构建无人驾驶算法所 需的时间和成本。According to the automatic driving test platform based on the autonomous driving robot of the present invention, since the car driving simulator uses a high-simulation racing game engine to generate a driving scene image that simulates the virtual driving environment and displays it on the display screen, and the driving robot passes the driving decision model and The vehicle control model processes the screen image captured by the camera to form the corresponding robot control command, and further drives the robot to drive the simulated driving mechanism of the car driving simulator according to the command. The driving decision model in the driving robot is iteratively trained and verified, which strengthens the model's perception and decision-making capabilities in different scenarios. Combining both a driving robot and a driving simulator enables a complete set of virtual driving behaviors from the simulator to obtain a high-fidelity simulated environment to the robot driving a car in a virtual environment. Through the automatic driving simulation platform of the present invention, the game engine can be used to carry out a large amount of initial training on the unmanned driving algorithm, which reduces the cost of actual vehicle testing and the construction of professional software, which is helpful for various enterprises to carry out automatic driving of various types of vehicles. The construction of human-driving algorithms greatly saves the time and cost required to build unmanned algorithms.
进一步,由于驾驶机器人具有与驾驶座相配合的机器人身躯,其 上安装了换挡、转向机械手和油门、制动机械腿等构成的驾驶操作执 行机构,因此驾驶机器人可在无需对车辆或者模拟环境进行改装的条 件下,无损地安装在驾驶室内,模拟人类驾驶员在恶劣条件和危险环 境、或者虚拟环境下进行车辆自动驾驶,有助于相关企业或是人员利 用该驾驶机器人对无人驾驶算法的验证以及测试。Further, since the driving robot has a robot body matched with the driver's seat, on which is installed a driving operation actuator composed of a gear shift, steering manipulator, accelerator, and brake mechanical legs, etc. Under the condition of modification, it can be installed in the cab non-destructively, simulating the automatic driving of the vehicle by human drivers in harsh conditions and dangerous environments, or in a virtual environment, which is helpful for relevant enterprises or personnel to use the driving robot to improve the unmanned driving algorithm. verification and testing.
附图说明Description of drawings
图1是本发明实施例中基于自主驾驶机器人的自动驾驶测试平台的 结构框图;Fig. 1 is the structural block diagram of the automatic driving test platform based on autonomous driving robot in the embodiment of the present invention;
图2是本发明实施例中基于自主驾驶机器人的自动驾驶测试平台结 构示意图;2 is a schematic structural diagram of an autonomous driving test platform based on an autonomous driving robot in the embodiment of the present invention;
图3是本发明实施例中计算机的结构框图;3 is a structural block diagram of a computer in an embodiment of the present invention;
图4是本发明实施例中驾驶场景图像的示意图;4 is a schematic diagram of a driving scene image in an embodiment of the present invention;
图5是本发明实施例的中央控制器的结构框图;Fig. 5 is the structural block diagram of the central controller of the embodiment of the present invention;
图6是本发明实施例中端到端无人驾驶的结构示意图;6 is a schematic structural diagram of an end-to-end unmanned driving in an embodiment of the present invention;
图7是本发明实施例中模拟驾驶过程的流程图;7 is a flowchart of a simulated driving process in an embodiment of the present invention;
图8是本发明实施例中实车驾驶过程的流程图;以及8 is a flow chart of a real vehicle driving process in an embodiment of the present invention; and
图9是本发明实施例中驾驶模型的融合示意图。FIG. 9 is a schematic diagram of fusion of driving models in an embodiment of the present invention.
具体实施方式Detailed ways
为了使本发明实现的技术手段、创作特征、达成目的与功效易于 明白了解,以下结合实施例及附图对本发明的基于自主驾驶机器人的 自动驾驶测试平台作具体阐述。In order to make the technical means, creative features, goals and effects realized by the present invention easy to understand, the following describes the automatic driving test platform based on the autonomous driving robot of the present invention in conjunction with the embodiments and the accompanying drawings.
<实施例一><Example 1>
图1是本发明实施例中基于自主驾驶机器人的自动驾驶测试平 台的结构框图,图2是基于自主驾驶机器人的自动驾驶测试平台结构 示意图。1 is a structural block diagram of an autonomous driving test platform based on an autonomous driving robot in an embodiment of the present invention, and FIG. 2 is a schematic structural diagram of an autonomous driving test platform based on an autonomous driving robot.
如图1及图2所示,基于自主驾驶机器人的自动驾驶测试平台 100包括汽车驾驶模拟器101、驾驶机器人102以及通信网络103。As shown in FIG. 1 and FIG. 2 , the autonomous
其中,通信网络103为5G无线网络,汽车驾驶模拟器101通过 通信网络103与驾驶机器人102相通信连接。The
汽车驾驶模拟器101为是一台集成配置超高的电脑PC和驾驶操 作机构(转向盘、换挡杆、座椅、踏板等)及显示屏幕的汽车游戏模 拟平台。本实施例中,汽车驾驶模拟器101具有模拟器框架11、驾 驶座12、显示屏幕13、模拟驾驶机构14以及计算机15。The
模拟器框架11用于对汽车驾驶模拟器101的所有硬件构成进行 固定,该模拟器框架11为常规的塑料或是金属制框架。The
驾驶座12设置在模拟器框架11上,用于让驾驶机器人102坐在 该驾驶座12上。本实施例中,驾驶座12的构成与一般的驾驶座12 相同。A driver's
显示屏幕13设置在驾驶座12的前方并与该驾驶座12相对向, 当驾驶机器人102坐在驾驶座12上时,可以正面面对显示屏幕12。The
模拟驾驶机构14设置在驾驶座12的周围,其具有转向盘、换挡 杆、油门刹车踏板(即油门踏板、刹车踏板以及离合器踏板)等仿真 驾驶部件,各个仿真驾驶部件的布设位置与实际的车辆(以下简称实 车)的布设位置相一致。The
本实施例中,在各个仿真驾驶机构在被操作时,会生成对应的驾 驶模拟信息,如转向信息、刹车信息、加速信息等。模拟驾驶机构14会将生成的驾驶模拟信息实时输出给计算机15,使得计算机15根 据这些驾驶模拟信息来模拟车辆的动作。In this embodiment, when each simulated driving mechanism is operated, corresponding driving simulation information, such as steering information, braking information, acceleration information, etc., will be generated. The driving
图3是本发明实施例中计算机的结构框图。FIG. 3 is a structural block diagram of a computer in an embodiment of the present invention.
如图3所示,计算机15包括仿真引擎存储部151、驾驶模拟画 面生成控制部152、驾驶评分指标生成部153、模拟器通信部154以 及用于控制上述各部的模拟器控制部155,As shown in FIG. 3 , the
仿真引擎存储部151存储有多种不同的高仿真赛车游戏引擎。The simulation
本实施例中,高仿真赛车游戏引擎为各类具有高仿真效果的车辆 游戏引擎,如世界汽车拉力锦标赛5、极品飞车20、极限竞速:地平 线4、游戏尘埃4等世界一流的赛车游戏引擎。计算机15通过这些 游戏引擎,可以构建一个高还原的逼真虚拟驾驶环境,还可在该虚拟 驾驶环境中提供支持动态天气系统、昼夜循环、真实的物理破坏效果、 车体泥垢以及光晕镜头展示等效果,从而使得拍摄得到的环境更加真 实以及具备足够的复杂性。In this embodiment, the high-simulation racing game engine is a variety of vehicle game engines with high simulation effects, such as world-class racing game engines such as World Rally Championship 5, Need for Speed 20, Forza Motorsport: Horizon 4, Game Dust 4, etc. . Through these game engines, the
驾驶模拟画面生成控制部152基于在仿真引擎存储部151中存储 的高仿真赛车游戏引擎生成能够模拟出虚拟驾驶环境的驾驶场景图 像,并控制显示屏幕12对该驾驶场景图像进行实时的相应显示。The driving simulation screen
本实施例中,驾驶场景图像为基于高仿真赛车游戏引擎生成的游 戏画面,该游戏画面中至少显示有虚拟环境(如跑道等)以及虚拟车 辆(如图4所示)。在模拟器通信部154接收到模拟驾驶机构14被操 作时输出的驾驶模拟信息时,驾驶场景图像也会进行相应的更新,即 游戏画面中的虚拟车辆会根据驾驶模拟信息执行对应的驾驶行为(如 加速、刹车等行为),同时虚拟环境也会进行相应变化。In this embodiment, the driving scene image is a game screen generated based on a high-simulation racing game engine, and the game screen displays at least a virtual environment (such as a track, etc.) and a virtual vehicle (as shown in Figure 4). When the
驾驶评分指标生成部153基于由高仿真赛车游戏引擎根据驾驶 模拟信息产生的游戏结果以及预定的评分方法生成相应的评分指标。The driving score
本实施例中,评分方法为计算虚拟车辆移动固定圈数的时间长 短,并将该时间作为评分指标。当评分指标中的时间越短,就表示虚 拟车辆在虚拟环境中驾驶得越流畅(即出现的事故越少),通过该评 分指标即可判断出驾驶机器人102的无人驾驶的好坏。In this embodiment, the scoring method is to calculate the length of time for the virtual vehicle to move a fixed number of laps, and use the time as a scoring index. When the time in the scoring index is shorter, it means that the virtual vehicle drives more smoothly in the virtual environment (i.e., the fewer accidents occur), and through the scoring index, it is possible to judge whether the driving
在本发明的其他方案中,评分方法还可以通过判断驾驶机器人是 否可以操作虚拟车辆完成超车与避障动作,并给出相应的评分指标, 从而帮助无人驾驶的测试人员根据这些评分指标更好地判断驾驶机 器人102的控制算法的优劣以及是否可以进行实际应用。In other solutions of the present invention, the scoring method can also judge whether the driving robot can operate the virtual vehicle to complete overtaking and obstacle avoidance actions, and provide corresponding scoring indicators, thereby helping the unmanned testers to better evaluate the performance according to these scoring indicators. The advantages and disadvantages of the control algorithm of the driving
驾驶机器人102包括机器人身躯21、双目摄像头22、单目摄像 头23、高精定位系统24、位姿传感器25、5G通信模块26、驾驶操 作机构27以及中央控制器28。The driving
机器人身躯21用于安装以及固定驾驶机器人102的所有硬件构 成。本实施例中,机器人身躯21为仿人身躯,可以模仿驾驶员坐在 驾驶座12上。The
双目摄像头22用于在驾驶机器人102设置在汽车驾驶模拟器101 上时(即让驾驶机器人102坐在驾驶座12上进行无人驾驶测试,以 下称为虚拟测试),实时对显示屏幕13中显示的驾驶场景图像进行拍 摄并向中央控制器28实时输出拍摄得到的屏幕拍摄图像。The
另外,为了保证双目摄像头22拍摄的效果,如避免屏幕拍摄图 像中出现条纹等噪音,在启动汽车驾驶模拟器101以及驾驶机器人 102前需要对两者的配置进行相应调整。In addition, in order to ensure the shooting effect of the
单目摄像头23用于在驾驶机器人102设置在实车上时(即让驾 驶机器人102坐在实际的车辆上进行无人驾驶测试,以下称为实车测 试),对车辆的仪表所显示的汽车数据进行拍摄从而得到仪表拍摄图 像。The
本实施例中,单目摄像头23通过云台机构设置在驾驶机器人头 部,该云台机构可自动调整镜头的位置与角度以使单目摄像头23的 镜头中心正对试剂车辆的仪表中央。In this embodiment, the
本实施例中,由于单目摄像头23在实景拍摄时无法获取位置信 息,因此在进行实车测试时,双目摄像头22还会对车辆前方的行驶 道路场景进行拍摄并输出双目分别拍摄得到的一对实景拍摄图像,使 得中央控制器28可以通过对两幅图像视差的计算,直接对前方景物 (图像所拍摄到的范围)进行距离测量,而无需判断前方出现的是什 么类型的障碍物。In this embodiment, since the
高精定位系统24为GPS/BDS卫星导航定位系统及其增强型系统 RTK的相加混合体,能够在驾驶机器人102进行实车测试时,对驾 驶机器人102的位置进行高精度定位并输出相应的高精定位信息。The high-
位姿传感器25设置在机器人身躯21上,用于获取车辆自身的姿 态信息。The
本实施例中,在模拟测试时,单目摄像头23、高精定位系统24 以及位姿传感器25可以不进行工作。而在进行实车的无人驾驶测试 时,上述三者会与双目摄像头22一并进行实时采集,且此时双目摄 像头22会对车辆前方的实际道路场景进行拍摄并得到相应的实景拍 摄图像。In this embodiment, during the simulation test, the
5G通信模块26设置在机器人身躯21上,用于进行中央控制器 28与计算机15的通信连接。The
驾驶操作机构27用于对汽车驾驶模拟器101的模拟驾驶机构14 进行驾驶操作。The driving
本实施例中,驾驶操作机构27包括与模拟驾驶机构14中各个仿 真驾驶部件相对应的机械手和机械腿,具体地:该驾驶操作机构27 包括用于对转向盘进行操作的转向机械手261、用于对调速挡进行操 作的换挡机械手262以及用于对油门刹车踏板进行操作的机械腿263 (用于进行离合、制动以及踩油门操作)。由于该类机械手(腿)以 及相应控制方法为现有技术,在此不再赘述。In this embodiment, the driving
中央控制器28用于控制驾驶操作机构27对模拟驾驶机构14进 行相应的驾驶操作。The
图5是本发明实施例的中央控制器的结构框图。FIG. 5 is a structural block diagram of a central controller according to an embodiment of the present invention.
如图5所示,中央控制器28包括具有驾驶模型存储部281、控 制指令生成部282、驾驶控制部283、驾驶模拟数据获取存储部284、 决策模型迭代部285、模型验证部286、控制器通信部287以及用于 控制上述各部的控制器控制部288。As shown in FIG. 5 , the
驾驶模型存储部281存储有用于生成能够对车辆的驾驶操作进 行决策的驾驶决策信息的驾驶决策模型以及用于根据驾驶决策生成 相应的机器人控制指令的车辆控制模型。The driving
其中,驾驶决策模型为一个卷积神经网络,能够根据驾驶机器人 102拍摄到的图像对车辆的驾驶行为进行决策(即输出驾驶决策信 息),例如输出在红灯时需要踩刹车停止、在行驶时需要保持多少的 驾驶速度、是否转向等驾驶行为。该驾驶决策模型需要通过大量的迭 代训练,才能够输出正确的驾驶行为。Among them, the driving decision model is a convolutional neural network, which can make decisions on the driving behavior of the vehicle (ie, output driving decision information) according to the images captured by the driving
车辆控制模型为常规的驾驶机器人控制算法,该算法可以根据驾 驶决策模型输出的驾驶决策信息生成具体的机器人控制指令,如在驾 驶决策信息为刹车时,算法会生成相应的踩下刹车踏板的控制指令。The vehicle control model is a conventional driving robot control algorithm. The algorithm can generate specific robot control instructions according to the driving decision information output by the driving decision model. For example, when the driving decision information is braking, the algorithm will generate the corresponding control for pressing the brake pedal. instruction.
本实施例中,驾驶决策模型由决策生成模块以及决策修正模块组 成。In this embodiment, the driving decision model is composed of a decision generation module and a decision correction module.
控制指令生成部282具有屏幕图像预处理单元2821、实景图像 预处理单元2822、决策生成单元2823以及指令生成单元2825。The control
屏幕图像预处理单元2821用于在虚拟测试时,实时对双目摄像 头22输出的一对屏幕拍摄图像进行预处理,形成与虚拟驾驶环境相 对应的待输入环境图像,并从屏幕拍摄图像中识别出由高仿真赛车游 戏引擎生成的虚拟车辆的状态参数作为车辆状态数据。The screen image preprocessing unit 2821 is used to preprocess a pair of screen shot images output by the
本实施例中,由于显示屏幕13显示的驾驶模拟画面通过高仿真 赛车游戏引擎模拟生成,因此该画面中显示有虚拟车辆的仪表图像 (如车速表)、小地图(表示车辆的所在位置)等虚拟车辆的状态参 数,屏幕图像预处理单元2821可以通过对屏幕拍摄图像进行识别并 识别出这些状态参数。In this embodiment, since the driving simulation picture displayed on the
实景图像预处理单元2822用于在实车测试时,实时将双目摄像 头22输出的一对实景拍摄图像、单目摄像头23输出的仪表拍摄图像、 高精定位系统24输出的高精定位信息以及姿态传感器25输出的姿态 信息进行预处理,根据实景拍摄图像形成与实际驾驶环境相对应的待 输入环境图像,并识别出仪表拍摄图像中仪表信息,进一步将仪表信 息、高精定位信息以及姿态信息作为待测车辆的车辆状态数据。The real scene image preprocessing unit 2822 is used to real-timely capture a pair of real scene shooting images output by the
初步决策生成单元2823用于将待输入环境图像输入驾驶决策模 型的决策生成模块从而生成初步决策信息。The preliminary decision generation unit 2823 is used to input the environment image to be input into the decision generation module of the driving decision model to generate preliminary decision information.
驾驶决策修正单元2824用于将初步决策生成单元2823输出的初 步决策信息以及车辆状态数据输入决策修正模块从而输出驾驶决策 信息。The driving decision correction unit 2824 is configured to input the preliminary decision information and vehicle state data output by the preliminary decision generation unit 2823 into the decision correction module to output driving decision information.
指令生成单元2825用于将驾驶决策信息输入车辆控制模型生成 机器人控制指令。The instruction generation unit 2825 is used to input the driving decision information into the vehicle control model to generate robot control instructions.
本实施例中,中央控制器28主要采用机器视觉来实现无人驾驶, 原理是基于深度神经网络的端到端无人驾驶技术。In this embodiment, the
图6是本发明实施例中端到端无人驾驶的结构示意图。FIG. 6 is a schematic structural diagram of an end-to-end unmanned driving in an embodiment of the present invention.
如图6所示,端到端无人驾驶的核心为深度学习模型。通过实时 采集驾驶过程中不同路况场景的图像数据,同时记录不同路况下驾驶 员对汽车的控制参数。这些数据作为训练数据被输入到深度学习模型 进行训练。在利用深度学习模型控制汽车自动驾驶时,通过双目摄像 头采集实时路况图像(即实景拍摄图像)并测算出深度信息,并将该 图像进行融合后输入深度学习模型得到汽车线控参数(即机器人控制 指令),从而可以控制机器人操纵汽车自动驾驶,而深度信息则进入 下一层决策网络。As shown in Figure 6, the core of end-to-end autonomous driving is a deep learning model. Through real-time collection of image data of different road conditions during driving, the driver's control parameters of the car under different road conditions are recorded at the same time. These data are input to the deep learning model as training data for training. When using the deep learning model to control the automatic driving of the car, the binocular camera is used to collect real-time road conditions images (that is, real-life images), and the depth information is measured, and the images are fused and input into the deep learning model to obtain the car wire control parameters (that is, the robot). control instructions), so that the robot can be controlled to manipulate the car to drive automatically, while the depth information enters the next layer of decision-making network.
驾驶控制部283用于根据控制指令生成部282生成的机器人控制 指令,实时控制驾驶操作机构27。The driving
本实施例中,驾驶模拟画面生成控制部152会基于高仿真赛车游 戏引擎以及模拟驾驶机构14输出的驾驶模拟信息实时生成驾驶场景 图像并控制显示屏幕12进行相应显示,控制指令生成部282会根据 单目摄像头23对显示屏幕12拍摄得到的屏幕拍摄图像生成机器人控 制指令,而驾驶控制部283又会根据机器人控制指令控制驾驶操作机 构27对模拟驾驶机构14进行驾驶操作,由此则形成一个可以循环的 自动驾驶过程,达到操控虚拟环境的虚拟汽车的目的,最终实现整个 驾驶行为的闭环控制与算法验证。In this embodiment, the driving simulation image
驾驶模拟数据获取存储部284用于获取控制指令生成部282生成 的所有机器人控制指令、相应的屏幕拍摄图像以及驾驶评分指标生成 部153生成的评分指标作为驾驶模拟数据并进行对应存储。The driving simulation data acquisition and
另外,本实施例中,当驾驶机器人102进行实车的无人驾驶测试 时,驾驶模拟数据获取存储部284还同时会获取高精定位器24采集 的高精定位信息以及双目摄像头22拍摄到的图像作为驾驶模拟数 据。In addition, in this embodiment, when the driving
决策模型迭代部285根据驾驶模拟数据获取存储部284中存储的 所有驾驶模拟数据对驾驶决策模型进行迭代更新。The decision
模型验证输出部286根据评分指标对驾驶决策模型以及车辆控 制模型进行验证并输出用于评价模型好坏的模型评价结果。The model
本实施例中,模型验证输出部286可以输出给测试人员持有的终 端,从而让测试人员根据该结果判断驾驶决策模型以及车辆控制模型 是否可以投入实际使用或是还需要进行的调整。In this embodiment, the model
控制器通信部287用于进行中央控制器28与计算机15、单目摄 像头23、双目摄像头22、高精定位系统24以及驾驶操作机构27之 间的数据交换。The
图6是本发明实施例中模拟驾驶过程的流程图。FIG. 6 is a flowchart of a simulated driving process in an embodiment of the present invention.
如图6所示,在启动汽车驾驶模拟器101以及驾驶机器人102后, 开始如下步骤:As shown in FIG. 6, after starting the
步骤S1-1,计算机15中的驾驶模拟画面生成控制部152从仿真 引擎存储部151中获取一个高仿真赛车游戏引擎,并基于该高仿真赛 车游戏引擎实时生成驾驶场景图像并控制显示屏幕13进行显示,然 后进入步骤S1-2;In step S1-1, the driving simulation screen
步骤S1-2,双目摄像头23对显示屏幕13进行拍摄从而获取与驾 驶模拟画面相对应的屏幕拍摄图像,然后进入步骤S1-3;Step S1-2, the
步骤S1-3,控制指令生成部282基于步骤S1-2拍摄的屏幕拍摄 图像以及驾驶模型存储部171中存储的驾驶决策模型和车辆控制模 型生成相应的机器人控制指令,然后进入步骤S1-4;Step S1-3, the control
步骤S1-4,驾驶控制部283根据步骤S1-3生成的机器人控制指 令控制驾驶操作机构27对模拟驾驶机构14进行驾驶操作,然后进入 步骤S1-5;Step S1-4, the driving
步骤S1-5,模拟驾驶机构14根据步骤S1-4的驾驶操作生成相应 的驾驶模拟信息并发送给计算机15,然后进入步骤S1-6;Step S1-5, the
步骤S1-6,驾驶模拟画面生成控制部152基于步骤S1-1中获取 的高仿真赛车游戏引擎以及步骤S1-5发送的驾驶模拟信息生成新的 驾驶场景图像并控制显示屏幕13进行显示,然后进入步骤S1-7;In step S1-6, the driving simulation screen
步骤S1-7,中央控制器28根据预设的模拟驾驶结束条件判断是 否结束一轮模拟驾驶,若否则进入步骤S1-2,若是则进入步骤S1-8;Step S1-7, the
步骤S1-8,驾驶模拟数据获取存储部284获取一轮模拟驾驶产生 的所有机器人控制指令以及相应的屏幕拍摄图像作为驾驶模拟数据 并进行对应存储,然后进入步骤S1-9;Step S1-8, the driving simulation data acquisition and
步骤S1-9,决策模型迭代部285根据驾驶模拟数据获取存储部 284中存储的驾驶模拟数据对驾驶模型存储部171中存储的驾驶决策 模型完成一轮迭代,然后进入步骤S1-10;Step S1-9, the decision
步骤S1-10,中央控制器28判断驾驶决策模型是否达到预设的迭 代完成条件,若否则进入步骤S1-1,若是则进入结束状态。In step S1-10, the
通过上述模拟驾驶过程,即可对驾驶决策模型进行初步完善并使 使得该驾驶决策模型可以较为准确地根据驾驶机器人拍摄到的图像 进行驾驶行为的决策,此时驾驶机器人已经具有初步的无人驾驶能 力。Through the above simulation driving process, the driving decision-making model can be preliminarily improved, and the driving decision-making model can be more accurately determined based on the images captured by the driving robot. At this time, the driving robot has a preliminary unmanned driving. ability.
本实施例中,上述模拟驾驶过程的步骤S1-1至步骤S1-7中,驾 驶评分指标生成部153会生成相应的评分指标,模拟驾驶结束条件为 根据是否产生该评分指标判断是否结束一轮模拟驾驶。在本发明的其 他方案中,模拟驾驶结束条件也可以据实际需求设定,例如是根据驾 驶时长是否达到预设阈值判断是否结束一轮模拟驾驶。In this embodiment, in steps S1-1 to S1-7 of the above-mentioned simulated driving process, the driving score
本实施例中,迭代完成条件为进行迭代的轮数是否达到预设阈 值。在本发明的其他方案中,迭代完成条件也可以据实际需求设定, 例如是检测驾驶评分指标生成部153生成的评分指标是否达到预定 标准等。In this embodiment, the iteration completion condition is whether the number of rounds of iteration reaches a preset threshold. In other solutions of the present invention, the iteration completion condition can also be set according to actual needs, for example, it is to detect whether the score index generated by the driving score
在通过上述模拟驾驶过程完成驾驶决策模型的迭代,并且再次通 过上述过程以及评分指标对驾驶机器人102的无人驾驶能力进行测 试并通过后,还可以将该驾驶机器人102安置在实际车辆的驾驶座上 进行实车测试。After the iteration of the driving decision model is completed through the above-mentioned simulated driving process, and the unmanned capability of the driving
图7是本发明实施例中驾驶机器人的实车驾驶过程的流程图。FIG. 7 is a flowchart of a real vehicle driving process of a driving robot in an embodiment of the present invention.
如图7所示,在将驾驶机器人102安置在实际车辆的驾驶座上, 并启动驾驶机器人102后,开始如下步骤:As shown in FIG. 7, after placing the driving
步骤S2-1,单目摄像头23对实际车辆的仪表盘进行拍摄并向中 央控制器28输出拍摄得到的仪表拍摄图像,然后进入步骤S2-2;In step S2-1, the
步骤S2-2,双目摄像头22对实际车辆前方的道路场景进行拍摄 并向中央控制器28输出双目分别拍摄得到的一对实景拍摄图像,然 后进入步骤S2-3;Step S2-2, the
步骤S2-3,高精定位系统24对驾驶机器人102的所在位置进行 定位并向中央控制器28输出相应的高精定位信息,然后进入步骤 S2-4;Step S2-3, the high-
步骤S2-4,控制指令生成部对步骤S2-1输出的仪表拍摄图像、 步骤S2-2输出的实景拍摄图像以及步骤S2-3输出的高精定位信息进 行预处理并生成待输入数据,并基于该待输入数据以及驾驶模型存储 部171中存储的驾驶决策模型和车辆控制模型生成相应的机器人控 制指令,然后进入步骤S2-5;In step S2-4, the control instruction generation part preprocesses the meter photographed image outputted in step S2-1, the real scene photographed image outputted in step S2-2, and the high-precision positioning information outputted in step S2-3, and generates the data to be input, and generates the data to be input. Based on the data to be input and the driving decision model and vehicle control model stored in the driving model storage unit 171, the corresponding robot control command is generated, and then the process goes to step S2-5;
步骤S2-5,驾驶控制部283根据步骤S2-4生成的机器人控制指 令控制驾驶操作机构27对模拟驾驶机构14进行驾驶操作,然后进入In step S2-5, the driving
步骤S2-6,中央控制器28根据预设的实车驾驶结束条件判断是 否结束一轮实车驾驶,若否则进入步骤S2-1,若是则进入步骤S2-7;Step S2-6, the
步骤S2-7,驾驶模拟数据获取存储部284获取一轮实车驾驶产生 的所有机器人控制指令以及相应的仪表拍摄图像、实景拍摄图像和高 精定位信息作为驾驶模拟数据并进行对应存储,然后进入步骤S2-8;In step S2-7, the driving simulation data acquisition and
步骤S2-8,决策模型迭代部285根据驾驶模拟数据获取存储部 284中存储的驾驶模拟数据对驾驶模型存储部171中存储的驾驶决策 模型完成一轮迭代,然后进入步骤S2-9;Step S2-8, the decision
步骤S2-9,中央控制器28判断驾驶决策模型是否达到预设的迭 代完成条件,若否则进入步骤S2-1,若是则进入结束状态。In step S2-9, the
通过上述过程,即可利用基于本发明的自动驾驶仿真平台训练出 的驾驶机器人进行实车测试以及验证。Through the above process, the driving robot trained based on the automatic driving simulation platform of the present invention can be used for real vehicle testing and verification.
另外,通过模拟驾驶过程以及实车驾驶过程后得到的最终的驾驶 决策模型,可以与车辆控制模型进行融合,如图8所示,在结合实际 车辆的车辆模型可以形成一个基于车辆动力学模型的整车控制数学 模型,该整车控制数学模型可以集成到无人驾驶汽车的系统内,结合 无人驾驶汽车的传感器采集到的各类数据进行无人驾驶控制。In addition, the final driving decision model obtained after simulating the driving process and the actual vehicle driving process can be fused with the vehicle control model, as shown in Figure 8, combined with the vehicle model of the actual vehicle, a vehicle dynamics model-based model can be formed. The vehicle control mathematical model, which can be integrated into the system of the driverless car, combined with all kinds of data collected by the sensors of the driverless car for driverless control.
另外,中央控制器28还可以具备数据记录及输出接口,可将整 个驾驶行为数据(加速、制动、换挡等驾驶行为)导出至MATLAB 等第三方软件平台进行进一步的分析(不同的驾驶员有不同的驾驶习 惯,通过大数据分析可进一步优化驾驶行为以达到车辆操作的平顺 性、经济性等目的)。In addition, the
实施例作用与效果Example function and effect
根据本实施例提供的基于自主驾驶机器人的自动驾驶测试平台, 由于汽车驾驶模拟器利用高仿真赛车游戏引擎生成模拟出虚拟驾驶 环境的驾驶场景图像并通过显示屏幕进行显示,而驾驶机器人通过驾 驶决策模型和车辆控制模型对单目摄像头拍摄得到的屏幕拍摄图像 进行处理形成相应的机器人控制指令,进一步驾驶机器人根据该指令 对汽车驾驶模拟器的模拟驾驶机构进行驾驶操作,因此,可以通过这 种仿真模拟的形式对驾驶机器人中的驾驶决策模型进行迭代训练以 及验证,强化了该模型在不同场景下的感知和决策能力。将驾驶机器 人与驾驶模拟器两者相结合,可实现从模拟器获取高保真的模拟环境 到机器人驾驶虚拟环境的汽车的整套完整虚拟驾驶行为。通过本发明 的自动驾驶仿真平台,可以利用游戏引擎对无人驾驶算法进行大量的 初期训练,减少原本需要实车试验以及构建专业软件的成本,有助于 各类企业对各类的车辆进行无人驾驶算法的构建,大大节省了构建无 人驾驶算法所需的时间和成本。According to the autonomous driving test platform based on the autonomous driving robot provided in this embodiment, since the car driving simulator uses a high-simulation racing game engine to generate a driving scene image that simulates a virtual driving environment and displays it on the display screen, while the driving robot decides by driving The model and the vehicle control model process the screen image captured by the monocular camera to form the corresponding robot control command, and further drive the robot to drive the simulated driving mechanism of the car driving simulator according to the command. Therefore, through this simulation The driving decision model in the driving robot is iteratively trained and verified in the form of simulation, which strengthens the perception and decision-making ability of the model in different scenarios. Combining both the driving robot and the driving simulator enables a complete set of virtual driving behaviors from the simulator obtaining a high-fidelity simulated environment to the robot driving a car in a virtual environment. Through the automatic driving simulation platform of the present invention, the game engine can be used to carry out a large amount of initial training on the unmanned driving algorithm, which reduces the cost of actual vehicle testing and the construction of professional software, which is helpful for various enterprises to carry out automatic driving of various types of vehicles. The construction of the human driving algorithm greatly saves the time and cost required to construct the unmanned driving algorithm.
本发明结合游戏仿真引擎(游戏引擎的授权费用仅几百元人民 币)及驾驶机器人搭建的半实物虚拟仿真平台除了能够满足各种应用 场景的高逼真测试环境的还原,整套系统的制造成本不超过十万元人 民币。The present invention combines the game simulation engine (the game engine authorization fee is only a few hundred yuan) and the semi-physical virtual simulation platform built by the driving robot. In addition to the restoration of a high-fidelity test environment that can meet various application scenarios, the manufacturing cost of the entire system does not exceed One hundred thousand yuan.
进一步,由于驾驶机器人具有与驾驶座相配合的机器人身躯,其 上安装了换挡、转向机械手和油门、制动机械腿等构成的驾驶操作执 行机构,因此驾驶机器人可在无需对车辆或者模拟环境进行改装的条 件下,无损地安装在驾驶室内,模拟人类驾驶员在恶劣条件和危险环 境、或者虚拟环境下进行车辆自动驾驶,有利于利用该驾驶机器人对 无人驾驶算法的验证以及测试。Further, since the driving robot has a robot body matched with the driver's seat, on which is installed a driving operation actuator composed of a gear shift, steering manipulator, accelerator, and brake mechanical legs, etc. Under the condition of modification, it can be installed in the cab non-destructively, simulating the automatic driving of the vehicle by human drivers in harsh conditions and dangerous environments, or in virtual environments, which is conducive to the verification and testing of unmanned algorithms by using the driving robot.
目前,无人驾驶车辆并未真正上市,大都通过传统汽车改造而来 (改造成本大、费时费力),自主驾驶机器人可无损安装于各类试验 汽车上无需对汽车进行改制,大大节省了时间及成本,因此作为一套 低成本、高性价比的无人驾驶训练和检验模型的仿真工具,实际上同 时解决了试验环境及实验车辆的问题,并且可以灵活搭配扩展其通用 性比如更换不同的游戏引擎来更换试验场景,可以大大减少无人驾驶 汽车测试的物力及时间成本具有较大的市场应用价值。At present, unmanned vehicles are not really on the market, and most of them are transformed from traditional vehicles (the transformation cost is high and time-consuming and laborious). Autonomous driving robots can be installed on all kinds of test vehicles without any need for modification of the car, which greatly saves time and energy. Therefore, as a low-cost and cost-effective simulation tool for unmanned training and testing models, it actually solves the problems of the test environment and the test vehicle at the same time, and can be flexibly matched to expand its versatility, such as changing different game engines To replace the test scene, it can greatly reduce the material and time cost of driverless vehicle testing, and has great market application value.
更进一步,通过本发明的驾驶仿真平台迭代训练得到的驾驶决策 模型也可以与驾驶控制模型提取出并整合形成一个无人驾驶模块,该 无人驾驶模块可以设置在无人驾驶汽车的系统中并实现无人驾驶。Furthermore, the driving decision-making model obtained through the iterative training of the driving simulation platform of the present invention can also be extracted and integrated with the driving control model to form an unmanned module, which can be set in the system of the unmanned vehicle and installed. Realize unmanned driving.
上述实施例仅用于举例说明本发明的具体实施方式,而本发明不 限于上述实施例的描述范围。The above embodiments are only used to illustrate specific embodiments of the present invention, and the present invention is not limited to the description scope of the above embodiments.
例如,在上述实施例中,模拟驾驶机构仅包括转向盘、换挡杆、 油门刹车踏板等机构。在本发明的其他方案中,模拟驾驶机构还可以 包括手刹、点火开关等,并让驾驶机器人配置对应的操作手臂以及操 作算法,从而更好地进行无人驾驶模拟。For example, in the above-mentioned embodiment, the simulated driving mechanism only includes mechanisms such as a steering wheel, a shift lever, an accelerator and a brake pedal, and the like. In other solutions of the present invention, the simulated driving mechanism may also include a handbrake, an ignition switch, etc., and the driving robot is configured with a corresponding operating arm and operating algorithm, so as to better simulate unmanned driving.
例如,在上述实施例中,驾驶模型存储部仅存储有一种驾驶决策 模型,通过多次迭代完成优化。在本发明的其他方案中,驾驶模型存 储部还可以存储有多种驾驶决策模型(如对应于不同驾驶风格),通 过本发明的自动驾驶测试平台对这些驾驶决策模型进行优化,从而在 完成测试后,让测试人员根据测试结果选出最适合的驾驶决策模型并 用于实际应用。For example, in the above embodiment, the driving model storage unit only stores one driving decision model, and the optimization is completed through multiple iterations. In other solutions of the present invention, the driving model storage unit may also store a variety of driving decision models (for example, corresponding to different driving styles), and these driving decision models are optimized through the automatic driving test platform of the present invention, so as to complete the test Then, let the testers select the most suitable driving decision model according to the test results and use it in practical applications.
Claims (6)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010673172.0A CN111752261B (en) | 2020-07-14 | 2020-07-14 | Autonomous driving test platform based on autonomous driving robot |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010673172.0A CN111752261B (en) | 2020-07-14 | 2020-07-14 | Autonomous driving test platform based on autonomous driving robot |
Publications (2)
Publication Number | Publication Date |
---|---|
CN111752261A true CN111752261A (en) | 2020-10-09 |
CN111752261B CN111752261B (en) | 2021-07-06 |
Family
ID=72710938
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202010673172.0A Active CN111752261B (en) | 2020-07-14 | 2020-07-14 | Autonomous driving test platform based on autonomous driving robot |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN111752261B (en) |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112987593A (en) * | 2021-02-19 | 2021-06-18 | 中国第一汽车股份有限公司 | Visual positioning hardware-in-the-loop simulation platform and simulation method |
CN113146649A (en) * | 2021-03-24 | 2021-07-23 | 北京航空航天大学 | Helicopter piloting robot system for controlling helicopter steering column |
CN113237669A (en) * | 2021-04-08 | 2021-08-10 | 联合汽车电子有限公司 | Automatic driving control system for vehicle hub test |
US20220055651A1 (en) * | 2020-08-24 | 2022-02-24 | Toyota Research Institute, Inc. | Data-driven warm start selection for optimization-based trajectory planning |
CN114434466A (en) * | 2022-03-14 | 2022-05-06 | 交通运输部公路科学研究所 | A simulation robot for car intelligent cockpit performance evaluation |
WO2022141294A1 (en) * | 2020-12-30 | 2022-07-07 | 深圳市大疆创新科技有限公司 | Simulation test method and system, simulator, storage medium, and program product |
CN115366891A (en) * | 2022-09-20 | 2022-11-22 | 武汉科技大学 | A driving style recognition method, system and storage medium |
CN115813676A (en) * | 2022-10-25 | 2023-03-21 | 南京康尼机电股份有限公司 | Remote control device of electric wheelchair |
CN115901290A (en) * | 2022-11-03 | 2023-04-04 | 东风商用车有限公司 | L3 level automatic driving test system |
CN118135867A (en) * | 2024-05-06 | 2024-06-04 | 成都运达科技股份有限公司 | Signal equipment display method, driving training device and storage medium |
Citations (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101530329A (en) * | 2009-03-06 | 2009-09-16 | 北京理工大学 | Semi-physical driving fatigue vision simulation system platform |
CN101714302A (en) * | 2009-12-15 | 2010-05-26 | 中国民航大学 | Automatic-piloting simulator of aeroplane |
CN101770708A (en) * | 2010-01-28 | 2010-07-07 | 公安部交通管理科学研究所 | Simulation testing platform system for researching driving behaviors |
CN101794523A (en) * | 2009-12-15 | 2010-08-04 | 中国民航大学 | Aircraft hardware-in-the-loop simulation device |
CN102435442A (en) * | 2011-09-05 | 2012-05-02 | 北京航空航天大学 | Automatic drive robot used in vehicle road tests |
CN102637058A (en) * | 2011-08-25 | 2012-08-15 | 上海交通大学 | Automatic drive robot |
CN103426338A (en) * | 2013-09-05 | 2013-12-04 | 北京汽车股份有限公司 | Automobile driving test simulating system |
US20150138301A1 (en) * | 2013-11-21 | 2015-05-21 | Electronics And Telecommunications Research Institute | Apparatus and method for generating telepresence |
CN105068857A (en) * | 2015-07-24 | 2015-11-18 | 同济大学 | Driving behavior data acquisition method based on high fidelity driving simulator |
CN107775641A (en) * | 2016-08-24 | 2018-03-09 | 南京乐朋电子科技有限公司 | In generation, drives robot |
JP2018103352A (en) * | 2016-12-22 | 2018-07-05 | セイコーエプソン株式会社 | Control device, robot and robot system |
CN108263307A (en) * | 2017-01-03 | 2018-07-10 | 福特全球技术公司 | For the spatial hearing alarm of vehicle |
CN209505463U (en) * | 2019-01-31 | 2019-10-18 | 上海淞泓智能汽车科技有限公司 | A kind of automatic robot driver for autonomous driving vehicle test |
CN111026162A (en) * | 2019-12-10 | 2020-04-17 | 长沙中联重科环境产业有限公司 | Self-following cleaning robot |
CN111338235A (en) * | 2020-03-28 | 2020-06-26 | 中汽数据(天津)有限公司 | A VTD-based Driving Robot Simulation Test Platform |
-
2020
- 2020-07-14 CN CN202010673172.0A patent/CN111752261B/en active Active
Patent Citations (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101530329A (en) * | 2009-03-06 | 2009-09-16 | 北京理工大学 | Semi-physical driving fatigue vision simulation system platform |
CN101714302A (en) * | 2009-12-15 | 2010-05-26 | 中国民航大学 | Automatic-piloting simulator of aeroplane |
CN101794523A (en) * | 2009-12-15 | 2010-08-04 | 中国民航大学 | Aircraft hardware-in-the-loop simulation device |
CN101770708A (en) * | 2010-01-28 | 2010-07-07 | 公安部交通管理科学研究所 | Simulation testing platform system for researching driving behaviors |
CN102637058A (en) * | 2011-08-25 | 2012-08-15 | 上海交通大学 | Automatic drive robot |
CN102435442A (en) * | 2011-09-05 | 2012-05-02 | 北京航空航天大学 | Automatic drive robot used in vehicle road tests |
CN103426338A (en) * | 2013-09-05 | 2013-12-04 | 北京汽车股份有限公司 | Automobile driving test simulating system |
US20150138301A1 (en) * | 2013-11-21 | 2015-05-21 | Electronics And Telecommunications Research Institute | Apparatus and method for generating telepresence |
CN105068857A (en) * | 2015-07-24 | 2015-11-18 | 同济大学 | Driving behavior data acquisition method based on high fidelity driving simulator |
CN107775641A (en) * | 2016-08-24 | 2018-03-09 | 南京乐朋电子科技有限公司 | In generation, drives robot |
JP2018103352A (en) * | 2016-12-22 | 2018-07-05 | セイコーエプソン株式会社 | Control device, robot and robot system |
CN108263307A (en) * | 2017-01-03 | 2018-07-10 | 福特全球技术公司 | For the spatial hearing alarm of vehicle |
CN209505463U (en) * | 2019-01-31 | 2019-10-18 | 上海淞泓智能汽车科技有限公司 | A kind of automatic robot driver for autonomous driving vehicle test |
CN111026162A (en) * | 2019-12-10 | 2020-04-17 | 长沙中联重科环境产业有限公司 | Self-following cleaning robot |
CN111338235A (en) * | 2020-03-28 | 2020-06-26 | 中汽数据(天津)有限公司 | A VTD-based Driving Robot Simulation Test Platform |
Non-Patent Citations (3)
Title |
---|
HASAN A.POONAWALAB,MARK W.SPONGA: "Time-optimal velocity tracking control for differential drive robots", 《AUTOMATICA》 * |
YESIM ONIZA,OKYAY KAYNAKAB: "Control of a direct drive robot using fuzzy spiking neural networks with variable structure systems-based learning algorithm", 《NEUROCOMPUTING》 * |
陈刚: "汽车驾驶机器人系统的研究进展", 《汽车电器》 * |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20220055651A1 (en) * | 2020-08-24 | 2022-02-24 | Toyota Research Institute, Inc. | Data-driven warm start selection for optimization-based trajectory planning |
US11958498B2 (en) * | 2020-08-24 | 2024-04-16 | Toyota Research Institute, Inc. | Data-driven warm start selection for optimization-based trajectory planning |
WO2022141294A1 (en) * | 2020-12-30 | 2022-07-07 | 深圳市大疆创新科技有限公司 | Simulation test method and system, simulator, storage medium, and program product |
CN112987593A (en) * | 2021-02-19 | 2021-06-18 | 中国第一汽车股份有限公司 | Visual positioning hardware-in-the-loop simulation platform and simulation method |
CN112987593B (en) * | 2021-02-19 | 2022-10-28 | 中国第一汽车股份有限公司 | Visual positioning hardware-in-the-loop simulation platform and simulation method |
CN113146649A (en) * | 2021-03-24 | 2021-07-23 | 北京航空航天大学 | Helicopter piloting robot system for controlling helicopter steering column |
CN113237669A (en) * | 2021-04-08 | 2021-08-10 | 联合汽车电子有限公司 | Automatic driving control system for vehicle hub test |
CN114434466A (en) * | 2022-03-14 | 2022-05-06 | 交通运输部公路科学研究所 | A simulation robot for car intelligent cockpit performance evaluation |
CN115366891A (en) * | 2022-09-20 | 2022-11-22 | 武汉科技大学 | A driving style recognition method, system and storage medium |
CN115813676A (en) * | 2022-10-25 | 2023-03-21 | 南京康尼机电股份有限公司 | Remote control device of electric wheelchair |
CN115901290A (en) * | 2022-11-03 | 2023-04-04 | 东风商用车有限公司 | L3 level automatic driving test system |
CN118135867A (en) * | 2024-05-06 | 2024-06-04 | 成都运达科技股份有限公司 | Signal equipment display method, driving training device and storage medium |
Also Published As
Publication number | Publication date |
---|---|
CN111752261B (en) | 2021-07-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN111752261B (en) | Autonomous driving test platform based on autonomous driving robot | |
CN108829087B (en) | A kind of intelligent test system of autonomous driving vehicle | |
CN108803607B (en) | Multifunctional simulation system for automatic driving | |
CN108319249B (en) | Comprehensive evaluation system and method for unmanned driving algorithm based on driving simulator | |
CN112925291B (en) | A digital twin autonomous driving test method based on camera obscura | |
US20190043278A1 (en) | Test drive scenario system for virtual test drive scenarios | |
KR102282970B1 (en) | the method for configuring and controling real-time distributed autonomous driving simulation framework | |
CN110103983A (en) | System and method for the verifying of end-to-end autonomous vehicle | |
CN110794810A (en) | Method for carrying out integrated test on intelligent driving vehicle | |
CN111309600A (en) | Virtual scene injection automatic driving test method and electronic equipment | |
CN109993849A (en) | A kind of automatic driving test scene reproduction simulation method, device and system | |
CN114115200B (en) | NVH (noise and harshness) testing system and testing method for electric drive assembly of electric automobile | |
CN110333085A (en) | A remote control system and method for an automatic driving test vehicle | |
CN107871418A (en) | An Experimental Platform for Evaluating the Reliability of Human-Machine Co-Driving | |
CN203148676U (en) | Vehicle transmission system testing stand | |
CN105068857A (en) | Driving behavior data acquisition method based on high fidelity driving simulator | |
CN101756706B (en) | Driving-situation awareness measuring system | |
CN116868040A (en) | Equipment and methods for testing autonomous vehicles | |
CN116540563A (en) | Automatic driving simulation test system | |
CN115472013B (en) | A new energy vehicle energy management test platform based on virtual traffic scenarios | |
CN116859881A (en) | Test method and device | |
CN110930811B (en) | A system suitable for autonomous decision-making learning and training | |
CN103149027A (en) | Vehicle transmission system testing method and test table for implementing same | |
CN110069894A (en) | A kind of objective mapping test method for intelligent automobile traffic coordinating | |
CN207337401U (en) | A kind of automobile cabin human-computer interaction assessment system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |