CN111711223A - 提高光伏逆变器效率和谐波性能的混合空间矢量调制方法 - Google Patents

提高光伏逆变器效率和谐波性能的混合空间矢量调制方法 Download PDF

Info

Publication number
CN111711223A
CN111711223A CN202010399812.3A CN202010399812A CN111711223A CN 111711223 A CN111711223 A CN 111711223A CN 202010399812 A CN202010399812 A CN 202010399812A CN 111711223 A CN111711223 A CN 111711223A
Authority
CN
China
Prior art keywords
modulation
phase
space vector
voltage
vector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202010399812.3A
Other languages
English (en)
Other versions
CN111711223B (zh
Inventor
郭寅远
李二海
任高全
李宗原
曹元威
朱洋洋
韩聪
冯瑾涛
陈卓
贺春
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xuchang Ketop Testing Research Institute Co ltd
Original Assignee
Xuchang Ketop Testing Research Institute Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xuchang Ketop Testing Research Institute Co ltd filed Critical Xuchang Ketop Testing Research Institute Co ltd
Priority to CN202010399812.3A priority Critical patent/CN111711223B/zh
Publication of CN111711223A publication Critical patent/CN111711223A/zh
Application granted granted Critical
Publication of CN111711223B publication Critical patent/CN111711223B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/381Dispersed generators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/01Arrangements for reducing harmonics or ripples
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/5387Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration
    • H02M7/53871Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration with automatic control of output voltage or current
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/539Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters with automatic control of output wave form or frequency
    • H02M7/5395Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters with automatic control of output wave form or frequency by pulse-width modulation
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P27/00Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
    • H02P27/04Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
    • H02P27/06Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters
    • H02P27/08Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters with pulse width modulation
    • H02P27/12Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters with pulse width modulation pulsing by guiding the flux vector, current vector or voltage vector on a circle or a closed curve, e.g. for direct torque control
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2300/00Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
    • H02J2300/20The dispersed energy generation being of renewable origin
    • H02J2300/22The renewable source being solar energy
    • H02J2300/24The renewable source being solar energy of photovoltaic origin
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/56Power conversion systems, e.g. maximum power point trackers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/40Arrangements for reducing harmonics

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Inverter Devices (AREA)

Abstract

一种提高光伏逆变器效率和谐波性能的混合空间矢量调制方法,实时监测母线电压,当母线电压大于临界电压时,通过SVPWM矢量控制方法进行调制;当母线电压小于临界电压时,通过DPWM矢量控制方法进行调制。本发明采用实时监测母线电压大小作为混合空间矢量切换的条件,能够克服CPWM调制方式的开关损耗较大导致的逆变器转换效率偏低的问题,同时能够克服DPWM调制方式的开关管开通关断次数减少而引入谐波问题,以及解决在中高压场合母线电压偏高时导致的中点电位波动和偏移的中点电位不平衡问题,本发明的调制方法能够提高光伏逆变器的效率,减少谐波问题。

Description

提高光伏逆变器效率和谐波性能的混合空间矢量调制方法
技术领域
本发明涉及光伏逆变领域,特别是涉及一种提高光伏逆变器效率和谐波性能的混合空间矢量调制方法。
背景技术
传统的光伏逆变器空间矢量控制策略,采用单一的连续脉宽调制(CPWM) 或不连续脉宽调制(DPWM),只能满足逆变器的基本性能要求。
其中,CPWM调制方式由于其较高的直流电压利用率,较好的输出谐波特性而获得广泛应用。在一个开关周期内,逆变器每一相的开关管都有动作,三相桥臂共有6次开关动作。CPWM调制方式,在一个载波周期中,逆变器每一相的开关管都有动作的调制策略,这种调制方式突出的缺点是功率器件的开关损耗较大,逆变器的转换效率较低。
DPWM调制方式是一种在一个开关周期内逆变器总有一相的开关管不动作,一个开关周期内三相桥臂的开关动作总次数减小到4次,能够减少开关器件的损耗,但同时会使逆变器的输出引入一定量的谐波。在中高压的母线电压较高场合,中点电位的波动和偏移问题突出,极易导致母线电容以及开关器件的损坏。
因此,针对现有技术不足,提供一种提高光伏逆变器效率和谐波性能的混合空间矢量调制方法以克服现有技术不足甚为必要。
发明内容
本发明的目的在于避免现有技术的不足之处而提供一种提高光伏逆变器效率和谐波性能的混合空间矢量调制方法。
本发明的目的通过以下技术措施实现。
提供一种提高光伏逆变器效率和谐波性能的混合空间矢量调制方法,实时监测母线电压,当母线电压大于临界电压时,通过SVPWM矢量控制方法进行调制;当母线电压小于临界电压时,通过DPWM矢量控制方法进行调制。
优选的,SVPWM矢量控制方法是:原始三相调制波Va、Vb、Vc叠加VSVPWM分量输出;
DPWM矢量控制方法是:DPWM矢量控制方法是:原始三相调制波Va、Vb、 Vc叠加|v0|DPWMA分量输出。
优选的,SVPWM矢量控制调制通过如下过程进行:
对原正弦调制波进行等效SVPWM调制,通过式一实现:
Figure BDA0002488977880000021
其中,Va、Vb、Vc为原正弦调制波,
Figure BDA0002488977880000022
为叠加零序分量之后得到的调制波,Vsvpwm为:
Figure BDA0002488977880000023
其中,Vmin、Vmax分别为三电平空间矢量相电压的最小值和最大值;
经过SVPWM矢量调制后的调制波为马鞍波,依大小分为
Figure BDA0002488977880000024
存在式三的关系:
Figure BDA0002488977880000025
Vmid为三电平空间矢量相电压的中间值。
优选的,DPWM矢量控制调制具体通过如下过程进行:
令三相原始调制波vx的表达式为:
Figure BDA0002488977880000031
其中,X代表相序,X等于a或b或c;
定义vhx和vxl分别为三相原始调制波vx到相应载波上下边界的距离,表达式分别为:
Figure BDA0002488977880000032
Figure BDA0002488977880000033
采样DPWM矢量控制方法舍弃小矢量0-1-1,即得到DPWMA矢量序列,
DPWMA的零序分量表达式为:
|v0|DPWMA=min[min(vhk),min(vkl)],k=a,b,c......式七;
其中,当v0取vhx时,其符号为正,当v0取vxl时,其符号为负;
对原正弦调制波进行DPWM矢量控制调制,通过式八实现:
Figure BDA0002488977880000034
其中,Va、Vb、Vc为原正弦调制波,
Figure BDA0002488977880000035
为调制波。
优选的,上述的提高光伏逆变器效率和谐波性能的混合空间矢量调制方法,临界电压为700V,系统电压为1000V。
优选的,上述的提高光伏逆变器效率和谐波性能的混合空间矢量调制方法,当实时监测的母线电压大于700V时,此时系统开关频率f=2400Hz;当实时监测的母线电压小于等于700V时,此时系统开关频率f=3000Hz。
优选的,上述的提高光伏逆变器效率和谐波性能的混合空间矢量调制方法,以最终输出的PWM驱动开关器件的开通和关断。
优选的,上述的提高光伏逆变器效率和谐波性能的混合空间矢量调制方法,实时采集三相电网线电压经过锁相算法得出电网的相位θ,采集的交流电流经过abc-dq变换,可以得出电流的d、q轴反馈,采集直流母线电压和电流,经过PI运算后得出d轴给定,q轴给定取为0,即电压外环的输出作为电流内环的给定,电流内环经过PI运算后得出的控制量经过dq-abc反变换,得到三相原始调制波。
本发明的提高光伏逆变器效率和谐波性能的混合空间矢量调制方法,实时监测母线电压,当母线电压大于临界电压时,通过SVPWM矢量控制方法进行调制;当母线电压小于临界电压时,通过DPWM矢量控制方法进行调制。采用实时监测母线电压大小作为混合空间矢量切换的条件,能够克服CPWM调制方式的开关损耗较大导致的逆变器转换效率偏低的问题,同时能够克服DPWM调制方式的开关管开通关断次数减少而引入谐波问题,以及解决在中高压场合母线电压偏高时导致的中点电位波动和偏移的中点电位不平衡问题,本发明的调制方法能够提高光伏逆变器的效率,减少谐波问题。
附图说明
利用附图对本发明作进一步的说明,但附图中的内容不构成对本发明的任何限制。
图1是本发明一种提高光伏逆变器效率和谐波性能的混合空间矢量调制方法实施例2中的Vmin、Vmax的三电平空间矢量图。
图2是本发明一种提高光伏逆变器效率和谐波性能的混合空间矢量调制方法实施例2中叠加了VSVPWM后的三相调制波形。
图3是本发明一种提高光伏逆变器效率和谐波性能的混合空间矢量调制方法实施例2中的三电平载波边界示意图。
图4是本发明一种提高光伏逆变器效率和谐波性能的混合空间矢量调制方法实施例3的原理示意图。
图5是本发明提高光伏逆变器效率和谐波性能的混合空间矢量调制方法实施例3的流程图。
具体实施方式
结合以下实施例对本发明作进一步说明。
实施例1。
一种提高光伏逆变器效率和谐波性能的混合空间矢量调制方法,实时监测母线电压,当母线电压大于临界电压时,通过SVPWM矢量控制方法进行调制;当母线电压小于临界电压时,通过DPWM矢量控制方法进行调制。以最终输出的PWM驱动开关器件的开通和关断。
SVPWM矢量控制方法是:原始三相调制波Va、Vb、Vc叠加VSVPWM分量输出;DPWM矢量控制方法是:原始三相调制波Va、Vb、Vc叠加|v0|DPWMA分量输出。
SVPWM矢量控制调制通过如下过程进行:
对原正弦调制波进行等效SVPWM调制,通过式一实现:
Figure BDA0002488977880000051
其中,Va、Vb、Vc为原正弦调制波,
Figure BDA0002488977880000052
为叠加零序分量之后得到的调制波,Vsvpwm为:
Figure BDA0002488977880000053
其中,Vmin、Vmax分别为三电平空间矢量相电压的最小值和最大值;
经过SVPWM矢量调制后的调制波为马鞍波,依大小分为
Figure BDA0002488977880000054
存在式三的关系:
Figure BDA0002488977880000061
Vmid为三电平空间矢量相电压的中间值。
DPWM矢量控制调制具体通过如下过程进行:
令三相原始调制波vx的表达式为:
Figure BDA0002488977880000062
其中,X代表相序,X等于a或b或c;
定义vhx和vxl分别为三相原始调制波vx到相应载波上下边界的距离,表达式分别为:
Figure BDA0002488977880000063
Figure BDA0002488977880000064
采样DPWM矢量控制方法舍弃小矢量0-1-1,即得到DPWMA矢量序列,
DPWMA的零序分量表达式为:
|v0|DPWMA=min[min(vhk),min(vkl)],k=a,b,c......式七;
其中,当v0取vhx时,其符号为正,当v0取vxl时,其符号为负;
对原正弦调制波进行DPWM矢量控制调制,通过式八实现:
Figure BDA0002488977880000065
其中,Va、Vb、Vc为原正弦调制波,
Figure BDA0002488977880000071
为调制波。
本发明采用实时监测母线电压大小作为混合空间矢量切换的条件,能够克服CPWM调制方式的开关损耗较大导致的逆变器转换效率偏低的问题,同时能够克服DPWM调制方式的开关管开通关断次数减少而引入谐波问题,以及解决在中高压场合母线电压偏高时导致的中点电位波动和偏移的中点电位不平衡问题,本发明的调制方法能够提高光伏逆变器的效率,减少谐波问题。
实施例2。
本发明为一种提高光伏逆变器效率和谐波性能的混合空间矢量调制方法,即采用CPWM控制与DPWM控制相结合的混合空间矢量调制,能有效的提高逆变器转换效率的同时,提高谐波性能。以1000V系统电压等级为例,当系统MPPT 电压大于700V时,采用SVPWM控制方式,开关频率为2.4kHz,当系统MPPT电压小于等于700V时,采用DPWM控制方式,开关频率f=3kHz。
SVPWM矢量控制方法是:原始三相调制波Va、Vb、Vc叠加VSVPWM分量输出;DPWM矢量控制方法是:原始三相调制波Va、Vb、Vc叠加|v0|DPWMA分量输出。
CPWM调制方式实现:等效SVPWM调制算法的实现方法是在SPWM算法产生的正弦波基础上叠加零序分量,具体做法是:
对原正弦调制波进行等效SVPWM调制,通过式一实现:
Figure BDA0002488977880000072
其中,Va、Vb、Vc为原正弦调制波,
Figure BDA0002488977880000073
为叠加零序分量之后得到的调制波,Vsvpwm为:
Figure BDA0002488977880000074
其中,Vmin、Vmax分别为三电平空间矢量相电压的最小值和最大值;Vmin、Vmax 在三电平矢量关系图中对应调制波如图1所示。
叠加Vsvpwm后的三相调制波实际上是对三相调制波进行了居中处理,新的调制波由正弦波变为如图2所示的马鞍波,依大小分为
Figure BDA0002488977880000081
存在式三的关系:
Figure BDA0002488977880000082
Vmid为三电平空间矢量相电压的中间值。
DPWM矢量控制调制具体通过如下过程进行:
现有DPWM的合成思想大多从SVPWM角度出发,舍弃冗余小矢量其中的一个开关状态,将7段式开关序列降为5段式,从而降低开关切换次数,达到降低损耗的目的。然而,从载波PWM法的角度理解,DP的本质是通过叠加一定的零序分量,使修正后的调制波箝位于三电平载波边界值(1、0、-1)。
令三相原始调制波vx的表达式为:
Figure BDA0002488977880000083
其中,X代表相序,X等于a或b或c。
定义vhx和vxl分别为三相原始调制波vx到相应载波上下边界的距离,表达式分别为:
Figure BDA0002488977880000084
Figure BDA0002488977880000085
图3为一个载波周期内的三电平载波边界示意图。由图可见,当v0取vhx或-vxl时,x相调制波即被箝位于相应的载波边界,其中vhx和vxl分别为三相原始调制波vx到相应载波上下边界的距离。此时,该相桥臂输出电平保持不变,即实现了DP的PWM发生。
当采用NTV矢量合成原则时,CPWM的开关序列为7段式。DPWMA的合成原则为舍弃冗余小矢量对中共模分量较大的小矢量,应舍弃小矢量0-1-1,即得到 DPWMA矢量序列。虽然该合成方式并未改变矢量的发生顺序,仅消除其中一个冗余小矢量,说明三相原始调制波不能改变其符号,即零序分量应选择vhx和vxl的最小值。
采样DPWM矢量控制方法舍弃小矢量0-1-1,即得到DPWMA矢量序列,DPWMA 的零序分量表达式为:
|v0|DPWMA=min[min(vhk),min(vkl)],k=a,b,c......式七;
其中,当v0取vhx时,其符号为正,当v0取vxl时,其符号为负;本实施例中vhx中最小值为vha(1-va),vxl中最小值为vcl(1+vc),二者之中vha较小,则其零序分量v0=1-va
对原正弦调制波进行DPWM矢量控制调制,通过式八实现:
Figure BDA0002488977880000091
其中,Va、Vb、Vc为原正弦调制波,
Figure BDA0002488977880000092
为调制波。
本发明采用实时监测母线电压大小作为混合空间矢量切换的条件,能够克服CPWM调制方式的开关损耗较大导致的逆变器转换效率偏低的问题,同时能够克服DPWM调制方式的开关管开通关断次数减少而引入谐波问题,以及解决在中高压场合母线电压偏高时导致的中点电位波动和偏移的中点电位不平衡问题,本发明的调制方法能够提高光伏逆变器的效率,减少谐波问题。
实施例3。
一种提高光伏逆变器效率和谐波性能的混合空间矢量调制方法,如图4、图 5所示。
如图4所示,实时采集三相电网线电压经过锁相算法得出电网的相位θ,采集的交流电流经过abc-dq变换,可以得出电流的d、q轴反馈,采集直流母线电压和电流,经过PI运算后得出d轴给定,q轴给定取为0,即电压外环的输出作为电流内环的给定,电流内环经过PI运算后得出的控制量经过dq-abc 反变换,得到三相原始调制波。三相原始调制波叠加VSVPWM分量以及VDPWM分量得到连续CPWM的SVPWM调制算法和断续的DPWM调制算法。
同时,实时采集直流母线电压大小,当实时监测的母线电压大于700V时,此时系统开关频率f=2400Hz,原始三相调制波Va、Vb、Vc叠加VSVPWM分量输出作为SVPWM矢量控制方法。当实时监测的母线电压小于等于700V时,此时系统开关频率f=3000Hz,原始三相调制波Va、Vb、Vc叠加VDPWM分量输出作为 DPWM矢量控制方法。最终输出的PWM驱动开关器件的开通和关断,如图5 所示。
本发明采用实时监测母线电压大小作为混合空间矢量切换的条件,能够克服CPWM调制方式的开关损耗较大导致的逆变器转换效率偏低的问题,同时能够克服DPWM调制方式的开关管开通关断次数减少而引入谐波问题,以及解决在中高压场合母线电压偏高时导致的中点电位波动和偏移的中点电位不平衡问题,本发明的调制方法能够提高光伏逆变器的效率,减少谐波问题。
最后应当说明的是,以上实施例仅用以说明本发明的技术方案而非对本发明保护范围的限制,尽管参照较佳实施例对本发明作了详细说明,本领域的普通技术人员应当理解,可以对本发明的技术方案进行修改或者等同替换,而不脱离本发明技术方案的实质和范围。

Claims (8)

1.一种提高光伏逆变器效率和谐波性能的混合空间矢量调制方法,其特征在于,实时监测母线电压,当母线电压大于临界电压时,通过SVPWM矢量控制方法进行调制;当母线电压小于临界电压时,通过DPWM矢量控制方法进行调制。
2.根据权利要求1所述的提高光伏逆变器效率和谐波性能的混合空间矢量调制方法,其特征在于,
SVPWM矢量控制方法是:原始三相调制波Va、Vb、Vc叠加VSVPWM分量输出;
DPWM矢量控制方法是:原始三相调制波Va、Vb、Vc叠加|v0|DPWMA分量输出。
3.根据权利要求2所述的提高光伏逆变器效率和谐波性能的混合空间矢量调制方法,其特征在于,
SVPWM矢量控制调制通过如下过程进行:
对原正弦调制波进行等效SVPWM调制,通过式一实现:
Figure FDA0002488977870000011
其中,Va、Vb、Vc为原正弦调制波,
Figure FDA0002488977870000012
为叠加零序分量之后得到的调制波,Vsvpwm为:
Figure FDA0002488977870000013
其中,Vmin、Vmax分别为三电平空间矢量相电压的最小值和最大值;
经过SVPWM矢量调制后的调制波为马鞍波,依大小分为
Figure FDA0002488977870000014
存在式三的关系:
Figure FDA0002488977870000021
Vmid为三电平空间矢量相电压的中间值。
4.根据权利要求2所述的提高光伏逆变器效率和谐波性能的混合空间矢量调制方法,其特征在于,
DPWM矢量控制调制具体通过如下过程进行:
令三相原始调制波vx的表达式为:
Figure FDA0002488977870000022
其中,X代表相序,X等于a或b或c;
定义vhx和vxl分别为三相原始调制波vx到相应载波上下边界的距离,表达式分别为:
Figure FDA0002488977870000023
Figure FDA0002488977870000024
采样DPWM矢量控制方法舍弃小矢量0-1-1,即得到DPWMA矢量序列,DPWMA的零序分量表达式为:
|v0|DPWMA=min[min(vhk),min(vkl)],k=a,b,c……式七;
其中,当v0取vhx时,其符号为正,当v0取vxl时,其符号为负;
对原正弦调制波进行DPWM矢量控制调制,通过式八实现:
Figure FDA0002488977870000031
其中,Va、Vb、Vc为原正弦调制波,
Figure FDA0002488977870000032
为调制波。
5.根据权利要求1至4任意一项所述的提高光伏逆变器效率和谐波性能的混合空间矢量调制方法,其特征在于,系统电压为1000V,临界电压为700V。
6.根据权利要求5所述的提高光伏逆变器效率和谐波性能的混合空间矢量调制方法,其特征在于,当实时监测的母线电压大于700V时,此时系统开关频率f=2400Hz;当实时监测的母线电压小于等于700V时,此时系统开关频率f=3000Hz。
7.根据权利要求1至4任意一项所述的提高光伏逆变器效率和谐波性能的混合空间矢量调制方法,其特征在于,以最终输出的PWM驱动开关器件的开通和关断。
8.根据权利要求1至4任意一项所述的提高光伏逆变器效率和谐波性能的混合空间矢量调制方法,其特征在于,实时采集三相电网线电压经过锁相算法得出电网的相位θ,采集的交流电流经过abc-dq变换,可以得出电流的d、q轴反馈,采集直流母线电压和电流,经过PI运算后得出d轴给定,q轴给定取为0,即电压外环的输出作为电流内环的给定,电流内环经过PI运算后得出的控制量经过dq-abc反变换,得到三相原始调制波。
CN202010399812.3A 2020-05-13 2020-05-13 提高光伏逆变器效率和谐波性能的混合空间矢量调制方法 Active CN111711223B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010399812.3A CN111711223B (zh) 2020-05-13 2020-05-13 提高光伏逆变器效率和谐波性能的混合空间矢量调制方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010399812.3A CN111711223B (zh) 2020-05-13 2020-05-13 提高光伏逆变器效率和谐波性能的混合空间矢量调制方法

Publications (2)

Publication Number Publication Date
CN111711223A true CN111711223A (zh) 2020-09-25
CN111711223B CN111711223B (zh) 2023-08-04

Family

ID=72537083

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010399812.3A Active CN111711223B (zh) 2020-05-13 2020-05-13 提高光伏逆变器效率和谐波性能的混合空间矢量调制方法

Country Status (1)

Country Link
CN (1) CN111711223B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114583989A (zh) * 2021-03-22 2022-06-03 正泰集团研发中心(上海)有限公司 三电平逆变器调制方式切换方法、装置、设备和存储介质

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070268051A1 (en) * 2006-05-17 2007-11-22 Rockwell Automation Tecnhologies, Inc. Modulation methods and apparatus for reducing common mode noise
CN101572535A (zh) * 2008-04-01 2009-11-04 硅谷实验室公司 用于改变pwm功率谱的系统和方法
CN102355137A (zh) * 2011-10-01 2012-02-15 徐州中矿大传动与自动化有限公司 一种等效空间矢量载波调制多电平变流器控制方法
KR20140033988A (ko) * 2012-09-11 2014-03-19 삼성전자주식회사 전동기를 구동하는 인버터의 출력전압을 제어하는 방법 및 장치.
CN106100402A (zh) * 2016-07-07 2016-11-09 西安理工大学 一种t型三电平逆变器及其中点平衡控制方法
CN108123618A (zh) * 2016-11-30 2018-06-05 华为技术有限公司 一种脉冲宽度调制方法、脉冲宽度调制系统及控制器
CN109660140A (zh) * 2018-10-30 2019-04-19 北方工业大学 一种三电平载波调制方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070268051A1 (en) * 2006-05-17 2007-11-22 Rockwell Automation Tecnhologies, Inc. Modulation methods and apparatus for reducing common mode noise
CN101572535A (zh) * 2008-04-01 2009-11-04 硅谷实验室公司 用于改变pwm功率谱的系统和方法
CN102355137A (zh) * 2011-10-01 2012-02-15 徐州中矿大传动与自动化有限公司 一种等效空间矢量载波调制多电平变流器控制方法
KR20140033988A (ko) * 2012-09-11 2014-03-19 삼성전자주식회사 전동기를 구동하는 인버터의 출력전압을 제어하는 방법 및 장치.
CN106100402A (zh) * 2016-07-07 2016-11-09 西安理工大学 一种t型三电平逆变器及其中点平衡控制方法
CN108123618A (zh) * 2016-11-30 2018-06-05 华为技术有限公司 一种脉冲宽度调制方法、脉冲宽度调制系统及控制器
CN109660140A (zh) * 2018-10-30 2019-04-19 北方工业大学 一种三电平载波调制方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
赵香桂: "基于分段调制的光伏逆变器加权效率提升研究" *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114583989A (zh) * 2021-03-22 2022-06-03 正泰集团研发中心(上海)有限公司 三电平逆变器调制方式切换方法、装置、设备和存储介质
CN114583989B (zh) * 2021-03-22 2023-09-22 上海正泰电源系统有限公司 三电平逆变器调制方式切换方法、装置、设备和存储介质

Also Published As

Publication number Publication date
CN111711223B (zh) 2023-08-04

Similar Documents

Publication Publication Date Title
CN102856916B (zh) 一种单相光伏逆变器无功控制方法及电路
CN106100430B (zh) 三相五电平逆变器低共模电压调制的载波实现方法
CN102983771B (zh) 一种用于模块化多电平换流器的脉宽调制方法
CN108599609B (zh) 一种基于三模块级联h桥的改进载波移相调制方法
WO2020082762A1 (zh) 三电平整流器共模电压抑制pwm方法、调制器及系统
CN110247568B (zh) 一种三相二极管钳位型三电平双输出逆变器拓扑结构
CN109149921B (zh) 一种基于不连续脉宽调制的死区补偿方法
Diao et al. A multimodulation times SVPWM for dead-time effect elimination in three-level neutral point clamped converters
CN104753375B (zh) 一种三电平逆变器dpwm控制方法
CN107302317B (zh) 三相五电平逆变器漏电流抑制的载波实现方法
CN109921672B (zh) 基于双载波和合成调制波的三相逆变器最小开关损耗方法
Zhang et al. Optimized carrier-based DPWM strategy adopting self-adjusted redundant clamping modes for Vienna rectifiers with unbalanced DC links
CN111711223B (zh) 提高光伏逆变器效率和谐波性能的混合空间矢量调制方法
Pei et al. A Modified Carrier-Based DPWM With Reduced Switching Loss and Current Distortion for Vienna Rectifier
CN106208131B (zh) 用于新能源接入和主动配电网的多电平变流器拓扑结构
Jing et al. A flexible hybrid selective harmonic elimination transition algorithm to provide variable frequency of output voltage in 3L-NPC inverter
Sharma et al. Analysis of Sinusoidal PWM and Space Vector PWM based diode clamped multilevel inverter
CN111245271B (zh) 一种h桥五电平有源中点钳位逆变器及死区效应抑制方法
CN108023493A (zh) 碳化硅逆变器共模电压幅值减小的方法和装置
CN104967351B (zh) 具有高直流电压利用率的三相正弦波逆变器控制方法
CN110829494B (zh) 基于三电平并网变流器svpwm调制自动切换控制方法及系统
CN112701952A (zh) 三相两电平逆变器电流纹波最小有效值pwm方法及系统
Kumar et al. SiC Based 3-Phase Vienna Rectifier Using Hybrid SVPWM Strategy for EV Charging Station
CN111865125B (zh) 牵引逆变器控制系统及pwm调制方法
Zhang et al. The Modulation and Control Strategy of DC-link Current Minimization for Single-Phase Current Source Inverter

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
CB02 Change of applicant information
CB02 Change of applicant information

Address after: 461000 No. 17, Shangde Road, Xuchang City, Henan Province

Applicant after: XUCHANG KETOP TESTING RESEARCH INSTITUTE CO.,LTD.

Address before: 461000 Intersection of Weiwu Avenue and Shangde Road, Xuchang City, Henan Province

Applicant before: XUCHANG KETOP TESTING RESEARCH INSTITUTE CO.,LTD.

GR01 Patent grant
GR01 Patent grant