CN111718482B - 一种磺化聚芳醚酮、制备方法及其应用 - Google Patents

一种磺化聚芳醚酮、制备方法及其应用 Download PDF

Info

Publication number
CN111718482B
CN111718482B CN202010539791.0A CN202010539791A CN111718482B CN 111718482 B CN111718482 B CN 111718482B CN 202010539791 A CN202010539791 A CN 202010539791A CN 111718482 B CN111718482 B CN 111718482B
Authority
CN
China
Prior art keywords
sulfonated polyaryletherketone
lithium
polyaryletherketone
lithium battery
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202010539791.0A
Other languages
English (en)
Other versions
CN111718482A (zh
Inventor
呼微
梁笑笑
杨雪
杜新伟
赵麒
刘佰军
王艳淼
徐义全
王寒冰
张亮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Changchun University of Technology
Original Assignee
Changchun University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Changchun University of Technology filed Critical Changchun University of Technology
Priority to CN202010539791.0A priority Critical patent/CN111718482B/zh
Publication of CN111718482A publication Critical patent/CN111718482A/zh
Application granted granted Critical
Publication of CN111718482B publication Critical patent/CN111718482B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/34Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from hydroxy compounds or their metallic derivatives
    • C08G65/48Polymers modified by chemical after-treatment
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/34Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from hydroxy compounds or their metallic derivatives
    • C08G65/38Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from hydroxy compounds or their metallic derivatives derived from phenols
    • C08G65/40Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from hydroxy compounds or their metallic derivatives derived from phenols from phenols (I) and other compounds (II), e.g. OH-Ar-OH + X-Ar-X, where X is halogen atom, i.e. leaving group
    • C08G65/4012Other compound (II) containing a ketone group, e.g. X-Ar-C(=O)-Ar-X for polyetherketones
    • C08G65/4018(I) or (II) containing halogens other than as leaving group (X)
    • C08G65/4025(I) or (II) containing fluorine other than as leaving group (X)
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/34Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from hydroxy compounds or their metallic derivatives
    • C08G65/38Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from hydroxy compounds or their metallic derivatives derived from phenols
    • C08G65/40Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from hydroxy compounds or their metallic derivatives derived from phenols from phenols (I) and other compounds (II), e.g. OH-Ar-OH + X-Ar-X, where X is halogen atom, i.e. leaving group
    • C08G65/4012Other compound (II) containing a ketone group, e.g. X-Ar-C(=O)-Ar-X for polyetherketones
    • C08G65/4043(I) or (II) containing oxygen other than as phenol or carbonyl group
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/0007Electro-spinning
    • D01D5/0015Electro-spinning characterised by the initial state of the material
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F6/00Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
    • D01F6/78Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from copolycondensation products
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/70Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres
    • D04H1/72Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres the fibres being randomly arranged
    • D04H1/728Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres the fibres being randomly arranged by electro-spinning
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M13/00Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with non-macromolecular organic compounds; Such treatment combined with mechanical treatment
    • D06M13/50Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with non-macromolecular organic compounds; Such treatment combined with mechanical treatment with organometallic compounds; with organic compounds containing boron, silicon, selenium or tellurium atoms
    • D06M13/503Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with non-macromolecular organic compounds; Such treatment combined with mechanical treatment with organometallic compounds; with organic compounds containing boron, silicon, selenium or tellurium atoms without bond between a carbon atom and a metal or a boron, silicon, selenium or tellurium atom
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M2101/00Chemical constitution of the fibres, threads, yarns, fabrics or fibrous goods made from such materials, to be treated
    • D06M2101/16Synthetic fibres, other than mineral fibres
    • D06M2101/30Synthetic polymers consisting of macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

本发明提供了一种磺化聚芳醚酮、制备方法及其应用。本发明以六氟双酚A、4,4‑双(4‑羟苯基)戊酸、2,2’‑二烯丙基双酚A、1,4双(4‑氟苯甲酰)苯和浓硫酸为原料制备性能优异的磺化聚芳醚酮,并通过静电纺丝技术对磺化聚芳醚酮进行加工获得多孔磺化聚芳醚酮静电纺丝膜,再将多孔磺化聚芳醚酮静电纺丝膜通过浸润锂盐溶液进行改性最终获得磺化聚芳醚酮锂电池隔膜。本发明制备的磺化聚芳醚酮锂电池隔膜具备优异的力学性能、热稳定性及电化学性能,在0.2 C倍率下循环200圈后,磺化聚芳醚酮锂电池隔膜依然具有良好的库伦效率,放电比容量仍然能达到150 mAh g‑1以上。

Description

一种磺化聚芳醚酮、制备方法及其应用
技术领域
本发明属于锂电池技术领域,具体涉及磺化聚芳醚酮、制备方法及其通过静电纺丝技术和锂盐浸润方法在多孔锂电池隔膜的应用。
背景技术
随着当今世界对可持续发展的要求越来越高,锂电池因其能量密度高、循环稳定性高以及环保等优点,已广泛应用于手机、电脑和电动汽车等领域,并随着电子设备产业的发展对电性能提出了更髙的要求,锂电池有望成为未来社会的主要能源形式之一。锂电池的工作原理是锂离子在正极与负极之间自由移动,反复进行嵌入与脱嵌;与传统电池不同,锂电池由几个主要部分构成,包括负极(阳极)、隔膜、正极(阴极)、电解液及其它构件。
锂电池隔膜作为锂电池的核心材料,是一层位于锂电池正极与负极材料之间微孔分布均匀的多孔隔膜,主要种类分为聚烯烃隔膜、无纺布隔膜及有机/无机复合隔膜;锂电池隔膜在电池中主要有两点作用,首先,它是锂离子的良导体,能够吸收并保持电解液,形成畅通的离子通道,使锂离子能够自由通过;同时它是电子的绝缘体,能够阻隔锂电池的正负极发生直接接触而造成锂电池短路。然而,目前商业化的锂电池用聚烯烃隔膜由于热尺寸稳定性较差,在高温环境下使用可能会导致锂电池阳极与阴极直接接触,从而产生大量电流,发生过热甚至引起燃烧爆炸,限制锂电池进行更为广泛的应用;而有机/无机复合隔膜因为材料中存在着有机成分,难以满足动力锂电池的需求。因此,开发一种满足动力锂电池需求、同时具备优异热稳定性的隔膜,对开拓锂电池的应用领域具有重大的意义和作用。
聚芳醚酮(PEEK)是一种高性能聚合物材料,其分子结构中含有刚性的苯环,因此具有优异的热稳定性、力学性能、耐腐蚀性及化学稳定性;同时分子结构中含有的醚键(AR-O-AR)、羰基(-CO-)等极性基团可以与极性的电解液之间发生相互作用,从而提高了对电解液的浸润能力;此外,通过磺化等手段将-F和-SO3H等功能性基团引入聚芳醚分子链中,可以使这类材料获得特殊的性能,是一种制备锂电池隔膜的理想材料。但PEEK的溶解性较差,具有很高的化学稳定性,不溶于除浓硫酸外一般的强酸或强碱试剂中;所以一般采用高温熔喷的方法成膜,但这种方法能源消耗大、操作条件苛刻,不适于大规模的工业生产。因此,考虑到电池产业的实际需求,亟需一种操作简单且环保的方法来制备综合性能优异的锂电池隔膜。
静电纺丝是一种即既高效又独特的聚合物纳米纤维制备技术,可制备一维(1D)、二维(2D)和三维(3D)材料,是一种利用静电力制备聚合物纤维的装置,通常包括控制注射泵、喷丝器、收集器和高压电源。其工作原理是高分子溶液在一定的电压下形成喷射流并且在喷射过程中不断被拉伸,最终落在接收装置上形成纳米纤维膜,能将聚合物溶液转变成直径在几百纳米到几微米之间的聚合物纳米纤维;当聚合物溶液被加入注射器中,因为其表面张力,溶液在针尖处形成液滴,如果有电压施加到聚合物的溶液液滴时,电荷就会在液滴中积聚,液滴在高压下充电,产生静电力;当静电力克服了表面张力,聚合物溶液就会被拉伸,使射流从喷丝器中喷射出来;射流喷射后,溶剂随之蒸发,使得静电斥力增强,而斥力使射流分散成多个小射流,经历剧烈的鞭笞运动后到达收集器时,溶剂会进一步蒸发,喷丝就会凝固成纤维。随着纳米技术的兴起,由于静电纺丝得到的聚合物纤维具有纳米尺寸效应、大的比表面积及聚合物链沿着纤维链取向等独特的性质,采用静电纺丝技术制备膜材料越来越受到关注,使其在纳米催化、过滤、生物医疗、电子材料等领域中有很多应用,例如以不同含量的聚丙烯腈为原料,制备锂电池用复合电纺纤维隔膜来提高离子电导率等。
发明内容
本发明提供了一种特定结构的磺化聚芳醚酮,利用静电纺丝技术和通过浸润锂盐的方法制备多孔锂电池隔膜,制备的锂电池隔膜具备优异的热稳定性、力学性能及电化学性能。
本发明的目的之一是提供一种适用于锂电池隔膜的磺化聚芳醚酮及其制备方法。
1.磺化聚芳醚酮的制备方法包括以下步骤:
(1)在氮气保护下,将六氟双酚A、4,4-双(4-羟苯基)戊酸、2,2’-二烯丙基双酚A和1,4双(4-氟苯甲酰)苯混合,再加入无水碳酸钾、环丁砜和甲苯,经回流除去水分后,在机械搅拌下升温至180-250 ℃反应6-12h后加入环丁砜获得粘稠液体,再将粘稠液体在搅拌状态下加入到去离子水中,获得白色丝状固体,将固体经去离子水和乙醇洗涤和真空加热干燥获得聚芳醚酮;
(2)将步骤(1)获得的聚芳醚酮与浓硫酸混合,经机械搅拌、蒸馏水沉降、洗涤、和真空干燥后获得磺化聚芳醚酮。
步骤(1)所述的六氟双酚A、4,4-双(4-羟苯基)戊酸、2,2’-二烯丙基双酚A、1,4双(4-氟苯甲酰)苯和无水碳酸钾摩尔比为4:1:5:10-12:0.8-1.2。
步骤(2)所述的机械搅拌时间为12-16 h。
本发明的另一个目的是提供一种以上述磺化聚芳醚酮为原料制备得到的锂电池隔膜的制备方法和应用,该锂电池隔膜具备优异的热稳定性及电化学性能。具体通过以下技术方案实现,其步骤如下:
(1)将磺化聚芳醚酮溶解在二甲基甲酰胺中获得质量分数为15%~17 %磺化聚芳醚酮溶液;
(2)将步骤(1)所述的磺化聚芳醚酮溶液在室温下进行静电纺丝获得多孔磺化聚芳醚酮静电纺丝膜;
(3)将锂盐溶于乙醇溶液获得锂盐乙醇溶液;
(4)将步骤(2)所述的多孔磺化聚芳醚酮静电纺丝膜浸润在步骤(3)所述的锂盐醇溶液1-3 h后经真空加热干燥获得多孔磺化聚芳醚酮锂电池隔膜。
步骤(2)所述的静电纺丝电压为15-18 KV、溶液的推送速率为3-6 μL/min。
步骤(3)所述的锂盐为六氟磷酸锂、四氟硼酸锂、双氟磺酰亚胺锂、三氟甲基磺酸锂、二(三氟甲基磺酸)亚胺锂中的任意一种。
本发明的有益效果:
本发明提供了一种特定结构的磺化聚芳醚酮,并利用静电纺丝技术将磺化聚芳醚酮制备成多孔锂电池隔膜的制备方法;方法是采用静电纺丝结合浸润锂盐的方法,通过浸润含有锂盐的乙醇溶液,使锂盐溶液填充纺丝膜的孔隙,获得综合性能优异的多孔锂电池隔膜。这种具备三维孔洞结构的纺丝膜,比表面积大,使其拥有较高的担载率和较好的电解液润湿性;另外,纺丝膜上的磺酸基团与锂盐间的静电作用,使锂盐能够稳定存在于膜上,提高了锂离子迁移速度和隔膜的电化学性能。除此之外,因为聚芳醚类聚合物具有非常好的热稳定性和机械性能,通过静电纺丝工艺制备出的隔膜同样具有优异的热稳定性能和较好的机械性能。
附图说明
图1中a为实施例4中SP膜的扫描电镜图;b和c分别为实施例6中SP-Li-10膜和实施例8中SP-Li-20膜的扫描电镜图;d为实施例4中SP膜的透射电镜图;
图2分别为商用PE膜、实施例4中SP膜、实施例6中SP-Li-10膜、实施例7中的SP-Li-15膜及实施例8中SP-Li-20膜的热稳定性测试前后实物图;
图3分别为实施例4中SP膜、实施例6中SP-Li-10膜、实施例7中的SP-Li-15膜及实施例8中SP-Li-20膜所组装电池的循环放电比容量和库伦效率;
表1分别为商用PE膜、实施例4中SP膜、实施例6中SP-Li-10膜、实施例7中的SP-Li-15膜及实施例8中SP-Li-20膜的孔隙率及担载率;
表2分别为实施例4中SP膜、实施例6中SP-Li-10膜、实施例7中的SP-Li-15膜及实施例8中SP-Li-20膜的力学性能;
表3分别为实施例4中SP膜、实施例6中SP-Li-10膜及、实施例7中的SP-Li-15膜实施例8中SP-Li-20膜所组装电池的电化学阻抗。
具体实施方式
下面将结合具体的实施例对本发明的技术方案作进一步的详细说明,目的在于使本领域技术人员对本申请有更加清楚地理解和认识。以下各具体实施例不应在任何程度上被理解或解释为对本申请权利要求书请求保护范围的限制。
若无特别说明,本发明采用的试剂均为常规商购试剂。
实施例1:聚芳醚酮的制备
在连续稳定的氮气条件下,向三颈烧瓶中依次加入六氟双酚A(0.32 mol)、4,4-双(4-羟苯基)戊酸(0.08 mol)、2,2’-二烯丙基双酚A(0.4 mol)、1,4双(4-氟苯甲酰)苯(0.88mol)、无水碳酸钾(0.84 mol)、750 ml环丁砜(TMS)及350 ml甲苯,回流3 h,尽量将反应中水分除去;在机械搅拌下将反应体系升温至180 ℃,反应过程中释放放出甲苯;经过6 h后,溶液变粘稠,向其中加入少量环丁砜,1 h后聚合反应完全,将粘稠溶液在搅拌状态下迅速倒入800 ml去离子水中,得到白色丝状固体。将固体聚合物绞碎,在去离子水和乙醇溶液中分别回流4-5次洗去聚合物中的盐类和溶剂,抽滤后在120 ℃条件下真空干燥24 h,获得聚芳醚酮。
对上述聚芳醚酮产物进行表征,经测试其重均分子量为7.6×104 g/mol,玻璃化温度为158 ℃,熔融温度为364 ℃。
实施例2:磺化聚芳醚酮的制备
取实施例1获得的聚芳醚酮产物10g,与200 ml 98%的浓硫酸混合,机械搅拌12 h后用蒸馏水沉降,将得到的聚合产物粉碎,用蒸馏水洗料至中性后再在80 ℃下真空干燥24h,获得磺化聚芳醚酮。
实施例3:锂盐溶液的配制
取乙醇溶液100 mL,向其中加入一定量的双三氟甲基磺酰亚胺锂(LiTFSI),机械搅拌混合均匀,配制质量分数为10%-20%的锂盐溶液。
实施例4
将2 g实施例2获得的磺化聚芳醚酮聚合物溶解于N,N-二甲基甲酰胺(DMF)中配制质量分数为15%的磺化聚芳醚酮聚合物溶液,再将聚合物溶液使用静电纺丝法成膜,纺丝在室温25 ℃下进行,纺丝电压17 KV,针尖到旋转收丝器距离为17 cm,溶液的推送速率为3 μL/min,旋转收丝器的接收面积大小为10 cm×12 cm,将得到的纺丝膜裁剪成7 cm×7 cm的形状,放置在干净的玻璃板上在60 ℃下真空干燥12 h,再升温至80 ℃,最终获得多孔磺化聚芳醚酮静电纺丝膜(SP膜)。
实施例5
将实施例3中获得的锂盐溶液倒入乙醇溶液中配制锂盐质量分数为5%锂盐乙醇溶液;将实施例4获得的多孔磺化聚芳醚酮静电纺丝膜浸润在5%的锂盐乙醇溶液中1 h后,在70 ℃下真空干燥2 h后获得锂电池隔膜(SP-Li-5膜)。
实施例6
将实施例3中获得的锂盐溶液倒入乙醇溶液中配制锂盐质量分数为10%锂盐乙醇溶液;将实施例4获得的多孔磺化聚芳醚酮静电纺丝膜浸润锂盐乙醇溶液中1 h后,在70 ℃下真空干燥2 h后获得锂电池隔膜(SP-Li-10膜)。
实施例7
将实施例3中获得的锂盐溶液倒入乙醇溶液中配制锂盐质量分数为15%锂盐乙醇溶液;将实施例4获得的多孔磺化聚芳醚酮静电纺丝膜浸润锂盐乙醇溶液中1 h后,在70 ℃下真空干燥2 h后获得锂电池隔膜(SP-Li-15膜)。
实施例8
将实施例3中获得的锂盐溶液倒入乙醇溶液中配制锂盐质量分数为20%锂盐乙醇溶液;将实施例4获得的多孔磺化聚芳醚酮静电纺丝膜浸润锂盐乙醇溶液中1 h后,在70 ℃下真空干燥2 h后获得锂电池隔膜(SP-Li-20膜)。
实施例9
分别取1.6 g 活化材料磷酸铁锂(LiFePO4)、0.2 g导电剂乙炔黑以及0.2 g粘结剂聚偏氟乙烯(PVDF),溶解在无水N,N-二甲基吡咯烷酮(NMP)中,搅拌均匀后使用刮刀均匀涂覆在干净的铝箔上,在120 °C下真空干燥12 h,除去多余的溶剂和水分;将烘干的铝箔纸裁剪成直径为12 mm的圆片;在100 MPa的压力下压片后将其继续在120 °C下真空干燥后获得正极片,将正极片置于氩气填充的手套箱中备用,湿度和氧气水平均小于1 ppm。
将实施例4中SP膜、实施例5中SP-Li-5膜、实施例6中SP-Li-10膜、实施例7中SP-Li-15膜及实施例8中SP-Li-20膜分别裁剪成直径为16 mm的圆形隔膜分别按照正极壳、正极片、圆形隔膜、锂片、垫片、弹片、负极壳结构的顺序组装电池,使用纽扣电池封口压片机将组装好的电池封口,压力为1000MPa。
实施例9中的所有操作均在无水无氧的手套箱中制作。
性能测试
(1) 静电纺丝膜的TEM测试;
(2) 静电纺丝膜及浸润锂盐乙醇溶液后的静电纺丝膜的SEM测试;
(3) 孔隙率及担载率测试;
(4) 热稳定性测试;
(5) 机械性能测试;
(6) 电化学性能测试。
实验结论:
参考说明书附图1,实施例4中SP膜的纳米纤维直径大约为190 nm,纤维表面光滑,无颗粒或者结珠状态,具有多孔的网络结构;实施例6中SP-Li-10膜和实施例8中SP-Li-20膜的平均纤维直径约为140 nm,略有缩小,但纤维表面无明显变化,同样具有较好的形态。实施例4中SP膜、实施例6中SP-Li-10膜、实施例7中SP-Li-15膜及实施例8中SP-Li-20膜都呈现出均匀的多孔纤维网络,易于锂离子快速运输以及拥有较好的电化学性能。
参考说明书附图2,实施例4中SP膜、实施例6中SP-Li-10膜、实施例7中SP-Li-15膜及实施例8中SP-Li-20膜在200 ℃下处理0.5 h后均具有优异的热稳定性,通过换算,可以计算出实施例4中SP膜及实施例6中SP-Li-10膜的热收缩率为0%,实施例7中SP-Li-15膜的热收缩率为1%,实施例8中SP-Li-20膜的热收缩率为2%;而商用PE锂电池隔膜在150 ℃时的收缩率就达到84.2%,在200 ℃时收缩率已经高达96.3%,失去了应用于锂电池隔膜的功能。因此,具有优异的热稳定性能的磺化聚芳醚酮聚合物可以应用于锂电池隔膜中,能很好地保持热尺寸稳定性,避免在高温中收缩导致危险的发生。
参考说明书附图3,在0.2 C倍率下循环200圈后,实施例4中SP膜依然具有良好的库伦效率,放电比容量仍然能达到118 mAh g-1;实施例6中SP-Li-10膜在0.2 C倍率下循环200圈后放电比容量仍可达到144 mAh g-1;在0.2 C倍率下循环200圈后,实施例7中的SP-Li-15膜的放电比容量仍可达到148 mAhg-1,在0.2 C倍率下循环200圈后,实施例8中的SP-Li-20膜的放电比容量仍可达到152 mAhg-1以上。上述说明,经过静电纺丝技术制备的锂电池隔膜,具有较高的放电比容量;再经过锂盐附着改性后,电化学性能进一步提高。这是因为聚合物侧链上带有磺酸基团,在加入锂盐后,磺酸基团可以与锂盐中阴离子部分发生静电排斥作用,增加了锂离子的活动能力和转移效率,有效的避免了出现锂离子传输不均匀的现象和锂枝晶的产生,提高了电池的放电比容量,从而使其具有稳定放电性能。
表1:隔膜的孔隙率和担载率
Figure 888585DEST_PATH_IMAGE001
从表1得出:实施例4中SP膜的孔隙率为40.7%;实施例6中SP-Li-10膜的孔隙率达到40.9%,随着锂盐溶液浓度的增加,实施例8中SP-Li-20膜的孔隙率略有减小,但38.7%的孔隙率仍高于目前商用PE锂电池隔膜(35.2%);实施例4中SP膜、实施例6中SP-Li-10膜、实施例7中SP-Li-15膜及实施例8中SP-Li-20膜也具有较高的担载率,可以达到169%以上。
表2:隔膜的力学性能
Figure 346112DEST_PATH_IMAGE002
从表2得出:实施例4中SP膜、实施例6中SP-Li-10膜、实施例7中SP-Li-15膜及实施例8中SP-Li-20膜的弹性模量分别达到373.5 MPa、372 MPa、373.6MPa和375.5 MPa;此外实施例8中SP-Li-20膜的拉伸强度达到5.3 MPa,断裂伸长率提高到15%。
拉伸强度的测试:国产AG-I 1KN型电子万能试验机上进行,拉伸速率为2 mm/min;
断裂伸长率的测试:在国产AG-I 1KN型电子万能试验机上进行,拉伸速率为2 mm/min;
弹性模量按照ASTM C769-2009标准测试得到。
表3:隔膜的电化学阻抗
样品名称 阻抗(Ω)
SP膜 260
SP-Li-10膜 180
SP-Li-15膜 203
SP-Li-20膜 225
从表3得出:实施例4中SP膜的阻抗为260 Ω,而实施例6中SP-Li-10膜、实施例7中SP-Li-15膜及实施例8中SP-Li-20膜的阻抗均小于实施例4中SP膜的阻抗,分别为180Ω、203Ω和225 Ω。
综上表明,采用静电纺丝工艺制备的磺化聚芳醚酮纺丝膜并经过锂盐溶液浸润后,可以得到应用于锂电池的隔膜;对纺丝膜的表面及断面扫描电镜表征证明成功制备出了多孔的静电纺丝膜;制备的多孔的静电纺丝膜具有较高的孔隙率、担载率以及较高的放电比容量、优异的电化学稳定性、热稳定性能和机械性能。将上述实施例合成的隔膜作为锂电池隔膜具有很好的应用前景。
最后应说明的是:以上各实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述各实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解;其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的范围。

Claims (3)

1.一种磺化聚芳醚酮在多孔锂电池隔膜中的应用,其特征在于,多孔锂电池隔膜的制备方法包括以下步骤:
将磺化聚芳醚酮溶解在二甲基甲酰胺中获得质量分数为15%-17%磺化聚芳醚酮溶液;
将所述的磺化聚芳醚酮溶液在室温下进行静电纺丝获得多孔磺化聚芳醚酮静电纺丝膜;
将锂盐溶于乙醇溶液获得锂盐乙醇溶液;
将所述的多孔磺化聚芳醚酮静电纺丝膜浸润在所述的锂盐乙醇溶液1-3h后经真空加热干燥获得多孔磺化聚芳醚酮锂电池隔膜;
所述的磺化聚芳醚酮,它的制备方法包括以下步骤:
在氮气保护下,将六氟双酚A、4,4-双(4-羟苯基)戊酸、2,2’-二烯丙基双酚A和1,4-双(4-氟苯甲酰)苯混合,再加入无水碳酸钾、环丁砜和甲苯,经回流除去水分后,在机械搅拌下升温至180-250 ℃反应6 -12h后加入环丁砜获得粘稠液体,再将粘稠液体在搅拌状态下加入到去离子水中,获得白色丝状固体,将固体经去离子水和乙醇洗涤和真空加热干燥获得聚芳醚酮;将聚芳醚酮与浓硫酸混合,经机械搅拌、蒸馏水沉降、洗涤、和真空干燥后获得磺化聚芳醚酮;所述的六氟双酚A、4,4-双(4-羟苯基)戊酸、2,2’-二烯丙基双酚A、1,4-双(4-氟苯甲酰)苯和无水碳酸钾摩尔比为4:1:5:10-12:0.8-1.2;
所述的静电纺丝电压为15-18 KV、溶液的推送速率为3-6μL/min。
2.根据权利要求1所述的一种磺化聚芳醚酮在多孔锂电池隔膜中的应用,其特征在于,将聚芳醚酮与浓硫酸混合,经机械搅拌,时间为12-16 h。
3.根据权利要求1所述的一种磺化聚芳醚酮在多孔锂电池隔膜中的应用,其特征在于,所述的锂盐为六氟磷酸锂、四氟硼酸锂、双氟磺酰亚胺锂、三氟甲基磺酸锂、二(三氟甲基磺酸)亚胺锂中的任意一种。
CN202010539791.0A 2020-06-15 2020-06-15 一种磺化聚芳醚酮、制备方法及其应用 Active CN111718482B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010539791.0A CN111718482B (zh) 2020-06-15 2020-06-15 一种磺化聚芳醚酮、制备方法及其应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010539791.0A CN111718482B (zh) 2020-06-15 2020-06-15 一种磺化聚芳醚酮、制备方法及其应用

Publications (2)

Publication Number Publication Date
CN111718482A CN111718482A (zh) 2020-09-29
CN111718482B true CN111718482B (zh) 2023-01-24

Family

ID=72566690

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010539791.0A Active CN111718482B (zh) 2020-06-15 2020-06-15 一种磺化聚芳醚酮、制备方法及其应用

Country Status (1)

Country Link
CN (1) CN111718482B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113278152B (zh) * 2021-06-07 2022-06-21 吉林大学 磺化聚芳醚化合物及制备方法、离子选择性复合多孔膜及制备方法和应用
CN115295958A (zh) * 2022-08-30 2022-11-04 中国科学院长春应用化学研究所 一种聚芳醚酮隔膜、其制备方法及应用

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109638205A (zh) * 2018-12-21 2019-04-16 河南景创新能源科技有限公司 一种纤维网状的锂硫电池改性隔膜及其制备方法和应用
CN109942808A (zh) * 2019-03-07 2019-06-28 东北师范大学 一种聚芳醚酮及其制备方法和在锂电池隔膜中的应用

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001083091A2 (en) * 2000-05-02 2001-11-08 Bernd Schindler Sulfonated aryl sulfonate matrices and method of production

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109638205A (zh) * 2018-12-21 2019-04-16 河南景创新能源科技有限公司 一种纤维网状的锂硫电池改性隔膜及其制备方法和应用
CN109942808A (zh) * 2019-03-07 2019-06-28 东北师范大学 一种聚芳醚酮及其制备方法和在锂电池隔膜中的应用

Also Published As

Publication number Publication date
CN111718482A (zh) 2020-09-29

Similar Documents

Publication Publication Date Title
Zhong et al. Recent progress in thin separators for upgraded lithium ion batteries
Zhao et al. Effect of OctaphenylPolyhedral oligomeric silsesquioxane on the electrospun Poly-m-phenylene isophthalamid separators for lithium-ion batteries with high safety and excellent electrochemical performance
Miao et al. Electrospun polyimide nanofiber-based nonwoven separators for lithium-ion batteries
Zhu et al. Modification and characterization of electrospun poly (vinylidene fluoride)/poly (acrylonitrile) blend separator membranes
KR101997074B1 (ko) 폴리에틸렌이마인이 부착된 탄소재료 및 이를 코팅한 리튬-황 전지용 분리막
Kang et al. A thermostability gel polymer electrolyte with electrospun nanofiber separator of organic F-doped poly-m-phenyleneisophthalamide for lithium-ion battery
Li et al. Electrospun sio 2/pmia nanofiber membranes with higher ionic conductivity for high temperature resistance lithium-ion batteries
Bao et al. Flexible and free-standing LiFePO4/TPU/SP cathode membrane prepared via phase separation process for lithium ion batteries
He et al. Effectively suppressing lithium dendrite growth via an es-LiSPCE single-ion conducting nano fiber membrane
CN109817865B (zh) 一种复合隔膜及其制备方法
CN111718482B (zh) 一种磺化聚芳醚酮、制备方法及其应用
JP2015516654A (ja) 電気化学電池用層システム
CN110233287A (zh) 一种尼龙基复合凝胶聚合物电解质及其制备方法
Chen et al. Electrospun PMIA and PVDF-HFP composite nanofibrous membranes with two different structures for improved lithium-ion battery separators
CN112448098A (zh) 一种静电纺聚酰亚胺基纳米纤维多孔膜及其制备方法和应用
Zhou et al. Radical-functionalized polymer nanofiber composite separator for ultra-stable dendritic-free lithium metal batteries
CN111554973A (zh) 基于树枝状聚酰胺-6纳米纤维膜的全固态聚合物电解质及其制备方法
CN111029515A (zh) 基于磺化氧化石墨烯的单离子聚合物电解质隔膜及其制备方法和应用
CN109851704B (zh) 聚合物隔膜及其制备方法和应用及锂电池
CN114539554B (zh) 一种木质素基单离子聚合物电解质、制备方法及其应用
CN114335711A (zh) 一种原位掺入mof的pvdf-hfp-peo双层固态聚合物电解质的制备方法和应用
Hu et al. Flexible, high-temperature-resistant, highly conductive, and porous siloxane-based single-ion conducting electrolyte membranes for safe and dendrite-free lithium-metal batteries
Huang et al. PVDF-HFP-SN-based gel polymer electrolyte for high-performance lithium-ion batteries
Rodriguez et al. Freestanding polyimide fiber network as thermally safer separator for high-performance Li metal batteries
Zhang et al. Well-aligned BaTiO3 nanofibers via solution blow spinning and their application in lithium composite solid-state electrolyte

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant