CN111732344A - 一种基于蒸发诱导纳米颗粒液相自组装的方法 - Google Patents

一种基于蒸发诱导纳米颗粒液相自组装的方法 Download PDF

Info

Publication number
CN111732344A
CN111732344A CN202010354226.7A CN202010354226A CN111732344A CN 111732344 A CN111732344 A CN 111732344A CN 202010354226 A CN202010354226 A CN 202010354226A CN 111732344 A CN111732344 A CN 111732344A
Authority
CN
China
Prior art keywords
nano
assembly
evaporation
nanoparticles
silver
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202010354226.7A
Other languages
English (en)
Inventor
陈云飞
王永康
张艳
魏志勇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Southeast University
Original Assignee
Southeast University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Southeast University filed Critical Southeast University
Priority to CN202010354226.7A priority Critical patent/CN111732344A/zh
Publication of CN111732344A publication Critical patent/CN111732344A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/36Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal
    • C03C17/38Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal at least one coating being a coating of an organic material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/16Making metallic powder or suspensions thereof using chemical processes
    • B22F9/18Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds
    • B22F9/24Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds starting from liquid metal compounds, e.g. solutions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/006Surface treatment of glass, not in the form of fibres or filaments, by coating with materials of composite character
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/06Surface treatment of glass, not in the form of fibres or filaments, by coating with metals
    • C03C17/10Surface treatment of glass, not in the form of fibres or filaments, by coating with metals by deposition from the liquid phase
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/28Surface treatment of glass, not in the form of fibres or filaments, by coating with organic material
    • C03C17/30Surface treatment of glass, not in the form of fibres or filaments, by coating with organic material with silicon-containing compounds
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/36Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/36Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal
    • C03C17/3602Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer
    • C03C17/3644Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer the metal being silver
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/40Coatings comprising at least one inhomogeneous layer
    • C03C2217/42Coatings comprising at least one inhomogeneous layer consisting of particles only
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2218/00Methods for coating glass
    • C03C2218/10Deposition methods
    • C03C2218/11Deposition methods from solutions or suspensions
    • C03C2218/111Deposition methods from solutions or suspensions by dipping, immersion

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Nanotechnology (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Composite Materials (AREA)
  • Surface Treatment Of Glass (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)

Abstract

本发明公开了一种基于蒸发诱导纳米颗粒液相自组装的方法,该方法包括如下步骤:(1)制备银纳米颗粒胶体;(2)向步骤(1)中制备的银纳米颗粒胶体中加入0.5%体积比的丙三醇,混合均匀形成纳米颗粒悬浊液;(3)将步骤(2)中得到的纳米颗粒悬浊液液滴滴到疏水玻璃基底上,室温干燥蒸发溶剂水实现纳米颗粒自组装形成丙三醇稳定的纳米颗粒团簇。本发明采用蒸发诱导自组装技术,无需对纳米颗粒表面进行官能团修饰,无需使用DNA、表面修饰剂等共轭连接分子,可直接在任意基底上进行纳米颗粒自组装,组装后的纳米颗粒间隙均匀,速度快,效率高,成本低。

Description

一种基于蒸发诱导纳米颗粒液相自组装的方法
技术领域
本发明属于纳米材料自组装技术领域,尤其涉及一种基于蒸发诱导纳米颗粒液相自组装的方法。
背景技术
由于近年来在制备不同形状、尺寸和材料的纳米颗粒方面的研究不断发展,快速高效大面积组装纳米颗粒在生物传感,药物输送,疾病诊断,新材料制备等方面具有巨大的应用前景。然而,与原子间的相互作用不同,纳米粒子间的相互作用非常复杂,涉及范德华、静电、溶剂化/耗尽、摩擦/润滑、毛细管力等。此外,大多数纳米颗粒不会自组装成热力学最低能量状态,而是形成动力学捕获的非平衡结构,因此,将纳米颗粒组装成可控纳米结构的实验技术仍然受到限制。用表面活性剂修饰纳米颗粒表面控制纳米颗粒组装的是一种有效的方法。表面活性剂可以在纳米结构上形成自组装的双层膜,在纳米颗粒表面产生净正电荷,从而在纳米颗粒之间提供净排斥相互作用,以防止溶剂蒸发过程中的随机无序聚集,实现纳米颗粒的有序组装。利用铟掺杂氧化锡玻璃表面带正电,吸附带负电的金纳米颗粒实现纳米颗粒组装也是一种简便、经济的自组装方法。组装高度有序的纳米颗粒的另一个重要方法是利用DNA 与纳米颗粒之间的共轭结构。由于碱基互补配对,使得与互补ssDNA结合的纳米颗粒在混合和孵育后可以相互连接和组装。此外,DNA折纸策略是一个较新的技术,它可以用来设计组合几乎任何的图案。但是,这些方法都过于繁琐或昂贵,一种快速,高效,成本低的液相大面积纳米颗粒自组装方法依旧欠缺。
发明内容
为解决上述问题,本发明公开了一种基于蒸发诱导纳米颗粒液相自组装的方法,该方法通过向纳米颗粒水溶液中添加合适比例的丙三醇,利用室温条件下丙三醇不易挥发的特性,蒸发水分,分离出纳米颗粒胶体中的纳米颗粒并沉积到疏水玻璃基底上,丙三醇作为稳定剂和保护剂在沉积的纳米颗粒表面形成一层保护膜,实现纳米颗粒快速,稳定自组装。
为达到上述目的,本发明的技术方案如下:
一种基于蒸发诱导纳米颗粒液相自组装的方法,该方法包括如下步骤:
(1)制备银纳米颗粒胶体;
(2)向步骤(1)中制备的银纳米颗粒胶体中加入0.5%体积比的丙三醇,混合均匀形成纳米颗粒悬浊液;
(3)将步骤(2)中得到的纳米颗粒悬浊液液滴滴到疏水玻璃基底上,室温干燥蒸发溶剂水实现纳米颗粒自组装形成丙三醇稳定的纳米颗粒团簇。
所述的基于蒸发诱导纳米颗粒液相自组装的方法,步骤(1)中所述银纳米颗粒胶体包含 30纳米银纳米颗粒和溶剂水,银纳米颗粒浓度为8×1010个每毫升。
所述的基于蒸发诱导纳米颗粒液相自组装的方法,所述30纳米银纳米颗粒采用化学方法合成,具体包括以下步骤:首先,将溶剂水与丙三醇按照质量比为6:5的比例混合搅拌均匀,加热到95摄氏度时加入质量为溶剂水质量0.003%的硝酸银保温一分钟,然后加入质量为硝酸银质量的0.33%的柠檬酸钠,通过冷凝回流装置防止溶剂水蒸发,持续保温在95℃,搅拌一小时,冷却到室温,便得到30纳米直径的银纳米颗粒悬浊液。
所述的基于蒸发诱导纳米颗粒液相自组装的方法,采用化学方法合成的30纳米银纳米颗粒采用柠檬酸钠还原,具体方法是:将制备好的30纳米银纳米颗粒悬浊液经12000转每秒高速离心水洗后分散于溶剂水中,柠檬酸根吸附在银纳米颗粒上,无法被离心水洗清除,再分散后的30纳米银纳米颗粒表面功能团为带负电的柠檬酸根。
所述的基于蒸发诱导纳米颗粒液相自组装的方法,步骤(3)中所述疏水玻璃基底采用化学修饰玻璃基底获得,包括以下步骤:首先,先后依次用丙酮、乙醇、去离子水分别超声清洗玻璃片,在氮气流下干燥后,将清洗后的玻璃片浸入质量分数为30%的H2O2和质量分数为 98%的浓硫酸的3:7体积混合溶液中,加热至80℃保温30分钟,冷却后,反复用去离子水冲洗玻璃片;然后,再将玻璃片浸入质量百分浓度为1%的三乙氧基1H、1H、2H、2H-三氟正辛基硅烷溶液中一个小时,然后,玻璃片用乙醇漂洗,在氮气流下干燥;最后,玻璃片在干燥柜中80℃干燥三小时,并冷却至室温,得到疏水玻璃基底。
有益效果:
1.本发明采用蒸发诱导自组装技术,无需对纳米颗粒表面进行官能团修饰,无需使用DNA、表面修饰剂等共轭连接分子,可直接在任意基底上进行纳米颗粒自组装,组装后的纳米颗粒间隙均匀,速度快,效率高,成本低。
2.添加丙三醇的体积是实现纳米颗粒液相高效自组装关键技术之一。首先,采用化学合成的方法制备30纳米直径的银纳米颗粒胶体,其中还原试剂采用柠檬酸钠,使得合成后的银纳米颗粒表面修饰有柠檬酸根,得到带负电的银纳米颗粒。合成后的银纳米颗粒经过三次离心洗涤之后分散于水中以去除多余残留化学试剂。带负电的纳米颗粒之间存在静电排斥相互作用,可以稳定分散在水中。加入合适体积比的丙三醇后,纳米颗粒悬浊液在疏水玻璃基底上干燥,水分挥发,丙三醇残留,丙三醇体积比过大会导致纳米颗粒在丙三醇中再次分散,自组装不均匀,丙三醇体积比过小会导致难以形成完整的保护膜,纳米颗粒自组装不均匀,面积小。通过调整添加丙三醇的体积比,实现纳米颗粒快速高效自组装。
3.疏水玻璃基底是另一个关键技术。蒸发分离过程在疏水玻璃基底上进行,液滴在疏水基底上干燥时,由于表面张力梯度引起的液滴内流体发生马朗戈尼流,输运纳米颗粒到玻璃基底上,在亲水玻璃基底上纳米颗粒倾向于输运到三相接触线位置,团簇的纳米颗粒形成咖啡环,损害纳米颗粒均匀自组装。纳米颗粒在疏水玻璃基底上输运方向为径向,纳米颗粒的输运更为均匀,形成分布均匀的自组装纳米颗粒团簇。同时,由于疏水基底上,液滴暴露在空气中的面积大,水分蒸发速度快,纳米颗粒液相自组装快。
附图说明
图1是本发明的蒸发诱导纳米颗粒液相自组装过程示意图。
图2是本发明所述的水蒸发形成马朗戈尼流驱动纳米颗粒运动示意图,(a)亲水玻璃基底上的马朗戈尼流,(b)疏水玻璃基底上的马朗戈尼流,(c)纳米颗粒悬浊液在亲水基底上干燥后团簇的纳米颗粒,(d)米颗粒悬浊液在疏水基底上干燥后团簇的纳米颗粒。
图3是本发明所述的丙三醇稳定的纳米颗粒团簇光学照片,尺度条为0.5毫米。
图4是本发明所述的纳米颗粒团簇情况随加入丙三醇浓度变化。纳米颗粒团簇均匀性可以用团簇后表面增强拉曼散射光谱的信号强度来表示。纳米颗粒团簇越均匀,激光入射后产生的局域表面等离激元共振效应越显著,产生的表面增强拉曼散射光谱信号越强。
附图标记列表:
1.离心管,2.纳米颗粒胶体,3.丙三醇,4.纳米颗粒悬浊液,5.疏水玻璃基底,6.溶剂水,7.丙三醇稳定的纳米颗粒团簇,8.30纳米银纳米颗粒。
具体实施方式
为了加深对本发明的理解,下面结合附图对本实施例做详细的说明。
如图1所示,本发明所述的基于蒸发诱导纳米颗粒液相自组装的方法,该方法包括如下步骤:
一种基于蒸发诱导纳米颗粒液相自组装的方法,该方法包括如下步骤:
(1)制备银纳米颗粒胶体;30纳米银纳米颗粒和溶剂水,银纳米颗粒浓度为8×1010个每毫升。所述30纳米银纳米颗粒采用化学方法合成,具体包括以下步骤:首先,将30克溶剂水与25克丙三醇混合搅拌均匀,在烧瓶中加热到95摄氏度时加入9毫克硝酸银保温一分钟,然后加入0.03毫克柠檬酸钠,烧瓶上装有冷凝回流装置,防止溶剂水蒸发,持续保温在95℃,搅拌一小时,冷却到室温,便得到30纳米直径的银纳米颗粒悬浊液。将制备好的 30纳米银纳米颗粒经12000转每秒高速离心水洗后再分散于溶剂水中,柠檬酸根吸附在银纳米颗粒上,无法被离心水洗清除,所以再分散后的30纳米银纳米颗粒表面功能团为带负电的柠檬酸根。
(2)向步骤(1)中制备的银纳米颗粒胶体中加入0.5%体积比的丙三醇,混合均匀形成纳米颗粒悬浊液;
(3)将步骤(2)中得到的纳米颗粒悬浊液液滴滴到疏水玻璃基底上,室温干燥蒸发溶剂水实现纳米颗粒自组装形成丙三醇稳定的纳米颗粒团簇。所述纳米颗粒悬浊液液滴在疏水玻璃基底上干燥,蒸发条件为室温环境,溶剂水室温下易挥发,由于表面张力梯度形成马朗戈尼流带动纳米颗粒向疏水玻璃基底方向运动,并沉积在疏水玻璃基底上,丙三醇室温下挥发极慢,同样沉积在疏水玻璃基底上,并在团簇的纳米颗粒上形成一层保护膜,形成丙三醇稳定的纳米颗粒团簇。
所述疏水玻璃基底采用化学修饰玻璃基底获得,包括以下步骤:首先,先后用丙酮、乙醇、去离子水分别超声清洗玻璃片,在氮气流下干燥后,将玻璃片浸入30毫升质量分数为 30%的H2O2和70毫升质量分数为98%的浓硫酸的混合溶液中,加热至80℃保温30分钟,冷却后,反复用去离子水冲洗玻璃片;然后,将清洗后的玻璃片浸入1%(质量比)的三乙氧基 1H、1H、2H、2H-三氟正辛基硅烷溶液中一个小时,然后,玻璃片用乙醇漂洗,在氮气流下干燥;最后,玻璃片在干燥柜中80℃干燥三小时,并冷却至室温,得到疏水玻璃基底。
本发明的方法组装后的纳米颗粒间隙均匀,速度快,效率高,一般来说十分钟即可完成制备。
本发明还可以有其它实施方式,凡依据本发明的技术实质所采用的任何细微修改、等效变换、替代所形成的技术方案,均落在本发明专利要求保护的范围之内。

Claims (5)

1.一种基于蒸发诱导纳米颗粒液相自组装的方法,其特征在于:该方法包括如下步骤:
(1)制备银纳米颗粒胶体;
(2)向步骤(1)中制备的银纳米颗粒胶体中加入0.5%体积比的丙三醇,混合均匀形成纳米颗粒悬浊液;
(3)将步骤(2)中得到的纳米颗粒悬浊液液滴滴到疏水玻璃基底上,室温干燥蒸发溶剂水实现纳米颗粒自组装形成丙三醇稳定的纳米颗粒团簇。
2.根据权利要求1所述的基于蒸发诱导纳米颗粒液相自组装的方法,其特征在于:步骤(1)中所述银纳米颗粒胶体包含30纳米银纳米颗粒和溶剂水,银纳米颗粒浓度为8×1010个每毫升。
3.根据权利要求2所述的基于蒸发诱导纳米颗粒液相自组装的方法,其特征在于:所述30纳米银纳米颗粒采用化学方法合成,具体包括以下步骤:首先,将溶剂水与丙三醇按照质量比为6:5的比例混合搅拌均匀,加热到95摄氏度时加入质量为溶剂水质量0.003%的硝酸银保温一分钟,然后加入质量为硝酸银质量的0.33%的柠檬酸钠,通过冷凝回流装置防止溶剂水蒸发,持续保温在95℃,搅拌一小时,冷却到室温,便得到30纳米直径的银纳米颗粒悬浊液。
4.根据权利要求3所述的基于蒸发诱导纳米颗粒液相自组装的方法,其特征在于:采用化学方法合成的30纳米银纳米颗粒采用柠檬酸钠还原,具体方法是:将制备好的30纳米银纳米颗粒悬浊液经12000转每秒高速离心水洗后分散于溶剂水中,柠檬酸根吸附在银纳米颗粒上,无法被离心水洗清除,再分散后的30纳米银纳米颗粒表面功能团为带负电的柠檬酸根。
5.根据权利要求1或2或3或4所述的基于蒸发诱导纳米颗粒液相自组装的方法,其特征在于:步骤(3)中所述疏水玻璃基底采用化学修饰玻璃基底获得,包括以下步骤:首先,先后依次用丙酮、乙醇、去离子水分别超声清洗玻璃片,在氮气流下干燥后,将清洗后的玻璃片浸入质量分数为30%的H2O2和质量分数为98%的浓硫酸的3:7体积混合溶液中,加热至80℃保温30分钟,冷却后,反复用去离子水冲洗玻璃片;然后,再将玻璃片浸入质量百分浓度为1%的三乙氧基1H、1H、2H、2H-三氟正辛基硅烷溶液中一个小时,然后,玻璃片用乙醇漂洗,在氮气流下干燥;最后,玻璃片在干燥柜中80℃干燥三小时,并冷却至室温,得到疏水玻璃基底。
CN202010354226.7A 2020-04-29 2020-04-29 一种基于蒸发诱导纳米颗粒液相自组装的方法 Pending CN111732344A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010354226.7A CN111732344A (zh) 2020-04-29 2020-04-29 一种基于蒸发诱导纳米颗粒液相自组装的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010354226.7A CN111732344A (zh) 2020-04-29 2020-04-29 一种基于蒸发诱导纳米颗粒液相自组装的方法

Publications (1)

Publication Number Publication Date
CN111732344A true CN111732344A (zh) 2020-10-02

Family

ID=72646875

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010354226.7A Pending CN111732344A (zh) 2020-04-29 2020-04-29 一种基于蒸发诱导纳米颗粒液相自组装的方法

Country Status (1)

Country Link
CN (1) CN111732344A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114471397A (zh) * 2021-12-22 2022-05-13 天津大学 一种面向核酸合成的微反应器阵列芯片及其制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104792765A (zh) * 2015-03-20 2015-07-22 江苏师范大学 一种银纳米颗粒、sers活性基底及其制备方法与应用
CN105489267A (zh) * 2016-02-03 2016-04-13 中国科学院化学研究所 一种导电银膜的制备方法
CN106645087A (zh) * 2016-12-22 2017-05-10 东南大学 无需表面修饰的pdms基单层sers基底及其制备方法
CN109665489A (zh) * 2018-12-20 2019-04-23 苏州大学 一种在基底表面双向可控自组装不同电荷金属纳米粒子的方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104792765A (zh) * 2015-03-20 2015-07-22 江苏师范大学 一种银纳米颗粒、sers活性基底及其制备方法与应用
CN105489267A (zh) * 2016-02-03 2016-04-13 中国科学院化学研究所 一种导电银膜的制备方法
CN106645087A (zh) * 2016-12-22 2017-05-10 东南大学 无需表面修饰的pdms基单层sers基底及其制备方法
CN109665489A (zh) * 2018-12-20 2019-04-23 苏州大学 一种在基底表面双向可控自组装不同电荷金属纳米粒子的方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114471397A (zh) * 2021-12-22 2022-05-13 天津大学 一种面向核酸合成的微反应器阵列芯片及其制备方法
CN114471397B (zh) * 2021-12-22 2024-04-02 天津大学 一种面向核酸合成的微反应器阵列芯片及其制备方法

Similar Documents

Publication Publication Date Title
Tang et al. Poly (N-vinyl-2-pyrrolidone)(PVP)-capped dendritic gold nanoparticles by a one-step hydrothermal route and their high SERS effect
Gao et al. Formation and photoluminescence of silver nanoparticles stabilized by a two-armed polymer with a crown ether core
Lu et al. Controlled fabrication of gold-coated 3D ordered colloidal crystal films and their application in surface-enhanced Raman spectroscopy
Yang et al. Glycolipid nanotube hollow cylinders as substrates: fabrication of one-dimensional metallic− organic nanocomposites and metal nanowires
Kemal et al. Experiment and theoretical study of poly (vinyl pyrrolidone)-controlled gold nanoparticles
US20030203977A1 (en) Synthesis of substantially monodispersed colloids
Liu et al. Synthesis of luminescent silicon nanopowders redispersible to various solvents
Yella et al. Synthesis, characterization, and hierarchical organization of tungsten oxide nanorods: spreading driven by Marangoni flow
JP2001168317A (ja) 金属微粒子秩序構造形成方法
WO2010081268A1 (zh) 用于纳米材料的分离和再分散的方法
Darbandi et al. Silica encapsulation of hydrophobically ligated PbSe nanocrystals
Madhavan et al. Microwave-assisted solid-state synthesis of Au nanoparticles, size-selective speciation, and their self-assembly into 2D-superlattice
US8425985B2 (en) Method for particulate coating
CN101538736A (zh) 一种树枝状金纳米材料及其制备方法
CN111732344A (zh) 一种基于蒸发诱导纳米颗粒液相自组装的方法
CN115590971A (zh) 一种酶驱动双面神纳米马达及其制备方法
Zhang et al. Shape-controlled synthesis of Cu2O nanocrystals by one pot solution-phase reduction process
Krichevski et al. Growth of colloidal gold nanostars and nanowires induced by palladium doping
Zhang et al. Necklace‐Like Nanostructures: From Fabrication, Properties to Applications
Jiao et al. Decorating multi-walled carbon nanotubes with Au nanoparticles by amphiphilic ionic liquid self-assembly
CN104275494B (zh) 一种新型结构的纳米金胶体及其制备方法
CN108793122B (zh) 一种c70富勒烯晶体的制备方法
Jia et al. The effects of the π–π stacking interactions on the patterns of gold nanoparticles formed at the air–water interface
Tyler et al. Centrifugal shape sorting of faceted gold nanoparticles using an atomic plane-selective surfactant
Zhao et al. A Critical Review on Recent Progress of Solution‐Processed Monolayer Assembly of Nanomaterials and Applications

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20201002

RJ01 Rejection of invention patent application after publication