CN111735384B - 基于动态干涉分析的发动机安装测量与安装方法及装置 - Google Patents

基于动态干涉分析的发动机安装测量与安装方法及装置 Download PDF

Info

Publication number
CN111735384B
CN111735384B CN202010347005.7A CN202010347005A CN111735384B CN 111735384 B CN111735384 B CN 111735384B CN 202010347005 A CN202010347005 A CN 202010347005A CN 111735384 B CN111735384 B CN 111735384B
Authority
CN
China
Prior art keywords
engine
platform
coordinate system
installation
camera
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202010347005.7A
Other languages
English (en)
Other versions
CN111735384A (zh
Inventor
邓正平
郝飞
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing Institute of Technology
Original Assignee
Nanjing Institute of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing Institute of Technology filed Critical Nanjing Institute of Technology
Priority to CN202010347005.7A priority Critical patent/CN111735384B/zh
Publication of CN111735384A publication Critical patent/CN111735384A/zh
Application granted granted Critical
Publication of CN111735384B publication Critical patent/CN111735384B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/002Measuring arrangements characterised by the use of optical techniques for measuring two or more coordinates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64FGROUND OR AIRCRAFT-CARRIER-DECK INSTALLATIONS SPECIALLY ADAPTED FOR USE IN CONNECTION WITH AIRCRAFT; DESIGNING, MANUFACTURING, ASSEMBLING, CLEANING, MAINTAINING OR REPAIRING AIRCRAFT, NOT OTHERWISE PROVIDED FOR; HANDLING, TRANSPORTING, TESTING OR INSPECTING AIRCRAFT COMPONENTS, NOT OTHERWISE PROVIDED FOR
    • B64F5/00Designing, manufacturing, assembling, cleaning, maintaining or repairing aircraft, not otherwise provided for; Handling, transporting, testing or inspecting aircraft components, not otherwise provided for
    • B64F5/50Handling or transporting aircraft components
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C11/00Photogrammetry or videogrammetry, e.g. stereogrammetry; Photographic surveying

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Transportation (AREA)
  • Multimedia (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Manufacturing & Machinery (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

本发明尤其涉及基于动态干涉分析的发动机安装测量与安装方法及装置,在调姿运输平台的前相机可翻转立柱的旋转末端和左右后相机立柱上安装扫描相机,推进过程中,采用所提出的动态干涉检测方法分析得到潜在干涉,计算并获取发动机插配方向调整所需的定位器驱动量,驱动定位器对发动机调姿,实现自动、快速、安全的安装。本发明特点在于:1)集测量、调姿与推进于一体,自动化程度高,安装过程顺畅;2)解决狭小空间安全性保障问题,实现单人操作安全安装,节省人力资源;3)相对预先全尺寸扫描测量,安装效率大大提高;4)相对激光雷达等大尺寸测量设备引导的发动机安装,安装成本大大降低,且受温度、气流、气压影响小。

Description

基于动态干涉分析的发动机安装测量与安装方法及装置
技术领域
本发明涉及发动机安装设备领域,尤其涉及基于动态干涉分析的发动机安装测量与安装方法及装置。
背景技术
发动机作为飞机最主要的需要周期性维护大部件,其安装时间与安全性直接影响飞机服役性能。目前,国内外发动机安装装置与方法主要有以下方法(1)申请号201610748915,专利名称为一种新型飞机发动机安装车、申请号为201910016417专利名称为一种用于涡扇飞机发动机的安装车、申请号为2010101515543专利名称为一种发动机自动化安装车;这些安装车及相应的安装方法具有人工指示自动化调姿能力,但由于发动机维修后与理论外形存在差异,飞行后发动机舱亦存在变形,二者最小配合间隙可小于10mm,在未明确发动机、发动机舱外形偏差前提下,无法确保发动机在狭小空间内、数米深度插配过程中的安全性,实际安装中仍需如传统安装中拆卸多处面板以提供人工观测窗口,总体安装时间极长,要求人员常达十余人。(2)论文《航空发动机自动调姿安装的设计与应用》作者赵爽忻,在本论文中提出了在发动机上临时安装若干个摄像头的监控方法,但只能看到发动机最前端,后续结构插入中的碰撞难以观察,且相机数量多、安装准备时间长。(3)申请号为2010105453781专利名称为基于四个数控定位器的飞机发动机调姿安装系统及使用方法,这种方法成本过高、测量场构建与扫描时间周期长、对测量操作人员技术要求高、精度受环境温度湿度等影响大,因此这种方法目前在飞机制造部门发动机安装中偶有使用,但在军队、试飞站等发动机安装需求量更大的场合不适用。
综上所述,目前在发动机安装领域,国内外还没有可同时满足安装高智能化水平但较低成本、高效率但确保安全的装置或方法。本发明通过在中国飞行试验研究院等单位长期调研,提出一种集测量、调姿与推进于一体的安全安装方法及装置,以解决现有的技术不足。
发明内容
1.所要解决的技术问题:
针对上述技术问题,本发明提出一种基于动态干涉分析的发动机安装测量与安装方法及装置,本方法能够有效克服现有发动机安装过程中的狭小空间内安装安全性难以保障的问题。
2.技术方案:
一种基于动态干涉分析的发动机安装测量与安装方法及装置,其特征在于:
发动机安装测量装置包括发动机自动安装调姿结构以及相机;所述发动机自动安装调姿结构包括调姿定位器、导轨、支撑滑台、调姿动平台、运输调姿平台;所述运输调姿平台上表面固定安装调姿定位器;调姿定位器的上端安装调姿动平台;所述调姿动平台表面设置导轨,安装在调姿动平台上表面的支撑滑台能够沿导轨滑动;所述相机包括前扫描相机、后扫描相机;所述前扫描相机与旋转支臂相连,采集发动机机身发动机舱内形点云;旋转支臂的另一端与可翻转立柱的顶端相连;所述可翻转立柱的底部以通过90度转动关节安装在运输调姿平台表面;所述后扫描相机包括分别位于运输调姿平台左右两端的两台后扫描相机用于采集发动机的外表面的点云。
发动机安装测量装置的安装方法包括以下步骤:
步骤一:发动机舱内壁点云扫描;
将发动机安装测量装置后,前扫描相机可翻转立柱旋转至与运输调姿平台表面垂直状态,前扫描相机采集机身发动机舱内壁点云;具体过程为:通过调节旋转支臂旋转带动前相机移动,直至前扫描相机对发动机舱内壁实现360度扫描;依据运输调姿平台坐标系与前相机可翻转立柱末端坐标系的转换关系PTfV,前扫描相机可翻转立柱末端坐标系与零角度处前扫描相机的测量坐标系的转换关系fVTfC_0,将零角度处相机坐标系的测量数据
Figure GDA0003303984500000021
转换至平台坐标系下
Figure GDA0003303984500000022
除零角度外其他各角度ω处前扫描相机可翻转立柱末端坐标系与前扫描相机的测量坐标系转换关系fVTfC_ω,该处测量数据
Figure GDA0003303984500000023
转换到平台坐标系为
Figure GDA0003303984500000024
最终发动机舱扫描数据为
Figure GDA0003303984500000025
步骤二:前相机可翻转立柱旋转至水平状态。
步骤三:发动机渐进扫描;具体包括步骤S31至S33;
S31:支撑滑台推进发动机,直至后扫描相机能够初始采集发动机外形点云,记录此刻支撑滑台的位置并设为零位。
S32:后扫描相机采集发动机当前位置的框线点云,转换点云数据;
依据运输调姿平台坐标系与后扫描相机的测量坐标系的转换关系PTbC_1PTbC_2,将发动机当前位置的左右框线点云bC_1penginebC_2pengine转换至平台坐标系下,即得到点云EA:
Ppengine=[PTbC_1 bC_1pengine PTbC_2 bC_2pengine]。
S33:计算支撑滑台当前位置与零位的距离d,并以机身发动机舱的内侧端面为起始,在指向发动机方向且偏置距离为d的位置截取垂直于插入方向的平面,即为发动机当前框线的目标安装位置,即目标平面。
步骤四:动态干涉检测:
将发动机点云EA沿插入方向投影至目标平面上,并将机身发动机舱指向发动机方向且在目标平面以后的所有点云BB投影至目标平面上,分别记为
Figure GDA0003303984500000031
Figure GDA0003303984500000032
基于豪斯多夫距离模型计算投影点间最大距离:
Figure GDA0003303984500000033
其中
Figure GDA0003303984500000034
为单向豪斯多夫距离。
步骤五:根据干涉分析结果确定发动机动作执行:
S51:发动机继续推进,若计算的两投影点云间的最大距离大于预设的安全阈值,判定以当前插配方向可以继续推进发动机。
S52:无干涉位姿计算与位姿微调;若计算的两投影点云间的最大距离小于预设的安全阈值,则判断继续推进容易出现干涉,此时应计算无干涉微调位姿ξ=(tx,ty,tzxyz);具体计算过程为:首先将发动机已测量的全部点云FA点记为
Figure GDA0003303984500000035
在位姿ξ时的变换后点云为
Figure GDA0003303984500000036
T=[tx ty tz]T为平移变量,R为以小旋量表示的旋转矩阵
Figure GDA0003303984500000037
将变换后点云
Figure GDA0003303984500000038
沿插入方向划分为N个分段,投影至目标平面上,分别记为
Figure GDA0003303984500000039
并将机身发动机舱指向发动机方向且在目标平面以前的所有点云FB划分为N个分段,投影至目标平面上,分别记为和
Figure GDA00033039845000000310
基于上述豪斯多夫距离模型计算各分段对应投影点间最大距离
Figure GDA00033039845000000311
建立并求解无干涉位姿的无约束间隙最大化方程:
Figure GDA00033039845000000312
若目标函数f(ξ)大于预设的间隙安全阈值,则依据计算的发动机位姿微调量ξ,基于并联机构运动学原理,结合定位器坐标系与平台坐标系的转换关系,计算每个定位器的驱动量;设定位器i末端球铰坐标为
Figure GDA0003303984500000041
其运动矢量
Figure GDA0003303984500000042
计算为
Figure GDA0003303984500000043
若目标函数f(ξ)不大于预设的间隙安全阈值,表明发动机继续插入不可避免会干涉,即退出修配。
步骤六:发动机位姿调整后,支撑滑台推进发动机向前插配并采集发动机的点云数据,并重复执行步骤四至步骤五,直至发动机安全安装完成。
一种基于动态干涉分析的发动机安装测量安装装置,其特征在于:包括发动机自动安装调姿机构以及相机;所述发动机自动安装调姿机构包括调姿定位器、导轨、支撑滑台、调姿动平台、运输调姿平台;所述运输调整平台上表面固定安装调姿定位器;调姿定位器的上端安装调姿动平台;所述调姿动平台表面设置导轨,安装在调姿动平台上表面的支撑滑台能够沿导轨滑动;所述相机包括前扫描相机、后扫描相机;所述前扫描相机与旋转支臂相连;旋转支臂的另一端与可翻转立柱的顶端相连;所述可翻转立柱的底部通过90度转动关节安装在调姿动平台表面;所述后扫描相机包括分别位于运输调姿平台左右两端的两台后扫描相机;前、后扫描相机获取机身发动机舱内形和发动机外形的点云数据并进行处理,并通过动态干涉检测方法分析得到潜在干涉量,定位分析得到调姿定位器的运动量,引导发动机的位姿调整与安全推进。
进一步地,还包括驱动旋转支臂旋转移动的电机。
3.有益效果:
(1)本发明提供的发动机安装测量装置、安装方法通过前扫描相机、后扫描相机采集点云,通过前、后扫描相机获取机身发动机舱内形和发动机外形的点云数据并进行处理,动态干涉检测方法分析得到潜在干涉量,定位方法分析得到定位器的运动量,从而引导发动机的位姿调整与安全推进。实现了集测量、调姿与推进于一体,自动化程度高,安装发动机的过程顺畅。
(2)本发明提供的动机安装测量装置能够解决狭小空间安全性保障问题,实现单人操作安全安装,节省人力资源。
(3)本发明的安装方法能够相对预先全尺寸扫描测量,使安装效率大大提高。
(4)本发明中采用相对激光雷达等大尺寸测量设备引导的发动机安装,安装成本大大降低,且受温度、气流、气压影响小。
附图说明
图1是发动机安全安装测量装置组成与安装车主体结构示意图;
图2是发动机安全安装测量装置与安装车主体坐标系统示意图;
图3是基于发动机动态渐进扫描与实时干涉分析的安装主流程图;
图4是动态干涉分析算法流程图。
具体实施方式
下面结合附图对本发明进行具体的说明。
基于动态干涉分析的发动机安装测量与安装方法及装置,其特征在于:
如附图1所示的发动机安全安装测量装置组成与安装车主体结构示意图,发动机安装测量装置包括发动机自动安装调姿结构以及相机;所述发动机自动安装调姿结构包括调姿定位器、导轨、支撑滑台、调姿动平台、运输调姿平台;所述运输调姿平台上表面固定安装调姿定位器;调姿定位器的上端安装调姿动平台;所述调姿动平台表面设置导轨,安装在调姿动平台上表面的支撑滑台能够沿导轨滑动;所述相机包括前扫描相机、后扫描相机;所述前扫描相机与旋转支臂相连,采集发动机机身发动机舱内形点云;旋转支臂的另一端与可翻转立柱的顶端相连;所述可翻转立柱的底部以通过90度转动关节安装在运输调姿平台表面;所述后扫描相机包括分别位于运输调姿平台左右两端的两台后扫描相机用于采集发动机的外表面的点云;图中1为发动机,2为发动机舱内壁,3为运输调姿平台,4为固定安装于3上的调姿定位器,5为调姿动平台,6为支撑滑台,7为导轨,8为前扫描相机,9为旋转支臂,10为可翻转立柱,11为驱动旋转支臂的电机,12、13为分布于发动机两侧的后扫描相机,14、15为后扫描相机立柱。
如附图2所示,本发明中涉及到的坐标系具体为:16是旋转支臂零角度处前扫描相机测量坐标系,17是旋转支臂w角度处前扫描相机测量坐标系,19是可翻转立柱末端坐标系,19、20是后扫描相机测量坐标系,21是发动机坐标系,22~25为四个定位器坐标系,26为运输调姿平台坐标系。
发动机安装测量装置的安装方法包括以下步骤:
步骤一:发动机舱内壁点云扫描;
将发动机安装测量装置后,前扫描相机可翻转立柱旋转至与运输调姿平台表面垂直状态,前扫描相机采集机身发动机舱内壁点云;具体过程为:通过调节旋转支臂旋转带动前相机移动,直至前扫描相机对发动机舱内壁实现360度扫描;依据运输调姿平台坐标系与前相机可翻转立柱末端坐标系的转换关系PTfV,前扫描相机可翻转立柱末端坐标系与零角度处前扫描相机的测量坐标系的转换关系fVTfC_0,将零角度处相机坐标系的测量数据
Figure GDA0003303984500000061
转换至平台坐标系下
Figure GDA0003303984500000062
除零角度外其他各角度ω处前扫描相机可翻转立柱末端坐标系与前扫描相机的测量坐标系转换关系fVTfC_ω,该处测量数据
Figure GDA0003303984500000063
转换到平台坐标系为
Figure GDA0003303984500000064
最终发动机舱扫描数据为
Figure GDA0003303984500000065
步骤二:前相机可翻转立柱旋转至水平状态。
步骤三:发动机渐进扫描;具体包括步骤S31至S33;
S31:支撑滑台推进发动机,直至后扫描相机能够初始采集发动机外形点云,记录此刻支撑滑台的位置并设为零位;
S32:后扫描相机采集发动机当前位置的框线点云,转换点云数据。
依据运输调姿平台坐标系与后扫描相机的测量坐标系的转换关系PTbC_1PTbC_2,将发动机当前位置的左右框线点云bC_1penginebC_2pengine转换至平台坐标系下,即得到新增点云EA:
Ppengine=[PTbC_1 bC_1pengine PTbC_2 bC_2pengine]。
S33:计算支撑滑台当前位置与零位的距离d,并以机身发动机舱的内侧端面为起始,在指向发动机方向且偏置距离为d的位置截取垂直于插入方向的平面,即为发动机当前框线的目标安装位置,即目标平面。
步骤四:动态干涉检测:
将发动机点云EA沿插入方向投影至目标平面上,并将机身发动机舱指向发动机方向且在目标平面以后的所有点云BB投影至目标平面上,分别记为
Figure GDA0003303984500000066
Figure GDA0003303984500000067
基于豪斯多夫距离模型计算投影点间最大距离:
Figure GDA0003303984500000068
其中
Figure GDA0003303984500000069
为单向豪斯多夫距离。
步骤五:根据干涉分析结果确定发动机动作执行:
S51:发动机继续推进,若计算的两投影点云间的最大距离大于预设的安全阈值,判定以当前插配方向可以继续推进发动机。
S52:无干涉位姿计算与位姿微调;若计算的两投影点云间的最大距离小于预设的安全阈值,则判断继续推进容易出现干涉,此时应计算无干涉微调位姿ξ=(tx,ty,tzxyz);具体计算过程为:首先将发动机已测量的全部点云FA点记为
Figure GDA0003303984500000071
在位姿ξ时的变换后点云为
Figure GDA0003303984500000072
T=[tx ty tz]T为平移变量,R为以小旋量表示的旋转矩阵
Figure GDA0003303984500000073
将变换后点云
Figure GDA0003303984500000074
沿插入方向划分为N个分段,投影至目标平面上,分别记为
Figure GDA0003303984500000075
并将机身发动机舱指向发动机方向且在目标平面以前的所有点云FB划分为N个分段,投影至目标平面上,分别记为和
Figure GDA0003303984500000076
基于上述豪斯多夫距离模型计算各分段对应投影点间最大距离
Figure GDA0003303984500000077
建立并求解无干涉位姿的无约束间隙最大化方程:
Figure GDA0003303984500000078
若目标函数f(ξ)大于预设的间隙安全阈值,则依据计算的发动机位姿微调量ξ,基于并联机构运动学原理,结合定位器坐标系与平台坐标系的转换关系,计算每个定位器的驱动量;设定位器i末端球铰坐标为
Figure GDA0003303984500000079
其运动矢量
Figure GDA00033039845000000710
计算为
Figure GDA00033039845000000711
若目标函数f(ξ)不大于预设的间隙安全阈值,表明发动机继续插入不可避免会干涉,即退出修配。
步骤六:发动机位姿调整后,支撑滑台推进发动机向前插配并采集发动机的点云数据,并重复执行步骤四至步骤五,直至发动机安全安装完成。
本安装方法编程至数据采集与安装控制软件后,可动态检测发动机安装的潜在干涉,自动计算定位器驱动量实现位姿调整,并推进发动机安全安装。
一种基于动态干涉分析的发动机安装测量安装装置,其特征在于:包括发动机自动安装调姿机构以及相机;所述发动机自动安装调姿机构包括调姿定位器、导轨、支撑滑台、调姿动平台、运输调姿平台;所述运输调整平台上表面固定安装调姿定位器;调姿定位器的上端安装调姿动平台;所述调姿动平台表面设置导轨,安装在调姿动平台上表面的支撑滑台能够沿导轨滑动;所述相机包括前扫描相机、后扫描相机;所述前扫描相机与旋转支臂相连;旋转支臂的另一端与可翻转立柱的顶端相连;所述可翻转立柱的底部通过90度转动关节安装在调姿动平台表面;所述后扫描相机包括分别位于运输调姿平台左右两端的两台后扫描相机;前、后扫描相机获取机身发动机舱内形和发动机外形的点云数据并进行处理,并通过动态干涉检测方法分析得到潜在干涉量,定位分析得到调姿定位器的运动量,引导发动机的位姿调整与安全推进。
进一步地,还包括驱动旋转支臂旋转移动的电机。
虽然本发明已以较佳实施例公开如上,但它们并不是用来限定本发明的,任何熟习此技艺者,在不脱离本发明之精神和范围内,自当可作各种变化或润饰,因此本发明的保护范围应当以本申请的权利要求保护范围所界定的为准。

Claims (3)

1.基于动态干涉分析的发动机安装测量与安装方法,其特征在于:
发动机安装测量装置包括发动机自动安装调姿结构以及相机;所述发动机自动安装调姿结构包括调姿定位器、导轨、支撑滑台、调姿动平台、运输调姿平台;所述运输调姿平台上表面固定安装调姿定位器;调姿定位器的上端安装调姿动平台;所述调姿动平台表面设置导轨,安装在调姿动平台上表面的支撑滑台能够沿导轨滑动;所述相机包括前扫描相机、后扫描相机;所述前扫描相机与旋转支臂相连,采集发动机机身发动机舱内形点云;旋转支臂的另一端与可翻转立柱的顶端相连;所述可翻转立柱的底部以通过90度转动关节安装在运输调姿平台表面;所述后扫描相机包括分别位于运输调姿平台左右两端的两台后扫描相机用于采集发动机的外表面的点云;
发动机安装测量装置的安装方法包括以下步骤:
步骤一:发动机舱内壁点云扫描;
将发动机安装测量装置后,前扫描相机可翻转立柱旋转至与运输调姿平台表面垂直状态,前扫描相机采集机身发动机舱内壁点云;具体过程为:通过调节旋转支臂旋转带动前相机移动,直至前扫描相机对发动机舱内壁实现360度扫描;依据运输调姿平台坐标系与前相机可翻转立柱末端坐标系的转换关系PTfV,前扫描相机可翻转立柱末端坐标系与零角度处前扫描相机的测量坐标系的转换关系fVTfC_0,将零角度处相机坐标系的测量数据
Figure FDA0003303984490000011
转换至平台坐标系下
Figure FDA0003303984490000012
除零角度外其他各角度ω处前扫描相机可翻转立柱末端坐标系与前扫描相机的测量坐标系转换关系fVTfC_ω,该处测量数据
Figure FDA0003303984490000013
转换到平台坐标系为
Figure FDA0003303984490000014
最终发动机舱扫描数据为
Figure FDA0003303984490000015
步骤二:前相机可翻转立柱旋转至水平状态;
步骤三:发动机渐进扫描;具体包括步骤S31至S33;
S31:支撑滑台推进发动机,直至后扫描相机能够初始采集发动机外形点云,记录此刻支撑滑台的位置并设为零位;
S32:后扫描相机采集发动机当前位置的框线点云,转换点云数据;
依据运输调姿平台坐标系与后扫描相机的测量坐标系的转换关系PTbC_1PTbC_2,将发动机当前位置的左右框线点云bC_1penginebC_2pengine转换至平台坐标系下,即得到点云EA:
Ppengine=[PTbC_1 bC_1penginePTbC_2 bC_2pengine];
S33:计算支撑滑台当前位置与零位的距离d,并以机身发动机舱的内侧端面为起始,在指向发动机方向且偏置距离为d的位置截取垂直于插入方向的平面,即为发动机当前框线的目标安装位置,即目标平面;
步骤四:动态干涉检测:
将发动机点云EA沿插入方向投影至目标平面上,并将机身发动机舱指向发动机方向且在目标平面以后的所有点云BB投影至目标平面上,分别记为
Figure FDA0003303984490000021
Figure FDA0003303984490000022
基于豪斯多夫距离模型计算投影点间最大距离:
Figure FDA0003303984490000023
其中
Figure FDA0003303984490000024
为单向豪斯多夫距离;
步骤五:根据干涉分析结果确定发动机动作执行:
S51:发动机继续推进,若计算的两投影点云间的最大距离大于预设的安全阈值,判定以当前插配方向可以继续推进发动机;
S52:无干涉位姿计算与位姿微调;若计算的两投影点云间的最大距离小于预设的安全阈值,则判断继续推进容易出现干涉,此时应计算无干涉微调位姿ξ=(tx,ty,tzxyz);具体计算过程为:首先将发动机已测量的全部点云FA点记为
Figure FDA0003303984490000025
在位姿ξ时的变换后点云为
Figure FDA0003303984490000026
T=[tx ty tz]T为平移变量,R为以小旋量表示的旋转矩阵
Figure FDA0003303984490000027
将变换后点云
Figure FDA0003303984490000028
沿插入方向划分为N个分段,投影至目标平面上,分别记为
Figure FDA0003303984490000029
并将机身发动机舱指向发动机方向且在目标平面以前的所有点云FB划分为N个分段,投影至目标平面上,分别记为和
Figure FDA00033039844900000210
基于上述豪斯多夫距离模型计算各分段对应投影点间最大距离
Figure FDA00033039844900000211
建立并求解无干涉位姿的无约束间隙最大化方程:
Figure FDA0003303984490000031
若目标函数f(ξ)大于预设的间隙安全阈值,则依据计算的发动机位姿微调量ξ,基于并联机构运动学原理,结合定位器坐标系与平台坐标系的转换关系,计算每个定位器的驱动量;设定位器i末端球铰坐标为
Figure FDA0003303984490000032
其运动矢量
Figure FDA0003303984490000033
计算为
Figure FDA0003303984490000034
若目标函数f(ξ)不大于预设的间隙安全阈值,表明发动机继续插入不可避免会干涉,即退出修配;
步骤六:发动机位姿调整后,支撑滑台推进发动机向前插配并采集发动机的点云数据,并重复执行步骤四至步骤五,直至发动机安全安装完成。
2.基于动态干涉分析的发动机安装测量安装装置,使用如权利要求1的基于动态干涉分析的发动机安装测量与安装方法,其特征在于:包括发动机自动安装调姿机构以及相机;所述发动机自动安装调姿机构包括调姿定位器、导轨、支撑滑台、调姿动平台、运输调姿平台;所述运输调姿 平台上表面固定安装调姿定位器;调姿定位器的上端安装调姿动平台;所述调姿动平台表面设置导轨,安装在调姿动平台上表面的支撑滑台能够沿导轨滑动;所述相机包括前扫描相机、后扫描相机;所述前扫描相机与旋转支臂相连;旋转支臂的另一端与可翻转立柱的顶端相连;所述可翻转立柱的底部通过90度转动关节安装在调姿动平台表面;所述后扫描相机包括分别位于运输调姿平台左右两端的两台后扫描相机;前、后扫描相机获取机身发动机舱内形和发动机外形的点云数据并进行处理,并通过动态干涉检测方法分析得到潜在干涉量,定位分析得到调姿定位器的运动量,引导发动机的位姿调整与安全推进。
3.根据权利要求2所述的基于动态干涉分析的发动机安装测量安装装置,其特征在于:还包括驱动旋转支臂旋转移动的电机。
CN202010347005.7A 2020-04-28 2020-04-28 基于动态干涉分析的发动机安装测量与安装方法及装置 Active CN111735384B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010347005.7A CN111735384B (zh) 2020-04-28 2020-04-28 基于动态干涉分析的发动机安装测量与安装方法及装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010347005.7A CN111735384B (zh) 2020-04-28 2020-04-28 基于动态干涉分析的发动机安装测量与安装方法及装置

Publications (2)

Publication Number Publication Date
CN111735384A CN111735384A (zh) 2020-10-02
CN111735384B true CN111735384B (zh) 2021-11-30

Family

ID=72646905

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010347005.7A Active CN111735384B (zh) 2020-04-28 2020-04-28 基于动态干涉分析的发动机安装测量与安装方法及装置

Country Status (1)

Country Link
CN (1) CN111735384B (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2307467T1 (es) * 2005-10-06 2008-12-01 Gutehoffnungshutte Radsatz Gmbh Proceso para el registro dinamico sin contacto del perfil de un cuerpo solido.
CN102001451A (zh) * 2010-11-12 2011-04-06 浙江大学 基于四个数控定位器、调姿平台和移动托架的飞机部件调姿、对接系统及方法
CN102059549A (zh) * 2010-11-12 2011-05-18 浙江大学 基于四个数控定位器的飞机发动机调姿安装系统及使用方法
FR2958196A1 (fr) * 2010-04-02 2011-10-07 Dcns Procede et systeme d'aide au positionnement d'une piece sur un element de structure.
CN103604368A (zh) * 2013-11-18 2014-02-26 郑州辰维科技股份有限公司 一种航天发动机装配过程中动态实时测量方法
CN105479129A (zh) * 2015-12-23 2016-04-13 常熟理工学院 一种大尺寸重载筒形工件搬运对接装置
CN110682085A (zh) * 2019-10-31 2020-01-14 中船动力研究院有限公司 一种轴系对中的方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6491515B2 (ja) * 2015-03-31 2019-03-27 キヤノン株式会社 自動組立装置及び自動組立方法
US10275565B2 (en) * 2015-11-06 2019-04-30 The Boeing Company Advanced automated process for the wing-to-body join of an aircraft with predictive surface scanning
CN108106554B (zh) * 2018-03-07 2020-05-05 南京工程学院 一种基于机器视觉的大型环件外径检测系统及方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2307467T1 (es) * 2005-10-06 2008-12-01 Gutehoffnungshutte Radsatz Gmbh Proceso para el registro dinamico sin contacto del perfil de un cuerpo solido.
FR2958196A1 (fr) * 2010-04-02 2011-10-07 Dcns Procede et systeme d'aide au positionnement d'une piece sur un element de structure.
CN102001451A (zh) * 2010-11-12 2011-04-06 浙江大学 基于四个数控定位器、调姿平台和移动托架的飞机部件调姿、对接系统及方法
CN102059549A (zh) * 2010-11-12 2011-05-18 浙江大学 基于四个数控定位器的飞机发动机调姿安装系统及使用方法
CN103604368A (zh) * 2013-11-18 2014-02-26 郑州辰维科技股份有限公司 一种航天发动机装配过程中动态实时测量方法
CN105479129A (zh) * 2015-12-23 2016-04-13 常熟理工学院 一种大尺寸重载筒形工件搬运对接装置
CN110682085A (zh) * 2019-10-31 2020-01-14 中船动力研究院有限公司 一种轴系对中的方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
Uncertainties evaluation of coordinate transformation parameters in the large-scale measurement for aircraft assembly;Zhengping Deng 等;《Assembly Automation》;20181026;第38卷(第4期);第487-496页 *
电站锅炉吊装干涉分析模型及其数据结构;李锦峰 等;《现代电力》;20020630;第19卷(第3期);第21-27页 *
航空发动机多自由度调姿安装架车结构仿真设计;张攀 等;《科技创新与生产力》;20190430(第303期);第39-41页 *

Also Published As

Publication number Publication date
CN111735384A (zh) 2020-10-02

Similar Documents

Publication Publication Date Title
US20190205501A1 (en) Advanced automated process for the wing-to-body join of an aircraft with predictive surface scanning
CN112325796A (zh) 基于辅助定位多视角点云拼接的大型工件型面测量方法
CN110554704A (zh) 一种基于无人机的风机叶片自主巡检方法
CN109766649A (zh) 一种空调机房管段预制化安装方法
CN104515478A (zh) 一种高精度的航空发动机叶片自动三维测量方法和系统
CN109747824B (zh) 用于烟囱内部无人机避障的装置和避障方法
CN107843207B (zh) 一种槽式太阳能抛物面面形的单相机实时测量系统及方法
JP7188832B1 (ja) 無人飛行体、および、風力発電設備の点検システム、並びに、風力発電設備の点検方法
WO2023024926A1 (zh) 一种旋翼尾流spiv测量同步移测机构和锁相测量方法
CN112605033A (zh) 一种光伏板姿态识别及清洗调控装置及方法
CN111830845A (zh) 一种无人机风机叶片自动巡检仿真系统及方法
CN113324548A (zh) 一种风力发电机叶片巡检路径的规划方法
CN111735384B (zh) 基于动态干涉分析的发动机安装测量与安装方法及装置
CN111891379B (zh) 一种基于干涉预分析的航空发动机稳健调姿安装方法
CN113959401B (zh) 一种输电线路隐患净空距离无人机航测方法及系统
CN115615338A (zh) 一种飞机整机水平测量系统及测量方法
CN111536955A (zh) 基于v型激光标靶图像识别的掘进机位姿检测系统及方法
CN114964137A (zh) 基于双目图像采集的飞机舵面偏角测试系统及测试方法
CN110750101A (zh) 一种面向自动操作的登机桥停靠位置设定方法
CN102431485B (zh) 一种车载式非接触三维人体自动测量系统
CN112882487A (zh) 风机叶片的无人机巡检轨迹生成方法,巡检方法及系统
CN208223418U (zh) 一种用于航空发动机安装的智能视觉测量系统
CN114942421A (zh) 一种全向扫描的多线激光雷达自主定位装置及方法
CN112697075B (zh) 一种交会对接激光雷达合作目标的投影面积分析方法
CN113829903A (zh) 一种海上风电场的增程充电系统

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant