CN111740934B - 一种基于深度学习的水声fbmc通信信号检测方法 - Google Patents

一种基于深度学习的水声fbmc通信信号检测方法 Download PDF

Info

Publication number
CN111740934B
CN111740934B CN202010437712.5A CN202010437712A CN111740934B CN 111740934 B CN111740934 B CN 111740934B CN 202010437712 A CN202010437712 A CN 202010437712A CN 111740934 B CN111740934 B CN 111740934B
Authority
CN
China
Prior art keywords
dnn
layer
value
fbmc
output
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202010437712.5A
Other languages
English (en)
Other versions
CN111740934A (zh
Inventor
朱雨男
王彪
聂星阳
葛慧林
刘雨佶
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jiangsu University of Science and Technology
Original Assignee
Jiangsu University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jiangsu University of Science and Technology filed Critical Jiangsu University of Science and Technology
Priority to CN202010437712.5A priority Critical patent/CN111740934B/zh
Publication of CN111740934A publication Critical patent/CN111740934A/zh
Application granted granted Critical
Publication of CN111740934B publication Critical patent/CN111740934B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2626Arrangements specific to the transmitter only
    • H04L27/2627Modulators
    • H04L27/264Pulse-shaped multi-carrier, i.e. not using rectangular window
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/04Architecture, e.g. interconnection topology
    • G06N3/045Combinations of networks
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/08Learning methods
    • G06N3/084Backpropagation, e.g. using gradient descent
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0202Channel estimation
    • H04L25/024Channel estimation channel estimation algorithms
    • H04L25/0254Channel estimation channel estimation algorithms using neural network algorithms
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/03Shaping networks in transmitter or receiver, e.g. adaptive shaping networks
    • H04L25/03006Arrangements for removing intersymbol interference
    • H04L25/03165Arrangements for removing intersymbol interference using neural networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B11/00Transmission systems employing sonic, ultrasonic or infrasonic waves
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B13/00Transmission systems characterised by the medium used for transmission, not provided for in groups H04B3/00 - H04B11/00
    • H04B13/02Transmission systems in which the medium consists of the earth or a large mass of water thereon, e.g. earth telegraphy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Landscapes

  • Engineering & Computer Science (AREA)
  • Evolutionary Computation (AREA)
  • Artificial Intelligence (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Computational Linguistics (AREA)
  • Biophysics (AREA)
  • Molecular Biology (AREA)
  • Computing Systems (AREA)
  • General Engineering & Computer Science (AREA)
  • Data Mining & Analysis (AREA)
  • Mathematical Physics (AREA)
  • Software Systems (AREA)
  • Biomedical Technology (AREA)
  • Power Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Cable Transmission Systems, Equalization Of Radio And Reduction Of Echo (AREA)

Abstract

本发明公开的一种基于深度学习的水声FBMC通信信号检测方法。利用训练完成的深度神经网络模型(DNN)取代传统水声FBMC通信系统接收端中的信道估计、均衡等模块,打破系统的模块化限制,自适应地学习水声信道状态信息,避免原本系统固有的虚部干扰影响,提高系统的误码率性能。本发明的有益效果:本发明在传统水声FBMC通信系统的接收端用一个训练完善的DNN代替原有的信道估计、均衡等过程。利用DNN的训练阶段获取水声信道状态信息,在测试阶段实现信号的解调恢复。在此基础上本发明又引入Adam权重更新策略和L2正则化方法优化DNN模型,进一步提升DNN的收敛效率和估计精度,本发明相较于现有基于信道估计的方法在精度和复杂度方面具有一定的优越性。

Description

一种基于深度学习的水声FBMC通信信号检测方法
技术领域
本发明涉及水声通信技术领域,具体为一种基于深度学习的水声滤波器组多载波(FBMC,Filter Bank Multi-Carrier)通信信号检测方法。
背景技术
水声信道与陆地上的无线信道存在很大不同,具有时变、频变、空变特性以及多径效应强、可利用带宽窄,信号衰减严重等特点,且易受到多种因素的干扰,导致水声通信的发展受到限制。
目前,国内外关于水声通信的研究主要以多载波调制技术为主。FBMC相比传统的OFDM而言不需要循环前缀,带外泄露低,频谱效率高且具有更好的时频聚焦特性,同时由于引入偏置正交振幅调制(OQAM,Offset Quadrature Amplitude Modulation),系统的抗干扰性能得到很大提升。但由于FBMC通信系统仅在实数域上满足严格正交,存在固有的虚部干扰,OFDM系统中的信道估计方案均不能直接采用,很大程度上影响了信道估计的效果。为了保证系统的可靠性,近年来不断有基于训练序列和导频等信道估计方法被提出,但均未从根本上解决虚部干扰问题。
发明内容
本发明提供了一种水声信号检测方法,以解决现有技术中传统水声滤波器组多载波(FBMC)通信接收端需经过信道估计和均衡才可恢复出发送符号,系统复杂度高且信道估计精度不佳等问题。
本发明提供了一种水声信号检测方法,包括如下步骤:
步骤1:对传统水声FBMC通信系统进行反复测试,获取训练DNN所需的数据集,将数据集划分为训练集和测试集并进行数据预处理;
步骤2:根据需求确定DNN-FBMC系统各项超参数,初始化DNN各层神经元参数;
步骤3:输入训练集数据,计算当前DNN输出层正向传播的预测值;
步骤4:计算DNN的代价函数,根据代价函数进行DNN反向传播更新各层神经元参数,其中代价函数采用交叉熵函数;
步骤5:循环执行步骤3-步骤4,使得DNN达到信号检测误码率的预设要求,当代价函数不再明显减少或达到最小值时DNN完成训练,各参数停止更新,得到训练完成的DNN模型;
步骤6:将步骤5中所得DNN模型接入系统接收端进行发送信号恢复,输入测试集数据,将得到的DNN正向传播输出值作为发送信号最终预测值,与真实发送信号值进行对比,计算误码率。
进一步地,所述步骤1中的足量数据集包括:FBMC系统发送端原始发送序列x(n)、FBMC系统接收端原始复数序列y0(n)。由于DNN更易于处理实数域数据,为使其有效工作,要对FBMC接收端的复数序列y0(n)进行数据预处理。分别提取出复数符号的实部和虚部,并将同一符号的虚部置于其实部后面,重新组合成一个实数序列y(n)。记录330000组x(n)、y(n)形成数据集。
进一步地,所述步骤2中DNN-FBMC系统训练超参数设置如下:
设置学习率为0.01,训练集mini-batch为512,测试集mini-batch为512,隐含层激活函数采用ReLU激活函数,输出层激活函数采用Sigmoid激活函数,权重初始化方法采用Heinitialization,权重更新策略为Adam,L2正则化参数为1.2,Dropout正则化参数为0.8。
其中,He initialization为保持输入和输出的方差不变,将随机初始化的值乘以缩放因子
Figure GDA0002743045020000031
(layersdims[l-1]表示前一层的大小),使得ReLU输出概率分布效果更好。Adam优化算法可以看作是Momentum和RMSProp算法的结合,可以快速收敛并正确学习,最大程度地最小化损失函数。L2正则化在原有代价函数J(ω,b)后加上一个关于权重ω的L2正则化项,使得权重衰减,提高泛化能力。具体表示为:
Figure GDA0002743045020000032
Dropout正则化通过设置神经元节点的保留概率来消除部分节点,得到一个规模更小的网络。
进一步地,所述步骤3中计算DNN正向传播的公式如下:
Figure GDA0002743045020000033
Figure GDA0002743045020000034
fReLU(z)=max(0,z) (4)
fSigmoid(z)=1/(1+e-z) (5)
式(2)至(5)中,
Figure GDA0002743045020000035
表示第l层第i个神经元的输入;
Figure GDA0002743045020000036
表示第l层第i个神经元的输出;
Figure GDA0002743045020000037
表示第l层第i个神经元与前一层所有神经元间的权值,维度为1×nl-1
Figure GDA0002743045020000038
表示第l层第i个神经元的偏置。nl是第l层的神经元个数。f[l]()表示第l层的激活函数,是输入输出间的非线性变换,常见的激活函数有ReLU函数和Sigmoid函数。
由式(2)至(5)可以看出输出层(第l层)神经元的输出值就是DNN的最终预测值,可以看作是输入数据a[0]的l次连续加权非线性变换,整个正向传播过程可以表示为:
Figure GDA0002743045020000039
式(6)中,a[0]表示输入层的神经元值;ω和b分别代表网络中所有神经元间的权值和偏置,不难发现这两者是影响整个网络性能的主要参数。因此利用庞大的训练集不断对权值和偏置进行优化,可以使得网络输出理想的预测值。
进一步地,所述步骤4中计算当前DNN输出的预测值与实际样本监督值间的误差值公式如下:
Figure GDA0002743045020000041
式(7)中,a(i)表示监督值,
Figure GDA0002743045020000042
表示输出的预测值,m表示预测的符号个数。通过约束代价函数可以使得各层神经元权值和偏置在反向传播过程中不断更新,使得预测值不断逼近监督值,达到恢复发送符号的目的。
进一步地,所述步骤5在实验迭代次数达到2000次时,代价函数无明显减小(趋于稳定),所以本实验DNN完成训练的迭代标准设为2000次迭代,训练停止时所得DNN各神经元权值
Figure GDA0002743045020000043
和偏置
Figure GDA0002743045020000044
分别记为ω*和b*
进一步地,所述步骤6中由步骤5所得DNN参数来进行信号恢复的公式如下:
Figure GDA0002743045020000045
Figure GDA0002743045020000046
式(9)中,a*是最终所得发送信号预测值。结合发送信号真实值a[0]计算系统的误码率。
本发明的有益效果:
本发明基于深度学习的水声信号检测方法在传统水声FBMC通信系统的接收端用一个训练完善的DNN代替原有的信道估计、均衡等过程。利用DNN的训练阶段获取水声信道状态信息,在测试阶段实现信号的解调恢复。在此基础上本发明又引入Adam权重更新策略和L2正则化方法优化DNN模型,进一步提升DNN的收敛效率和估计精度,本发明相较于现有基于信道估计的方法在精度和复杂度方面具有一定的优越性。
附图说明
通过参考附图会更加清楚的理解本发明的特征和优点,在附图中:
图1为本发明一种水声信号检测方法的流程图;
图2为本发明一种基于深度学习的水声FBMC通信系统框图;
图3为本发明实施例中系统计算复杂度对比表;
图4为本发明实施例中迭代次数对系统误码率性能影响对比图;
图5为本发明实施例中小训练样本数系统误码率性能对比图;
图6为本发明实施例中大训练样本数系统误码率性能对比图。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
如图1所示,本发明实施例提供一种水声信号检测方法。本方法利用训练完成的DNN取代传统水声FBMC通信系统接收端中的信道估计、均衡等模块,打破系统的模块化限制,自适应地学习水声信道状态信息,避免原本系统固有的虚部干扰影响,提高系统的误码率性能。具体步骤如下:
步骤1:对传统水声FBMC通信系统进行反复测试,获取训练DNN所需的足量数据集,具体包括:FBMC系统发送端原始发送序列x(n)、FBMC系统接收端原始复数序列y0(n)。由于DNN更易于处理实数域数据,为使其有效工作,要对FBMC接收端的复数序列y0(n)进行数据预处理。分别提取出复数符号的实部和虚部,并将同一符号的虚部置于其实部后面,重新组合成一个实数序列y(n)。记录330000组x(n)、y(n)形成数据集。
步骤2:设置DNN-FBMC系统训练超参数如下:设置学习率为0.01,训练集mini-batch为512,测试集mini-batch为512,隐含层激活函数采用ReLU激活函数,输出层激活函数采用Sigmoid激活函数,权重初始化方法采用He initialization,权重更新策略为Adam,L2正则化参数为1.2,Dropout正则化参数为0.8。
其中,He initialization为保持输入和输出的方差不变,将随机初始化的值乘以缩放因子
Figure GDA0002743045020000061
(layersdims[l-1]表示前一层的大小),使得ReLU输出概率分布效果更好。Adam优化算法可以看作是Momentum和RMSProp算法的结合,可以快速收敛并正确学习,最大程度地最小化损失函数。L2正则化在原有代价函数J(ω,b)后加上一个关于权重ω的L2正则化项,使得权重衰减,提高泛化能力。具体表示为:
Figure GDA0002743045020000062
Dropout正则化通过设置神经元节点的保留概率来消除部分节点,得到一个规模更小的网络。
步骤3:输入训练集数据,计算当前DNN输出层正向传播的预测值,公式如下:
Figure GDA0002743045020000063
Figure GDA0002743045020000064
fReLU(z)=max(0,z)
fSigmoid(z)=1/(1+e-z)
其中,
Figure GDA0002743045020000065
表示第l层第i个神经元的输入;
Figure GDA0002743045020000066
表示第l层第i个神经元的输出;
Figure GDA0002743045020000067
表示第l层第i个神经元与前一层所有神经元间的权值,维度为1×nl-1
Figure GDA0002743045020000068
表示第l层第i个神经元的偏置。nl是第l层的神经元个数。f[l]()表示第l层的激活函数,是输入输出间的非线性变换,常见的激活函数有ReLU函数和Sigmoid函数。
由上式可以看出输出层(第l层)神经元的输出值就是DNN的最终预测值,可以看作是输入数据a[0]的l次连续加权非线性变换,整个正向传播过程可以表示为:
ai [l]=f[l](f[l-1](L f[1](a[0])))
其中,a[0]表示输入层的神经元值;ω和b分别代表网络中所有神经元间的权值和偏置,不难发现这两者是影响整个网络性能的主要参数。因此利用庞大的训练集不断对权值和偏置进行优化,可以使得网络输出理想的预测值。
步骤4:计算当前DNN输出的预测值与实际样本监督值间的误差值公式如下:
Figure GDA0002743045020000071
其中,a(i)表示监督值,
Figure GDA0002743045020000072
表示输出的预测值,m表示预测的符号个数。通过约束代价函数可以使得各层神经元权值和偏置在反向传播过程中不断更新,使得预测值不断逼近监督值,达到恢复发送符号的目的;
步骤5:循环执行步骤3-步骤4,使得DNN达到信号检测误码率的预设要求。在实验迭代次数达到2000次时,代价函数无明显减小(趋于稳定),所以本实验DNN完成训练的迭代标准设为2000次迭代,训练停止时所得DNN各神经元权值
Figure GDA0002743045020000073
和偏置
Figure GDA0002743045020000074
分别记为ω*和b*
步骤6:将步骤5中所得DNN模型接入系统接收端进行发送信号恢复,输入测试集数据,将得到的DNN正向传播输出值作为发送信号最终预测值具体公式如下:
Figure GDA0002743045020000075
Figure GDA0002743045020000076
其中,a*是最终所得发送信号预测值。结合发送信号真实值a[0]计算系统的误码率。
如图2所示,水声DNN-FBMC系统的发送端与传统FBMC系统的发送端保持一致,在接收端用DNN结构替换信道估计、均衡和解映射模块。整个信号检测过程分为训练阶段和测试阶段。
在训练阶段,发送符号是随机产生的二进制序列,在接收端会形成未经均衡的复数序列。将该复数序列和发送符号直接传输到DNN模型,分别作为输入层神经元值和输出层神经元预测结果的监督值,形成训练集的一个训练样本。重复上述过程,直至训练集拥有充足的训练样本。在DNN输出层,用代价函数来衡量DNN预测值与监督值的差距,当代价函数达到最小值时DNN完成训练,各神经元的权值和偏置也会停止更新。在测试阶段,将接收到的复数序列直接通过训练完成的DNN进行预测,便可恢复出发送符号。
图3对比了DNN-FBMC与传统信道估计算法的计算复杂度(每执行一次的求积次数)。此处DNN由5层全连接网络构成,各层间只有简单的乘加运算,因此计算复杂度与LS信道估计算法在同一数量级上,且主要体现在训练阶段的迭代过程。
图4为DNN-FBMC系统(L2正则化)在不同训练迭代次数下的误码率性能曲线,随着迭代次数的增加,神经网络的权值和偏置不断更新,系统的误码率性能越来越好。但由于训练后期样本可供学习的空间越来越小,单次迭代可带来的性能增益将随着迭代次数的增加而不断减小。
图5为N=110000时,按9:1划分训练集和测试集所得误码率曲线。图6为N=330000时,按29:1划分训练集和测试集所得误码率曲线。仿真结果表明所提出的信号检测方法的误码率性能明显好过使用传统LS信道估计算法的FBMC通信系统。且同等条件下L2正则化优化算法的误码率性能要优于Dropout正则化算法。对比图4、图5可以看出在测试集数据量不变的前提下,增加训练集样本数量可有效提高DNN-FBMC的误码率性能。
虽然结合附图描述了本发明的实施例,但是本领域技术人员可以在不脱离本发明的精神和范围的情况下作出各种修改和变型,这样的修改和变型均落入由所附权利要求所限定的范围之内。

Claims (4)

1.一种基于深度学习的水声FBMC通信信号检测方法,其特征在于,包括如下步骤:
步骤1:对传统水声FBMC通信系统进行反复测试,获取训练DNN所需的数据集,具体包括:FBMC系统发送端原始发送序列x(n)和FBMC系统接收端原始复数序列y0(n);对FBMC接收端的复数序列y0(n)进行数据预处理,分别提取出复数符号的实部和虚部,并将同一符号的虚部置于其实部后面,重新组合成一个实数序列y(n);
步骤2:根据需求确定DNN-FBMC系统各项超参数,设置学习率为0.01,训练集mini-batch为512,测试集mini-batch为512,隐含层激活函数采用ReLU激活函数,输出层激活函数采用Sigmoid激活函数,权重初始化方法采用He initialization,权重更新策略为Adam,L2正则化参数为1.2,Dropout正则化参数为0.8,初始化DNN各层神经元参数;所述Heinitialization为保持输入和输出的方差不变,将随机初始化的值乘以缩放因子
Figure FDA0003726154430000011
其中layersdims[l-1]表示前一层的大小,使得ReLU输出概率分布效果更好;
L2正则化在原有代价函数J(ω,b)后加上一个关于权重ω的L2正则化项,使得权重衰减,提高泛化能力;具体表示为:
Figure FDA0003726154430000012
其中λ表示正则项系数,用以权衡原有代价函数和正则化项的比重,m表示输出层预测的符号个数;
步骤3:输入训练集数据,计算当前DNN输出层正向传播的预测值,
公式如下:
Figure FDA0003726154430000021
Figure FDA0003726154430000022
fReLU(z)=max(0,z) (4)
fSigmoid(z)=1/(1+e-z) (5)
式(2)至(5)中,zi [l]表示第l层第i个神经元的输入;ai [l]表示第l层第i个神经元的输出;
Figure FDA0003726154430000023
表示第l层第i个神经元与前一层所有神经元间的权值,维度为1×nl-1
Figure FDA0003726154430000024
表示第l层第i个神经元的偏置;nl是第l层的神经元个数;f[l]()表示第l层的激活函数,是输入输出间的非线性变换,常见的激活函数有ReLU函数和Sigmoid函数;
步骤4:计算当前DNN输出的预测值与实际样本监督值间的误差值公式如下:
Figure FDA0003726154430000025
式(6)中,a(i)表示监督值,
Figure FDA0003726154430000026
表示输出的预测值,m表示预测的符号个数,通过约束代价函数可以使得各层神经元权值和偏置在反向传播过程中不断更新,使得预测值不断逼近监督值,达到恢复发送符号的目的;
步骤5:循环执行步骤3和步骤4,使得DNN达到信号检测误码率的预设要求,当代价函数随迭代次数增加无显著下降趋势时DNN完成训练,各参数停止更新,得到训练完成的DNN模型;
步骤6:将步骤5中所得DNN模型接入系统接收端进行发送信号恢复,输入测试集数据,将得到的DNN正向传播输出值作为发送信号最终预测值,与真实发送信号值进行对比,计算误码率。
2.根据权利要求1所述的一种基于深度学习的水声FBMC通信信号检测方法,其特征在于,所述步骤5中DNN训练次数为2000次迭代,训练停止时所得DNN各神经元权值
Figure FDA0003726154430000027
和偏置
Figure FDA0003726154430000028
分别记为ω*和b*
3.根据权利要求2所述的一种基于深度学习的水声FBMC通信信号检测方法,其特征在于,所述步骤6中由步骤5所得DNN参数来进行信号恢复的公式如下:
Figure FDA0003726154430000031
Figure FDA0003726154430000032
式(8)中,a*是最终所得发送信号预测值,结合发送信号真实值a[0]计算系统的误码率。
4.根据权利要求1所述的一种基于深度学习的水声FBMC通信信号检测方法,其特征在于,步骤4中代价函数采用交叉熵函数。
CN202010437712.5A 2020-05-21 2020-05-21 一种基于深度学习的水声fbmc通信信号检测方法 Active CN111740934B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010437712.5A CN111740934B (zh) 2020-05-21 2020-05-21 一种基于深度学习的水声fbmc通信信号检测方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010437712.5A CN111740934B (zh) 2020-05-21 2020-05-21 一种基于深度学习的水声fbmc通信信号检测方法

Publications (2)

Publication Number Publication Date
CN111740934A CN111740934A (zh) 2020-10-02
CN111740934B true CN111740934B (zh) 2022-08-19

Family

ID=72647609

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010437712.5A Active CN111740934B (zh) 2020-05-21 2020-05-21 一种基于深度学习的水声fbmc通信信号检测方法

Country Status (1)

Country Link
CN (1) CN111740934B (zh)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112511469B (zh) * 2020-11-27 2022-02-08 厦门大学 一种基于深度学习的稀疏水声信道估计方法
CN112702288B (zh) * 2020-12-23 2022-03-29 华中科技大学 一种低导频开销的水声ofdm通信系统信道估计方法
CN113259295B (zh) * 2021-05-08 2022-07-15 浙江大学 一种用于水声fbmc系统的信号检测方法
CN113037668B (zh) * 2021-05-20 2023-03-10 武汉科技大学 一种毫米波点对点通信信道均衡方法
CN113890799B (zh) * 2021-10-28 2022-10-25 华南理工大学 一种基于域对抗网络的水声通信信道估计与信号检测方法
US11368349B1 (en) 2021-11-15 2022-06-21 King Abdulaziz University Convolutional neural networks based computationally efficient method for equalization in FBMC-OQAM system
CN114938250B (zh) * 2022-04-08 2024-04-02 江苏科技大学 基于自编码网络的端到端水声fbmc通信方法及系统
CN115694664A (zh) * 2022-08-25 2023-02-03 天津大学 一种基于温度序列的时变水声信道状态信息预测方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109474352A (zh) * 2018-12-24 2019-03-15 哈尔滨工程大学 一种基于深度学习的水声正交频分复用通信方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110460402B (zh) * 2019-07-15 2021-12-07 哈尔滨工程大学 一种基于深度学习的端到端通信系统建立方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109474352A (zh) * 2018-12-24 2019-03-15 哈尔滨工程大学 一种基于深度学习的水声正交频分复用通信方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
《遗传神经网络在水声通信盲均衡中的应用》;杨莉,翁代云;《计算机仿真》;20120915;全文 *

Also Published As

Publication number Publication date
CN111740934A (zh) 2020-10-02

Similar Documents

Publication Publication Date Title
CN111740934B (zh) 一种基于深度学习的水声fbmc通信信号检测方法
CN109246038B (zh) 一种数据模型双驱动的gfdm接收机及方法
CN111464465B (zh) 一种基于集成神经网络模型的信道估计方法
CN111614584B (zh) 基于神经网络的变换域自适应滤波信道估计方法
CN111683024A (zh) 一种基于深度学习的时变ofdm系统信道估计方法
CN110311876A (zh) 基于深度神经网络的水声正交频分复用接收机的实现方法
Zhang et al. On the performance of deep neural network aided channel estimation for underwater acoustic OFDM communications
CN115250216A (zh) 一种基于深度学习的水声ofdm联合信道估计和信号检测方法
CN113285902B (zh) 一种ofdm系统检测器设计方法
CN114070354B (zh) 基于gs迭代法的自适应分段矩阵逆跟踪mimo检测方法
Alaca et al. CNN-based signal detector for IM-OFDMA
Abbasi et al. Deep learning-based list sphere decoding for Faster-than-Nyquist (FTN) signaling detection
Zhang et al. Graph neural network assisted efficient signal detection for OTFS systems
Li et al. Deep learning for OFDM channel estimation in impulsive noise environments
Yao et al. Deep learning assisted channel estimation refinement in uplink OFDM systems under time-varying channels
CN112564830B (zh) 一种基于深度学习的双模正交频分复用索引调制检测方法及装置
Li et al. Knowledge-driven machine learning and applications in wireless communications
CN114499601A (zh) 一种基于深度学习的大规模mimo信号检测方法
Yıldırım et al. Deep receiver design for multi-carrier waveforms using cnns
CN113709075B (zh) 一种利用水声信道多径效应的水声通信接收机的实现方法
Hasini et al. Channel estimation and signal detection in OFDM systems using deep learning
Essai Ali et al. Machine Learning-Based Channel State Estimators for 5G Wireless Communication Systems.
Lu et al. Network intrusion feature map node equalization algorithm based on modified variable step-size constant modulus
Li et al. Soft Decision Signal Detection of MIMO System Based on Deep Neural Network
Yang et al. An improved least squares (LS) channel estimation method based on CNN for OFDM systems

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant