CN111694939B - 智能调用机器人的方法、装置、设备及存储介质 - Google Patents
智能调用机器人的方法、装置、设备及存储介质 Download PDFInfo
- Publication number
- CN111694939B CN111694939B CN202010351311.8A CN202010351311A CN111694939B CN 111694939 B CN111694939 B CN 111694939B CN 202010351311 A CN202010351311 A CN 202010351311A CN 111694939 B CN111694939 B CN 111694939B
- Authority
- CN
- China
- Prior art keywords
- robot
- intention
- information
- target
- preset
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000000034 method Methods 0.000 title claims abstract description 47
- 230000003993 interaction Effects 0.000 claims abstract description 76
- 238000012545 processing Methods 0.000 claims abstract description 49
- 239000013598 vector Substances 0.000 claims description 24
- 230000035945 sensitivity Effects 0.000 claims description 16
- 230000011218 segmentation Effects 0.000 claims description 15
- 238000003058 natural language processing Methods 0.000 claims description 12
- 238000005457 optimization Methods 0.000 claims description 10
- 238000006243 chemical reaction Methods 0.000 claims description 8
- 238000007621 cluster analysis Methods 0.000 claims description 7
- 238000012163 sequencing technique Methods 0.000 claims description 5
- 238000004590 computer program Methods 0.000 claims 1
- 238000013473 artificial intelligence Methods 0.000 abstract description 3
- 230000009471 action Effects 0.000 description 13
- 238000000605 extraction Methods 0.000 description 7
- 230000006870 function Effects 0.000 description 6
- 238000004891 communication Methods 0.000 description 5
- 238000010586 diagram Methods 0.000 description 5
- 239000000284 extract Substances 0.000 description 4
- 230000002452 interceptive effect Effects 0.000 description 4
- 230000008569 process Effects 0.000 description 4
- 230000007246 mechanism Effects 0.000 description 3
- 230000005540 biological transmission Effects 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 238000009499 grossing Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 238000012544 monitoring process Methods 0.000 description 2
- 230000001960 triggered effect Effects 0.000 description 2
- 238000010835 comparative analysis Methods 0.000 description 1
- 238000013500 data storage Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000003064 k means clustering Methods 0.000 description 1
- 238000002372 labelling Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 238000004806 packaging method and process Methods 0.000 description 1
- 230000002085 persistent effect Effects 0.000 description 1
- 238000013179 statistical model Methods 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 230000001360 synchronised effect Effects 0.000 description 1
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F16/00—Information retrieval; Database structures therefor; File system structures therefor
- G06F16/30—Information retrieval; Database structures therefor; File system structures therefor of unstructured textual data
- G06F16/33—Querying
- G06F16/332—Query formulation
- G06F16/3329—Natural language query formulation or dialogue systems
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F18/00—Pattern recognition
- G06F18/20—Analysing
- G06F18/22—Matching criteria, e.g. proximity measures
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F18/00—Pattern recognition
- G06F18/20—Analysing
- G06F18/23—Clustering techniques
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F18/00—Pattern recognition
- G06F18/20—Analysing
- G06F18/24—Classification techniques
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06Q—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
- G06Q30/00—Commerce
- G06Q30/02—Marketing; Price estimation or determination; Fundraising
- G06Q30/0281—Customer communication at a business location, e.g. providing product or service information, consulting
-
- G—PHYSICS
- G10—MUSICAL INSTRUMENTS; ACOUSTICS
- G10L—SPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
- G10L15/00—Speech recognition
- G10L15/22—Procedures used during a speech recognition process, e.g. man-machine dialogue
Landscapes
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Physics & Mathematics (AREA)
- Data Mining & Analysis (AREA)
- General Physics & Mathematics (AREA)
- Artificial Intelligence (AREA)
- General Engineering & Computer Science (AREA)
- Bioinformatics & Computational Biology (AREA)
- Life Sciences & Earth Sciences (AREA)
- Evolutionary Biology (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Evolutionary Computation (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Business, Economics & Management (AREA)
- Finance (AREA)
- Computational Linguistics (AREA)
- Mathematical Physics (AREA)
- Human Computer Interaction (AREA)
- Accounting & Taxation (AREA)
- Development Economics (AREA)
- Strategic Management (AREA)
- Databases & Information Systems (AREA)
- Game Theory and Decision Science (AREA)
- Entrepreneurship & Innovation (AREA)
- Economics (AREA)
- Marketing (AREA)
- General Business, Economics & Management (AREA)
- Health & Medical Sciences (AREA)
- Audiology, Speech & Language Pathology (AREA)
- Acoustics & Sound (AREA)
- Multimedia (AREA)
- Manipulator (AREA)
Abstract
本发明涉及人工智能领域,公开了一种智能调用机器人的方法、装置、设备及存储介质,该方法包括:通过机器人系统对待处理的语音信息进行意图识别和槽值填充处理得到意图信息;通过意图条件表对意图信息进行分析得到目标意图信息,获取目标意图信息的意图类型;遍历预置机器人注册中心中的机器人结构树得到机器人以及机器人的服务地址,根据服务地址调用机器人;对交互信息进行缓存得到机器人交互信息,该交互信息也可存储在区块链网络上;获取目标语音信息的目标意图类型,根据目标意图类型和预置的跳转器触发意图跳转指令;根据意图跳转指令调用目标意图类型对应的目标机器人,并获取目标意图类型对应的机器人交互信息。
Description
技术领域
本发明涉及人工智能中的自然语言处理领域,尤其涉及一种智能调用机器人的方法、装置、设备及存储介质。
背景技术
随着人工智能的技术发展,对话机器人也随之发展。智能客服机器人作为其中一种用于与客户进行咨询回复或者其他沟通的对话机器人,被广泛关注和研发应用。
目前的智能客服机器人,由于业务场景的复杂性,往往存在多种不同业务类型的智能机器人,比如问答型机器人、任务型机器人、闲聊机器人和推荐机器人等,智能客服机器人通过自主设定或通过用户选择来调用对应的机器人,对输入的信息进行场景问答处理。但是由于不同业务类型的智能机器人之间具有较强的独立性,各智能机器人之间的联通性差,对于输入的信息无法在同一场景下进行多种业务类型的咨询回复或者智能推荐的操作,因而,导致智能客服机器人调用的准确性低。
发明内容
本发明的主要目的在于解决项智能客服机器人调用的准确性低的问题。
本发明第一方面提供了一种智能调用机器人的方法,包括:
通过预置的机器人系统获取待处理的语音信息,对所述待处理的语音信息进行意图识别和槽值填充处理,得到意图信息;
通过预置的意图条件表对所述意图信息进行分析得到目标意图信息,获取所述目标意图信息的意图类型;
遍历预置机器人注册中心中的机器人结构树,得到与所述意图类型对应的机器人以及所述机器人的服务地址,根据所述服务地址调用所述机器人;
获取用户和所述机器人之间的交互信息,通过预置的日志型键值数据库对所述交互信息进行缓存,得到机器人交互信息;
获取目标语音信息,调用预置的自然语言处理模型获取所述目标语音信息的目标意图类型,根据所述目标意图类型和预置的跳转器触发意图跳转指令,所述目标语音信息用于指示在所述待处理的语音信息之后所输入的语音信息;
根据所述意图跳转指令从所述预置机器人注册中心中,调用所述目标意图类型对应的目标机器人,并从所述日志型键值数据库中,获取所述目标意图类型对应的机器人交互信息。
可选的,在本发明第一方面的第一种实现方式中,所述通过预置的意图条件表对所述意图信息进行分析得到目标意图信息,获取所述目标意图信息的意图类型,包括:
根据所述意图信息遍历预置的意图条件表,判断所述意图信息是否满足所述意图条件表中的意图条件;
若所述意图信息不满足所述意图条件,则获取历史操作日志信息,所述历史操作日志信息用于指示根据历史语音信息获取对应的机器人所生成的操作日志信息;
对所述历史操作日志信息进行聚类分析,得到目标意图信息以及推荐机器人类型,并将所述推荐机器人类型确定为所述目标意图信息的意图类型;
若所述意图信息满足所述意图条件,则将满足所述意图条件的意图信息确定为目标意图信息,以及获取所述目标意图信息对应的历史语音信息;
提取所述历史语音信息的标记意图类型,将符合预设条件的标记意图类型确定为所述目标意图信息的意图类型。
可选的,在本发明第一方面的第二种实现方式中,所述提取所述历史语音信息的标记意图类型,将符合预设条件的标记意图类型确定为所述目标意图信息的意图类型,包括:
获取所述历史语音信息的标签信息,提取所述标签信息上所标注的标记意图类型;
计算所述标记意图类型在预置领域词典中的词频-正态分布文档频率值,按照所述词频-正态分布文档频率值从大到小的顺序对所述标记意图类型进行排序,得到序列数据,所述预置领域词典用于指示由机器人领域中各业务类型对应的术语、字词和文档组合而成的词典;
将所述序列数据中排序第一的标记意图类型确定为所述目标意图信息的意图类型。
可选的,在本发明第一方面的第三种实现方式中,所述通过预置的机器人系统获取待处理的语音信息,对所述待处理的语音信息进行意图识别和槽值填充处理,得到意图信息之前,所述智能调用机器人的方法包括:
通过预置的机器人系统获取预置机器人的服务信息,所述预置机器人包括所述推荐机器人类型对应的机器人和预设业务类型对应的机器人,所述服务信息包括机器人类型、服务地址和端口信息;
将所述服务信息存储至预置机器人注册中心中的注册表;
将所述预置机器人接入所述预置机器人注册中心;
创建接入所述预置机器人注册中心的预置机器人与所述注册表的对应关系;
根据所述对应关系、所述接入所述预置机器人注册中心的预置机器人和预置意图类型创建机器人结构树,将所述机器人结构树存储至所述预置机器人注册中心。
可选的,在本发明第一方面的第四种实现方式中,所述根据所述意图跳转指令从所述预置机器人注册中心中,调用所述目标意图类型对应的目标机器人,并从所述日志型键值数据库中,获取所述目标意图类型对应的机器人交互信息,包括:
通过所述意图跳转指令和所述目标意图类型对所述机器人结构树进行遍历,得到与所述目标意图类型对应的目标机器人;
获取与所述目标意图类型对应的关联机器人,以及获取所述目标机器人和所述关联机器人的目标服务地址;
根据所述目标服务地址调用与所述目标意图类型对应的目标机器人,并设置所述目标服务地址对应所述日志型键值数据库的目标键值;
根据所述目标键值对所述日志型键值数据库进行检索,得到所述目标意图类型对应的机器人交互信息。
可选的,在本发明第一方面的第五种实现方式中,所述根据所述意图跳转指令从所述预置机器人注册中心中,调用所述目标意图类型对应的目标机器人,并从所述日志型键值数据库中,获取所述目标意图类型对应的机器人交互信息之后,所述智能调用机器人的方法包括:
获取历史机器人交互信息中的不良信息,通过预置的基于特征参数规整的优化算法和所述不良信息对所述机器人系统进行优化,所述不良信息包括历史记录的机器人交互信息中的操作错误信息和用户不满意信息。
可选的,在本发明第一方面的第六种实现方式中,所述对所述待处理的语音信息进行意图识别和槽值填充处理,得到意图信息,包括:
对所述待处理的语音信息进行语音识别、文本语义识别、分词处理和词向量转换,得到文本语义分词向量;
计算所述文本语义分词向量和预置敏感词向量之间的相似度,对所述相似度进行加权求和,得到所述待处理的语音信息的敏感度值;
判断所述敏感度值是否小于或等于预设阈值;
若所述敏感度值小于或等于预设阈值,则对所述待处理的语音信息进行意图识别和槽值填充处理,得到意图信息。
本发明第二方面提供了一种智能调用机器人的装置,包括:
识别模块,用于通过预置的机器人系统获取待处理的语音信息,对所述待处理的语音信息进行意图识别和槽值填充处理,得到意图信息;
分析模块,用于通过预置的意图条件表对所述意图信息进行分析得到目标意图信息,获取所述目标意图信息的意图类型;
遍历模块,用于遍历预置机器人注册中心中的机器人结构树,得到与所述意图类型对应的机器人以及所述机器人的服务地址,根据所述服务地址调用所述机器人;
缓存模块,用于获取用户和所述机器人之间的交互信息,通过预置的日志型键值数据库对所述交互信息进行缓存,得到机器人交互信息;
第一调用模块,用于获取目标语音信息,调用预置的自然语言处理模型获取所述目标语音信息的目标意图类型,根据所述目标意图类型和预置的跳转器触发意图跳转指令,所述目标语音信息用于指示在所述待处理的语音信息之后所输入的语音信息;
第二调用模块,用于根据所述意图跳转指令从所述预置机器人注册中心中,调用所述目标意图类型对应的目标机器人,并从所述日志型键值数据库中,获取所述目标意图类型对应的机器人交互信息。
可选的,在本发明第二方面的第一种实现方式中,所述分析模块包括:
判断单元,用于根据所述意图信息遍历预置的意图条件表,判断所述意图信息是否满足所述意图条件表中的意图条件;
第一获取单元,用于若所述意图信息不满足所述意图条件,则获取历史操作日志信息,所述历史操作日志信息用于指示根据历史语音信息获取对应的机器人所生成的操作日志信息;
聚类分析单元,用于对所述历史操作日志信息进行聚类分析,得到目标意图信息以及推荐机器人类型,并将所述推荐机器人类型确定为所述目标意图信息的意图类型;
第二获取单元,用于若所述意图信息满足所述意图条件,则将满足所述意图条件的意图信息确定为目标意图信息,以及获取所述目标意图信息对应的历史语音信息;
提取单元,用于提取所述历史语音信息的标记意图类型,将符合预设条件的标记意图类型确定为所述目标意图信息的意图类型。
可选的,在本发明第二方面的第二种实现方式中,所述提取单元具体用于:
获取所述历史语音信息的标签信息,提取所述标签信息上所标注的标记意图类型;
计算所述标记意图类型在预置领域词典中的词频-正态分布文档频率值,按照所述词频-正态分布文档频率值从大到小的顺序对所述标记意图类型进行排序,得到序列数据,所述预置领域词典用于指示由机器人领域中各业务类型对应的术语、字词和文档组合而成的词典;
将所述序列数据中排序第一的标记意图类型确定为所述目标意图信息的意图类型。
可选的,在本发明第二方面的第三种实现方式中,所述智能调用机器人的装置包括:
服务信息获取模块,用于通过预置的机器人系统获取预置机器人的服务信息,所述预置机器人包括所述推荐机器人类型对应的机器人和预设业务类型对应的机器人,所述服务信息包括机器人类型、服务地址和端口信息;
存储模块,用于将所述服务信息存储至预置机器人注册中心中的注册表;
接入模块,用于将所述预置机器人接入所述预置机器人注册中心;
第一创建模块,用于创建接入所述预置机器人注册中心的预置机器人与所述注册表的对应关系;
第二创建模块,用于根据所述对应关系、所述接入所述预置机器人注册中心的预置机器人和预置意图类型创建机器人结构树,将所述机器人结构树存储至所述预置机器人注册中心。
可选的,在本发明第二方面的第四种实现方式中,所述第二调用模块具体用于:
通过所述意图跳转指令和所述目标意图类型对所述机器人结构树进行遍历,得到与所述目标意图类型对应的目标机器人;
获取与所述目标意图类型对应的关联机器人,以及获取所述目标机器人和所述关联机器人的目标服务地址;
根据所述目标服务地址调用与所述目标意图类型对应的目标机器人,并设置所述目标服务地址对应所述日志型键值数据库的目标键值;
根据所述目标键值对所述日志型键值数据库进行检索,得到所述目标意图类型对应的机器人交互信息。
可选的,在本发明第二方面的第五种实现方式中,所述智能调用机器人的装置包括:
获取模块,用于获取历史机器人交互信息中的不良信息,通过预置的基于特征参数规整的优化算法和所述不良信息对所述机器人系统进行优化,所述不良信息包括历史记录的机器人交互信息中的操作错误信息和用户不满意信息。
可选的,在本发明第二方面的第六种实现方式中,所述识别模块具体用于:
对所述待处理的语音信息进行语音识别、文本语义识别、分词处理和词向量转换,得到文本语义分词向量;
计算所述文本语义分词向量和预置敏感词向量之间的相似度,对所述相似度进行加权求和,得到所述待处理的语音信息的敏感度值;
判断所述敏感度值是否小于或等于预设阈值;
若所述敏感度值小于或等于预设阈值,则对所述待处理的语音信息进行意图识别和槽值填充处理,得到意图信息。
本发明第三方面提供了一种智能调用机器人的设备,包括:存储器和至少一个处理器,所述存储器中存储有指令,所述存储器和所述至少一个处理器通过线路互连;所述至少一个处理器调用所述存储器中的所述指令,以使得所述智能调用机器人的设备执行上述的智能调用机器人的方法。
本发明的第四方面提供了一种计算机可读存储介质,所述计算机可读存储介质中存储有指令,当其在计算机上运行时,使得计算机执行上述的智能调用机器人的方法。
本发明提供的技术方案中,通过预置的机器人系统对待处理的语音信息进行意图识别和槽值填充处理得到意图信息;通过预置的意图条件表对意图信息进行分析得到目标意图信息,获取目标意图信息的意图类型;遍历预置机器人注册中心中的机器人结构树,得到机器人以及机器人的服务地址,根据服务地址调用机器人;对交互信息进行缓存得到机器人交互信息;获取目标语音信息的目标意图类型,根据目标意图类型和预置的跳转器触发意图跳转指令;根据意图跳转指令调用目标意图类型对应的目标机器人,获取目标意图类型对应的机器人交互信息。本发明中,通过意图识别和意图跳转选择处理,系统地将散落在各个应用场景的机器人联通和智能调用,提高了智能客服机器人调用的准确性。
附图说明
图1为本发明实施例中智能调用机器人的方法的一个实施例示意图;
图2为本发明实施例中智能调用机器人的方法的另一个实施例示意图;
图3为本发明实施例中机器人结构树的一个实施例示意图;
图4为本发明实施例中智能调用机器人的装置的一个实施例示意图;
图5为本发明实施例中智能调用机器人的装置的另一个实施例示意图;
图6为本发明实施例中智能调用机器人的设备的一个实施例示意图。
具体实施方式
本发明实施例提供了一种智能调用机器人的方法、装置、设备及存储介质,通过意图识别和意图跳转选择处理,系统地将散落在各个应用场景的机器人联通和智能调用,提高了智能客服机器人调用的准确性。
本发明的说明书和权利要求书及上述附图中的术语“第一”、“第二”、“第三”、“第四”等(如果存在)是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的实施例能够以除了在这里图示或描述的内容以外的顺序实施。此外,术语“包括”或“具有”及其任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。
为便于理解,下面对本发明实施例的具体流程进行描述,请参阅图1,本发明实施例中智能调用机器人的方法的一个实施例包括:
101、通过预置的机器人系统获取待处理的语音信息,对待处理的语音信息进行意图识别和槽值填充处理,得到意图信息;
其中,预置的机器人系统由根据语音信息进行意图识别和调用意图识别所得意图对应的机器人进行训练所得。待处理的语音信息可为语音对应的文字信息,也可为语音对应的音频数据,例如:服务器获取用户在服务平台或移动终端输入的语音数据,通过自动语音识别(Automatic Speech Recognition,ASR)模型通过基于统计模型的隐马尔可夫模型法(Hidden Markov Model,HMM)算法对语音数据进行特征提取和文字转换,得到待处理的语音信息。通过对意图识别和槽值填充两个子任务联合创建的预置的自然语言处理模型,对待处理的语音信息和已存储的意图便签分别进行编解码,得到第一向量和第二向量,计算第一向量和第二向量的相似度以匹配对应的意图便签得到意图数据,从而实现意图识别,对意图数据进行序列标注的槽值填充处理,得到意图信息。例如:对待处理的语音信息“查询银行卡账户信息”进行意图识别得到意图数据“查询账户个人账户信息银行任务”,对意图数据“查询账户个人账户信息银行任务”进行序列标注的槽值填充处理“查询-Action,账户-Target,个人账户信息-Param1,银行-Param2,任务-Param3”,得到意图信息,如表1所示。
表1:意图信息
查询 | 账户 | 个人账户信息 | 银行 | 任务 |
Action | Target | Param1 | Param2 | Param3 |
其中,action表示当前意图动作,Target表示意图动作的目标对象,ParamX表示对意图动作和意图动作的目标对象的修饰,param1表示目标对象的细分对象,Param2表示“银行”为业务线,param3表示意图类型,意图类型包括任务型、问答型、闲聊型和推荐型。意图类型可包括主类型和子类型,也可包括主类型、第一子类型和第二子类型,第二子类型为第一子类型的子类型,业务线为意图类型的子类型,如:银行类型、保险类型和证券类型。
可以理解的是,本发明的执行主体可以为智能调用机器人的装置,还可以是终端或者服务器,具体此处不做限定。本发明实施例以服务器为执行主体为例进行说明。
102、通过预置的意图条件表对意图信息进行分析得到目标意图信息,获取目标意图信息的意图类型;
服务器通过根据意图信息的序列标注信息(即槽值)对预置的意图条件表进行遍历,从预置的意图条件表中获取序列标注信息对应的信息类型项,获取信息类型项对应的判断结果,从而得到目标意图信息,以及提取目标意图信息的序列标注信息对应的意图类型或者目标意图信息在预置的意图条件表中对应的意图类型,或者对目标意图信息进行意图分类得到意图信息,或者通过召回排序算法对目标意图信息进行分析得到意图类型,为了提高检索效率,创建意图信息和预置的意图条件表的哈希表,通过键值对哈希表进行检索。其中,预置的意图条件表包括目标意图信息的信息类型项(意图动作、意图动作的目标对象、意图的类型和业务线)以及信息类型项中的一种、两种、三种或四种分别对应的意图类型,例如:甲意图信息不具备意图条件表中信息类型项的意图动作、意图动作的目标对象、意图的类型和业务线的任意一项,则甲意图信息不是目标意图信息,乙意图信息中具备意图条件表中信息类型项的意图动作的目标对象、意图的类型和业务线,则判断该意图信息为目标意图信息,且对应的意图类型为意图类型C2,如表2所示,表2为部分的目标意图信息的信息类型项以及意图类型。
表2:意图条件表
103、遍历预置机器人注册中心中的机器人结构树,得到与意图类型对应的机器人以及机器人的服务地址,根据服务地址调用机器人;
服务器在遍历预置机器人注册中心中的机器人结构树之前,按照意图类型的分类(即意图类型的主类型和子类型)将各种意图类型对应的机器人进行分类和连接,构建机器人结构树,通过遍历预置机器人注册中心中的机器人结构树,在机器人结构树中检测到有意图类型对应的第一结点,分析该第一结点是否连接有子结点,若该第一结点连接有子结点,则分析是否连接意图类型中的子类型对应的子结点,若是,则选中与意图类型中的子类型相似度大于预设值的子类型子结点;若该第一结点没连接有子结点,则分析该第一结点所在层的与该第一结点连接的第二结点是否连接有子节点,若是,则获取与意图类型中的子类型相同或相似的子节点,若否,则分析该第一结点所在层的与该第一结点连接的第二结点是否连接有子节点,依次类推,得到意图类型在机器人结构树中对应的目标子结点,服务器从注册表中读取该目标子结点对应的机器人服务地址,通过该机器人服务地址调用目标子结点对应的机器人(即意图类型对应的机器人),机器人结构树如图3所示。通过树形结构、多种方式和多种规则获取和调用意图类型对应的机器人,以提高调用机器人的准确性和自主性。
104、获取用户和机器人之间的交互信息,通过预置的日志型键值数据库对交互信息进行缓存,得到机器人交互信息;
其中,交互信息用于指示机器人在用户端对待处理的语音信息进行回复所生成的对话对信息和操作信息,例如:用户输入待处理的语音信息1“请打开丙网页”,调用对应的机器人甲1检索丙网页并打开丙网页,待处理的语音信息1、在用户端页面显示的由机器人甲1回复的丙网页以及机器人甲1在检索和打开丙网页生成的操作信息为交互信息。服务器调用意图类型对应的机器人后,通过预置的日志型键值数据库Redis将该机器人在用户端对待处理的语音信息进行回复所生成的交互信息转换为哈希hash数据结构形式,并设置机器人的唯一编码(Identity document,ID)的键值,根据键值和hash数据结构形式将交互信息进行缓存,将多个机器人进行联通起来,当检测到输入的待处理的语音信息的意图发生切换时,可即时根据切换的意图将目前的机器人调用为切换的意图对应的机器人,并调用的机器人可从预置的日志型键值数据库中获取调用前和调用后的机器人的交互信息。以多种计算机语言和多种数据结构持久地、便捷而快速地将交互信息进行复制存储,实现多个机器人之间的信息共享,进而提高机器人调用的效率、准确性和对于语音信息的回复信息获取的准确性。
在一实施例中,可将交互信息保存在区块链网络上,通过区块链存储,实现数据信息在不同平台之间的共享,也可防止数据被篡改。
区块链是分布式数据存储、点对点传输、共识机制、加密算法等计算机技术的新型应用模式。区块链(Blockchain),本质上是一个去中心化的数据库,是一串使用密码学方法相关联产生的数据块,每一个数据块中包含了一批次网络交易的信息,用于验证其信息的有效性(防伪)和生成下一个区块。区块链可以包括区块链底层平台、平台产品服务层以及应用服务层。
105、获取目标语音信息,调用预置的自然语言处理模型获取目标语音信息的目标意图类型,根据目标意图类型和预置的跳转器触发意图跳转指令,目标语音信息用于指示在待处理的语音信息之后所输入的语音信息;
当服务器检测到用户在客户端输入目标语音信息或者在客户端的选择页面中点击对应的目标语音信息时,获取该目标语音信息,对目标语音信息进行文字转换,调用预置的自然语言处理模型对进行文字转换的目标语音信息进行意图识别处理和槽值填充处理,得到目标意图信息,再通过遍历预置意图条件表或者提取算法获取目标意图信息对应的目标意图类型。实时监测是否获得目标意图类型,当检测到获得目标意图类型时,启动预置的跳转器触发目标意图类型对应的意图跳转指令。通过实时监测是否获取到目标语音信息,以及通过预置的跳转器触发意图跳转指令,以便于实时根据用户的意图变化而获取到对应的机器人以及调用该机器人,从而提高智能客服机器人调用的准确性。
106、根据意图跳转指令从预置机器人注册中心中,调用目标意图类型对应的目标机器人,并从日志型键值数据库中,获取目标意图类型对应的机器人交互信息。
服务器获得需要进行切换的目标意图类型(即意图跳转指令)后,遍历预置机器人注册中心中的机器人结构树,在机器人结构树中检测到目标意图类型相同或相似的子结点,读取注册表中该子结点对应的机器人的服务地址,连接该服务地址以调用该子结点对应的机器人替换当前的机器人,以调用的该子结点对应的机器人与客户端进行连接,并对在客户端输入的咨询信息(即目标语音信息)通过键值检索方式对预置的日志型键值数据库进行检索,获取与目标语音信息对应的机器人交互信息,确定为该子结点对应的机器人与客户端进行交互输出的信息,能够根据该用户的历史记录信息有目的地多方向地输出用户所需的信息。机器人之间能快速地从同步的数据信息(包括机器人交互信息)中获取有价值的记录,能够避免机器人与客户端重复的交互。实现机器人准确而快速地调用,以及实现机器人之间的信息共享,提高智能客服机器人调用和对数据处理的准确性。
本发明实施例中,通过意图识别和意图跳转选择处理,系统地将散落在各个应用场景的机器人联通和智能调用,提高了智能客服机器人调用的准确性。
请参阅图2,本发明实施例中智能调用机器人的方法的另一个实施例包括:
201、通过预置的机器人系统获取待处理的语音信息,对待处理的语音信息进行意图识别和槽值填充处理,得到意图信息;
具体地,服务器通过预置的机器人系统获取待处理的语音信息,对待处理的语音信息进行意图识别和槽值填充处理,得到意图信息之前,还可以包括:通过预置的机器人系统获取预置机器人的服务信息,预置机器人包括推荐机器人类型对应的机器人和预设业务类型对应的机器人,服务信息包括机器人类型、服务地址和端口信息;将服务信息存储至预置机器人注册中心中的注册表;将预置机器人接入预置机器人注册中心;创建接入预置机器人注册中心的预置机器人与注册表的对应关系;根据对应关系、接入预置机器人注册中心的预置机器人和预置意图类型创建机器人结构树,将机器人结构树存储至预置机器人注册中心。
服务器获取推荐机器人类型对应的机器人和业务类型对应的机器人(即预置机器人)的服务信息后,将服务信息发送到预置机器人注册中心,通过预置机器人注册中心将服务信息以哈希散列表数据格式存储在注册表中,通过预置接口Netty从客服端(即服务平台或移动终端)发送心跳包到预置机器人注册中心,预置机器人注册中心对心跳包做出响应,按照心跳包中的心跳机制与预置机器人保持心跳(每隔30秒)连接,若预置机器人注册中心与预置机器人的心跳连接失败,预置机器人注册中心将在预设时间(90秒)内将该预置机器人的服务信息从注册表中删除。通过结合预置接口Netty的传输快、封装性能好和并发高的性能以及心跳机制,在解决网络的不可靠性导致的连接中断问题的基础上,保证机器人调用的操作效率,提高智能客服机器人的性能。
具体地,服务器对待处理的语音信息进行意图识别和槽值填充处理,得到意图信息可以包括:对待处理的语音信息进行语音识别、文本语义识别、分词处理和词向量转换,得到文本语义分词向量;计算文本语义分词向量和预置敏感词向量之间的相似度,对相似度进行加权求和,得到待处理的语音信息的敏感度值;判断敏感度值是否小于或等于预设阈值;若敏感度值小于或等于预设阈值,则对待处理的语音信息进行意图识别和槽值填充处理,得到意图信息。
其中,若敏感度值大于预设阈值,则输出预设话术信息,根据预设话术信息将当前的机器工作状态切换为人工服务状态。通过识别敏感话题以判断和进行下一步的操作,减少用户与智能客服机器人的交互操作,减少获取意图信息的不必要的操作,提高操作效率和提高智能客服机器人智能调用机器人的准确性,以及提高智能客服机器人的自主性。其中,在另一实施例中,在获取待处理的语音信息之前或对待处理的语音信息处理的过程中,当服务器发生机器人调用不成功、机器人连接断开或其他状况时,服务器会向服务平台或移动终端播报预设话术信息,并根据预设话术信息将当前的机器工作状态切换为人工服务状态。
202、通过预置的意图条件表对意图信息进行分析得到目标意图信息,获取目标意图信息的意图类型;
具体地,服务器通过预置的意图条件表对意图信息进行分析得到目标意图信息,获取目标意图信息的意图类型可以包括:根据意图信息遍历预置的意图条件表,判断意图信息是否满足意图条件表中的意图条件;若意图信息不满足意图条件,则获取历史操作日志信息,历史操作日志信息用于指示根据历史语音信息获取对应的机器人所生成的操作日志信息;对历史操作日志信息进行聚类分析,得到目标意图信息以及推荐机器人类型,并将推荐机器人类型确定为目标意图信息的意图类型;若意图信息满足意图条件,则将满足意图条件的意图信息确定为目标意图信息,以及获取目标意图信息对应的历史语音信息;提取历史语音信息的标记意图类型,将符合预设条件的标记意图类型确定为目标意图信息的意图类型。
服务器通过判断意图信息是否满足预置的意图条件表中的意图条件以判断意图信息的项中是否具备预置的意图动作项、意图动作的目标对象项、意图的类型项和业务线项中至少三种,或是否存在与意图信息的相似度大于阈值的第二意图信息,若是,则获取目标意图信息的意图类型,进而通过意图类型调用对应的机器人;若否,则结合用户的使用习惯或爱好去调用对应的机器人,即通过K-MEANS聚类算法、均值偏移聚类算法或基于高斯混合模型的期望最大化聚类算法对用户在服务平台或移动终端操作时生成的历史操作日志信息进行聚类分析,以获取用户所偏好使用的机器人类型(即推荐机器人类型)目标意图信息,并将推荐机器人类型确定为目标意图信息的意图类型,进而根据推荐机器人类型(即目标意图信息的意图类型)去调用对应的机器人。在另一实施例中,在得到推荐机器人类型之后,若在预置机器人注册中心匹配不到对应的机器人,则向服务平台或移动终端播报预设话术信息,并根据预设话术信息将当前状态切换为人工服务状态。通过分析判断意图是否明确和根据意图是否明确进行不同的调用机器人操作,以提高智能客服机器人调用机器人的效率和准确性。
具体地,服务器提取历史语音信息的标记意图类型,将符合预设条件的标记意图类型确定为目标意图信息的意图类型可以包括:获取历史语音信息的标签信息,提取标签信息上所标注的标记意图类型;计算标记意图类型在预置领域词典中的词频-正态分布文档频率值,按照词频-正态分布文档频率值从大到小的顺序对标记意图类型进行排序,得到序列数据,预置领域词典用于指示由机器人领域中各业务类型对应的术语、字词和文档组合而成的词典;将序列数据中排序第一的标记意图类型确定为目标意图信息的意图类型。
服务器在提取历史语音信息的预置意图标签信息前,通过基于文本排序TextRank的关键词提取算法对为文本信息的历史语音信息进行意图类型关键词提取,或者通过基于TextRank的关键词算法对进行声纹识别处理后的历史语音信息进行意图类型关键词提取,并将该意图类型关键词标注在历史语音信息的标签上,例如:对历史语音信息进行声纹识别处理得到为男声的识别信息,则通过基于TextRank的关键词算法对识别信息进行意图类型关键词提取得到男性,将该男性标注在历史语音信息的标签上;通过基于TextRank的关键词提取算法对为文本信息的历史语音信息进行意图类型关键词提取得到车险,则将该车险标注在历史语音信息的标签上。其中,标记意图类型的数量包括一个或一个以上,例如:历史语音信息的标签上的标记意图类型为:男性、车一族、银行。通过计算IF-NDDF值和排序,提高标记意图类型提取的准确性。
203、遍历预置机器人注册中心中的机器人结构树,得到与意图类型对应的机器人以及机器人的服务地址,根据服务地址调用机器人;
服务器在遍历预置机器人注册中心中的机器人结构树之前,按照意图类型的分类(即意图类型的主类型和子类型)将各种意图类型对应的机器人进行分类和连接,构建机器人结构树,通过遍历预置机器人注册中心中的机器人结构树,在机器人结构树中检测到有意图类型对应的第一结点,分析该第一结点是否连接有子结点,若该第一结点连接有子结点,则分析是否连接意图类型中的子类型对应的子结点,若是,则选中与意图类型中的子类型相似度大于预设值的子类型子结点;若该第一结点没连接有子结点,则分析该第一结点所在层的与该第一结点连接的第二结点是否连接有子节点,若是,则获取与意图类型中的子类型相同或相似的子节点,若否,则分析该第一结点所在层的与该第一结点连接的第二结点是否连接有子节点,依次类推,得到意图类型在机器人结构树中对应的目标子结点,服务器从注册表中读取该目标子结点对应的机器人服务地址,通过该机器人服务地址调用目标子结点对应的机器人(即意图类型对应的机器人),机器人结构树如图3所示。通过树形结构、多种方式和多种规则获取和调用意图类型对应的机器人,以提高调用机器人的准确性和自主性。
204、获取用户和机器人之间的交互信息,通过预置的日志型键值数据库对交互信息进行缓存,得到机器人交互信息;
服务器调用意图类型对应的机器人后,通过预置的日志型键值数据库Redis将该机器人在客户端对待处理的语音信息进行回复所生成的交互信息转换为哈希hash数据结构形式,并设置机器人的唯一编码(Identity document,ID)的键值,根据键值和hash数据结构形式将交互信息进行缓存,将多个机器人进行联通起来,当检测到输入的待处理的语音信息的意图发生切换时,可即时根据切换的意图将目前的机器人切换为切换的意图对应的机器人,并切换的机器人可从预置的日志型键值数据库中获取调用前和调用后的机器人的交互信息。以多种计算机语言和多种数据结构持久地、便捷而快速地将交互信息进行复制存储,实现多个机器人之间的信息共享,进而提高机器人调用的效率、准确性和对于语音信息的回复信息获取的准确性。
205、获取目标语音信息,调用预置的自然语言处理模型获取目标语音信息的目标意图类型,根据目标意图类型和预置的跳转器触发意图跳转指令,目标语音信息用于指示在待处理的语音信息之后所输入的语音信息;
当服务器检测到用户在客户端输入目标语音信息或者在客户端的选择页面中点击对应的目标语音信息时,获取该目标语音信息,对目标语音信息进行文字转换,调用预置的自然语言处理模型对进行文字转换的目标语音信息进行意图识别处理和槽值填充处理,得到目标意图信息,再通过遍历预置意图条件表或者提取算法获取目标意图信息对应的目标意图类型。实时监测是否得到目标意图类型,当检测到得到目标意图类型时,启动预置的跳转器触发目标意图类型对应的意图跳转指令。通过实时监测是否获取到目标语音信息,以及通过预置的跳转器触发意图跳转指令,以便于实时根据用户的意图变化而获取到对应的机器人以及调用该机器人,从而提高智能客服机器人调用的准确性。
206、根据意图跳转指令从预置机器人注册中心中,调用目标意图类型对应的目标机器人,并从日志型键值数据库中,获取目标意图类型对应的机器人交互信息;
具体地,服务器根据意图跳转指令从预置机器人注册中心中,调用目标意图类型对应的目标机器人,并从日志型键值数据库中,获取目标意图类型对应的机器人交互信息可以包括:通过意图跳转指令和目标意图类型对机器人结构树进行遍历,得到与目标意图类型对应的目标机器人;获取与目标意图类型对应的关联机器人,以及获取目标机器人和关联机器人的目标服务地址;根据目标服务地址调用与目标意图类型对应的目标机器人,并设置目标服务地址对应日志型键值数据库的目标键值;根据目标键值对日志型键值数据库进行检索,得到目标意图类型对应的机器人交互信息。
服务器分析与目标意图类型相似所对应的关联机器人,通过意图跳转指令和目标意图类型调用目标机器人后,根据关联机器人和目标机器人的服务地址设置目标键值,通过redis key为Bot:${botId}检索预置的日志型键值数据库得到关联机器人和目标机器人的数据结构为hash数据结构的机器人信息,该机器人信息包括但不限于机器人的端口等服务信息、机器人的运行状态信息和机器人类型等,通过redis key为Bot:${botId}:user检索得到预置的日志型键值数据库得到关联机器人和目标机器人与客户端交互的数据结构为hash数据结构的机器人交互信息。通过哈希键值的数据结构和预置的日志型键值数据库Redis实现多维检索,以提高检索的速度和准确性。
207、获取历史机器人交互信息中的不良信息,通过预置的基于特征参数规整的优化算法和不良信息对机器人系统进行优化,不良信息包括历史记录的机器人交互信息中的操作错误信息和用户不满意信息。
服务器从预置的日志型键值数据库中提取所存储的历史记录的机器人交互信息(即历史机器人记录信息),通过自然语义识别算法对历史机器人交互信息进行语义识别,得到语义信息,按照预设分析规则对语义信息进行对比分析,得到历史记录的机器人交互信息中的操作错误信息和/或用户不满意信息(即不良信息),通过预置的基于特征参数规整的优化算法的框架中的13维梅尔频率倒谱系数模块、环境选择模块、39维梅尔频率倒谱系数扩展模块、均值方差规整模块和自回归移动平均滤波器平滑模块对不良信息进行初步的信号处理、意图识别、槽值填充处理、扩展处理、规整处理和平滑处理,以实现对机器人系统的优化。通过预置的基于特征参数规整的优化算法根据不良信息对机器人系统进行优化,当用户下一次进行咨询时,由优化后的智能客服机器人对其进行服务,使得智能客服机器人更具有智能性和联通性,进而提高智能客服机器人调用的准确性。
本发明实施例中,在通过意图识别和意图跳转选择处理,系统地将散落在各个应用场景的机器人联通和智能调用,提高了智能客服机器人调用的准确性的基础上,通过预置的基于特征参数规整的优化算法根据不良信息对机器人系统进行优化,当用户下一次进行咨询时,由优化后的智能客服机器人对其进行服务,使得智能客服机器人更具有智能性和联通性,进而提高智能客服机器人调用的准确性。
上面对本发明实施例中智能调用机器人的方法进行了描述,下面对本发明实施例中智能调用机器人的装置进行描述,请参阅图4,本发明实施例中智能调用机器人的装置一个实施例包括:
识别模块401,用于通过预置的机器人系统获取待处理的语音信息,对待处理的语音信息进行意图识别和槽值填充处理,得到意图信息;
分析模块402,用于通过预置的意图条件表对意图信息进行分析得到目标意图信息,获取目标意图信息的意图类型;
遍历模块403,用于遍历预置机器人注册中心中的机器人结构树,得到与意图类型对应的机器人以及机器人的服务地址,根据服务地址调用机器人;
缓存模块404,用于获取用户和机器人之间的交互信息,通过预置的日志型键值数据库对交互信息进行缓存,得到机器人交互信息;
第一调用模块405,用于获取目标语音信息,调用预置的自然语言处理模型获取目标语音信息的目标意图类型,根据目标意图类型和预置的跳转器触发意图跳转指令,目标语音信息用于指示在待处理的语音信息之后所输入的语音信息;
第二调用模块406,用于根据意图跳转指令从预置机器人注册中心中,调用目标意图类型对应的目标机器人,并从日志型键值数据库中,获取目标意图类型对应的机器人交互信息。
上述智能调用机器人的装置中各模块的功能实现与上述智能调用机器人的方法实施例中各步骤相对应,其功能和实现过程在此处不再一一赘述。
本发明实施例中,通过意图识别和意图跳转选择处理,系统地将散落在各个应用场景的机器人联通和智能调用,提高了智能客服机器人调用的准确性。
请参阅图5,本发明实施例中智能调用机器人的装置的另一个实施例包括:
识别模块401,用于通过预置的机器人系统获取待处理的语音信息,对待处理的语音信息进行意图识别和槽值填充处理,得到意图信息;
分析模块402,用于通过预置的意图条件表对意图信息进行分析得到目标意图信息,获取目标意图信息的意图类型;
遍历模块403,用于遍历预置机器人注册中心中的机器人结构树,得到与意图类型对应的机器人以及机器人的服务地址,根据服务地址调用机器人;
缓存模块404,用于获取用户和机器人之间的交互信息,通过预置的日志型键值数据库对交互信息进行缓存,得到机器人交互信息;
第一调用模块405,用于获取目标语音信息,调用预置的自然语言处理模型获取目标语音信息的目标意图类型,根据目标意图类型和预置的跳转器触发意图跳转指令,目标语音信息用于指示在待处理的语音信息之后所输入的语音信息;
第二调用模块406,用于根据意图跳转指令从预置机器人注册中心中,调用目标意图类型对应的目标机器人,并从日志型键值数据库中,获取目标意图类型对应的机器人交互信息;
获取模块407,用于获取历史机器人交互信息中的不良信息,通过预置的基于特征参数规整的优化算法和不良信息对机器人系统进行优化,不良信息包括历史记录的机器人交互信息中的操作错误信息和用户不满意信息。
可选的,分析模块402包括:
判断单元4021,用于根据意图信息遍历预置的意图条件表,判断意图信息是否满足意图条件表中的意图条件;
第一获取单元4022,用于若意图信息不满足意图条件,则获取历史操作日志信息,历史操作日志信息用于指示根据历史语音信息获取对应的机器人所生成的操作日志信息;
聚类分析单元4023,用于对历史操作日志信息进行聚类分析,得到目标意图信息以及推荐机器人类型,并将推荐机器人类型确定为目标意图信息的意图类型;
第二获取单元4024,用于若意图信息满足意图条件,则将满足意图条件的意图信息确定为目标意图信息,以及获取目标意图信息对应的历史语音信息;
提取单元4025,用于提取历史语音信息的标记意图类型,将符合预设条件的标记意图类型确定为目标意图信息的意图类型。
可选的,提取单元4025还可以具体用于:
获取历史语音信息的标签信息,提取标签信息上所标注的标记意图类型;
计算标记意图类型在预置领域词典中的词频-正态分布文档频率值,按照词频-正态分布文档频率值从大到小的顺序对标记意图类型进行排序,得到序列数据,预置领域词典用于指示由机器人领域中各业务类型对应的术语、字词和文档组合而成的词典;
将序列数据中排序第一的标记意图类型确定为目标意图信息的意图类型。
可选的,智能调用机器人的装置包括:
服务信息获取模块,用于通过预置的机器人系统获取预置机器人的服务信息,预置机器人包括推荐机器人类型对应的机器人和预设业务类型对应的机器人,服务信息包括机器人类型、服务地址和端口信息;
存储模块,用于将服务信息存储至预置机器人注册中心中的注册表;
接入模块,用于将预置机器人接入预置机器人注册中心;
第一创建模块,用于创建接入预置机器人注册中心的预置机器人与注册表的对应关系;
第二创建模块,用于根据对应关系、接入预置机器人注册中心的预置机器人和预置意图类型创建机器人结构树,将机器人结构树存储至预置机器人注册中心。
可选的,第二模块406还可以具体用于:
通过意图跳转指令和目标意图类型对机器人结构树进行遍历,得到与目标意图类型对应的目标机器人;
获取与目标意图类型对应的关联机器人,以及获取目标机器人和关联机器人的目标服务地址;
根据目标服务地址调用与目标意图类型对应的目标机器人,并设置目标服务地址对应日志型键值数据库的目标键值;
根据目标键值对日志型键值数据库进行检索,得到目标意图类型对应的机器人交互信息。
可选的,识别模块401还可以具体用于:
对待处理的语音信息进行语音识别、文本语义识别、分词处理和词向量转换,得到文本语义分词向量;
计算文本语义分词向量和预置敏感词向量之间的相似度,对相似度进行加权求和,得到待处理的语音信息的敏感度值;
判断敏感度值是否小于或等于预设阈值;
若敏感度值小于或等于预设阈值,则对待处理的语音信息进行意图识别和槽值填充处理,得到意图信息。
上述智能调用机器人的装置中各模块和各单元的功能实现与上述智能调用机器人的方法实施例中各步骤相对应,其功能和实现过程在此处不再一一赘述。
本发明实施例中,在通过意图识别和意图跳转选择处理,系统地将散落在各个应用场景的机器人联通和智能调用,提高了智能客服机器人调用的准确性的基础上,通过预置的基于特征参数规整的优化算法根据不良信息对机器人系统进行优化,当用户下一次进行咨询时,由优化后的智能客服机器人对其进行服务,使得智能客服机器人更具有智能性和联通性,进而提高智能客服机器人调用的准确性。
上面图4和图5从模块化功能实体的角度对本发明实施例中的智能调用机器人的装置进行详细描述,下面从硬件处理的角度对本发明实施例中智能调用机器人的设备进行详细描述。
图6是本发明实施例提供的一种智能调用机器人的设备的结构示意图,该智能调用机器人的设备600可因配置或性能不同而产生比较大的差异,可以包括一个或一个以上处理器(central processing units,CPU)610(例如,一个或一个以上处理器)和存储器620,一个或一个以上存储应用程序633或数据632的存储介质630(例如一个或一个以上海量存储设备)。其中,存储器630和存储介质630可以是短暂存储或持久存储。存储在存储介质630的程序可以包括一个或一个以上模块(图示没标出),每个模块可以包括对智能调用机器人的设备600中的一系列指令操作。更进一步地,处理器610可以设置为与存储介质630通信,在智能调用机器人的设备600上执行存储介质630中的一系列指令操作。
智能调用机器人的设备600还可以包括一个或一个以上电源640,一个或一个以上有线或无线网络接口650,一个或一个以上输入输出接口660,和/或,一个或一个以上操作系统631,例如Windows Serve,Mac OS X,Unix,Linux,FreeBSD等等。本领域技术人员可以理解,图6示出的智能调用机器人的设备结构并不构成对智能调用机器人的设备的限定,可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置。
本发明还提供一种计算机可读存储介质,该计算机可读存储介质可以为非易失性计算机可读存储介质,该计算机可读存储介质也可以为易失性计算机可读存储介质,计算机可读存储介质中存储有指令,当指令在计算机上运行时,使得计算机执行智能调用机器人的方法的步骤。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统,装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本发明的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本发明各个实施例方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(read-only memory,ROM)、随机存取存储器(random access memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上,以上实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的精神和范围。
Claims (10)
1.一种智能调用机器人的方法,其特征在于,所述智能调用机器人的方法包括:
通过预置的机器人系统获取待处理的语音信息,对所述待处理的语音信息进行意图识别和槽值填充处理,得到意图信息;
通过预置的意图条件表对所述意图信息进行分析得到目标意图信息,获取所述目标意图信息的意图类型;
遍历预置机器人注册中心中的机器人结构树,得到与所述意图类型对应的机器人以及所述机器人的服务地址,根据所述服务地址调用所述机器人;
获取用户和所述机器人之间的交互信息,通过预置的日志型键值数据库对所述交互信息进行缓存,得到机器人交互信息;
获取目标语音信息,调用预置的自然语言处理模型获取所述目标语音信息的目标意图类型,根据所述目标意图类型和预置的跳转器触发意图跳转指令,所述目标语音信息用于指示在所述待处理的语音信息之后所输入的语音信息;
根据所述意图跳转指令从所述预置机器人注册中心中并通过遍历所述机器人结构树,调用所述目标意图类型对应的目标机器人,并从所述日志型键值数据库中,获取所述目标意图类型对应的机器人交互信息;
所述遍历预置机器人注册中心中的机器人结构树,得到与所述意图类型对应的机器人以及所述机器人的服务地址包括:
在机器人结构树中检测所述意图类型对应的第一结点,分析所述第一结点是否连接有子结点,若所述第一结点连接有子结点,则分析是否连接意图类型中的子类型对应的子结点,若是,则选中与所述子类型相似度大于预设值的目标子结点;
若所述第一结点没连接有子结点,则遍历分析所述第一结点所在层的剩余结点是否连接有子结点,若是,则获取与意图类型中的子类型相似度大于预设值的目标子结点;
从注册表中读取所述目标子结点对应的机器人的服务地址,通过所述服务地址调用所述意图类型对应的机器人。
2.根据权利要求1所述的智能调用机器人的方法,其特征在于,所述通过预置的意图条件表对所述意图信息进行分析得到目标意图信息,获取所述目标意图信息的意图类型,包括:
根据所述意图信息遍历预置的意图条件表,判断所述意图信息是否满足所述意图条件表中的意图条件;
若所述意图信息不满足所述意图条件,则获取历史操作日志信息,所述历史操作日志信息用于指示根据历史语音信息获取对应的机器人所生成的操作日志信息;
对所述历史操作日志信息进行聚类分析,得到目标意图信息以及推荐机器人类型,并将所述推荐机器人类型确定为所述目标意图信息的意图类型;
若所述意图信息满足所述意图条件,则将满足所述意图条件的意图信息确定为目标意图信息,以及获取所述目标意图信息对应的历史语音信息;
提取所述历史语音信息的标记意图类型,将符合预设条件的标记意图类型确定为所述目标意图信息的意图类型。
3.根据权利要求2所述的智能调用机器人的方法,其特征在于,所述提取所述历史语音信息的标记意图类型,将符合预设条件的标记意图类型确定为所述目标意图信息的意图类型,包括:
获取所述历史语音信息的标签信息,提取所述标签信息上所标注的标记意图类型;
计算所述标记意图类型在预置领域词典中的词频-正态分布文档频率值,按照所述词频-正态分布文档频率值从大到小的顺序对所述标记意图类型进行排序,得到序列数据,所述预置领域词典用于指示由机器人领域中各业务类型对应的术语、字词和文档组合而成的词典;
将所述序列数据中排序第一的标记意图类型确定为所述目标意图信息的意图类型。
4.根据权利要求1所述的智能调用机器人的方法,其特征在于,所述通过预置的机器人系统获取待处理的语音信息,对所述待处理的语音信息进行意图识别和槽值填充处理,得到意图信息之前,所述智能调用机器人的方法包括:
通过预置的机器人系统获取预置机器人的服务信息,所述预置机器人包括推荐机器人类型对应的机器人和预设业务类型对应的机器人,所述服务信息包括机器人类型、服务地址和端口信息;
将所述服务信息存储至预置机器人注册中心中的注册表;
将所述预置机器人接入所述预置机器人注册中心;
创建接入所述预置机器人注册中心的预置机器人与所述注册表的对应关系;
根据所述对应关系、所述接入所述预置机器人注册中心的预置机器人和预置意图类型创建机器人结构树,将所述机器人结构树存储至所述预置机器人注册中心。
5.根据权利要求1所述的智能调用机器人的方法,其特征在于,所述根据所述意图跳转指令从所述预置机器人注册中心中,并通过遍历所述机器人结构树调用所述目标意图类型对应的目标机器人,并从所述日志型键值数据库中,获取所述目标意图类型对应的机器人交互信息,包括:
通过所述意图跳转指令和所述目标意图类型对所述机器人结构树进行遍历,得到与所述目标意图类型对应的目标机器人;
获取与所述目标意图类型对应的关联机器人,以及获取所述目标机器人和所述关联机器人的目标服务地址;
根据所述目标服务地址调用与所述目标意图类型对应的目标机器人,并设置所述目标服务地址对应所述日志型键值数据库的目标键值;
根据所述目标键值对所述日志型键值数据库进行检索,得到所述目标意图类型对应的机器人交互信息。
6.根据权利要求1-5中任一项所述的智能调用机器人的方法,其特征在于,所述根据所述意图跳转指令从所述预置机器人注册中心中,并通过遍历所述机器人结构树调用所述目标意图类型对应的目标机器人,并从所述日志型键值数据库中,获取所述目标意图类型对应的机器人交互信息之后,所述智能调用机器人的方法包括:
获取历史机器人交互信息中的不良信息,通过预置的基于特征参数规整的优化算法和所述不良信息对所述机器人系统进行优化,所述不良信息包括历史记录的机器人交互信息中的操作错误信息和用户不满意信息。
7.根据权利要求1所述的智能调用机器人的方法,其特征在于,所述对所述待处理的语音信息进行意图识别和槽值填充处理,得到意图信息,包括:
对所述待处理的语音信息进行语音识别、文本语义识别、分词处理和词向量转换,得到文本语义分词向量;
计算所述文本语义分词向量和预置敏感词向量之间的相似度,对所述相似度进行加权求和,得到所述待处理的语音信息的敏感度值;
判断所述敏感度值是否小于或等于预设阈值;
若所述敏感度值小于或等于预设阈值,则对所述待处理的语音信息进行意图识别和槽值填充处理,得到意图信息。
8.一种智能调用机器人的装置,其特征在于,所述智能调用机器人的装置执行如权利要求1-7中任意一项所述的智能调用机器人的方法,所述智能调用机器人的装置包括:
识别模块,用于通过预置的机器人系统获取待处理的语音信息,对所述待处理的语音信息进行意图识别和槽值填充处理,得到意图信息;
分析模块,用于通过预置的意图条件表对所述意图信息进行分析得到目标意图信息,获取所述目标意图信息的意图类型;
遍历模块,用于遍历预置机器人注册中心中的机器人结构树,得到与所述意图类型对应的机器人以及所述机器人的服务地址,根据所述服务地址调用所述机器人;
缓存模块,用于获取用户和所述机器人之间的交互信息,通过预置的日志型键值数据库对所述交互信息进行缓存,得到机器人交互信息;
第一调用模块,用于获取目标语音信息,调用预置的自然语言处理模型获取所述目标语音信息的目标意图类型,根据所述目标意图类型和预置的跳转器触发意图跳转指令,所述目标语音信息用于指示在所述待处理的语音信息之后所输入的语音信息;
第二调用模块,用于根据所述意图跳转指令从所述预置机器人注册中心中,调用所述目标意图类型对应的目标机器人,并从所述日志型键值数据库中,获取所述目标意图类型对应的机器人交互信息。
9.一种智能调用机器人的设备,其特征在于,所述智能调用机器人的设备包括:存储器和至少一个处理器,所述存储器中存储有指令,所述存储器和所述至少一个处理器通过线路互连;
所述至少一个处理器调用所述存储器中的所述指令,以使得所述智能调用机器人的设备执行如权利要求1-7中任意一项所述的智能调用机器人的方法。
10.一种计算机可读存储介质,所述计算机可读存储介质上存储有计算机程序,其特征在于,所述计算机程序被处理器执行时实现如权利要求1-7中任一项所述智能调用机器人的方法。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010351311.8A CN111694939B (zh) | 2020-04-28 | 2020-04-28 | 智能调用机器人的方法、装置、设备及存储介质 |
PCT/CN2020/122325 WO2021218061A1 (zh) | 2020-04-28 | 2020-10-21 | 智能调用机器人的方法、装置、设备及存储介质 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010351311.8A CN111694939B (zh) | 2020-04-28 | 2020-04-28 | 智能调用机器人的方法、装置、设备及存储介质 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN111694939A CN111694939A (zh) | 2020-09-22 |
CN111694939B true CN111694939B (zh) | 2023-09-19 |
Family
ID=72476710
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202010351311.8A Active CN111694939B (zh) | 2020-04-28 | 2020-04-28 | 智能调用机器人的方法、装置、设备及存储介质 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN111694939B (zh) |
WO (1) | WO2021218061A1 (zh) |
Families Citing this family (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111694939B (zh) * | 2020-04-28 | 2023-09-19 | 平安科技(深圳)有限公司 | 智能调用机器人的方法、装置、设备及存储介质 |
CN112388643A (zh) * | 2020-09-24 | 2021-02-23 | 中山大学 | 多功能健康科普机器人 |
CN111930854B (zh) * | 2020-10-10 | 2021-01-08 | 北京福佑多多信息技术有限公司 | 意图预测的方法及装置 |
CN112309372B (zh) * | 2020-10-28 | 2024-02-23 | 平安科技(深圳)有限公司 | 基于语调的意图识别方法、装置、设备及存储介质 |
CN113010637A (zh) * | 2021-02-24 | 2021-06-22 | 世纪龙信息网络有限责任公司 | 一种文本审核方法及装置 |
CN112967718B (zh) * | 2021-04-02 | 2024-04-12 | 深圳吉祥星科技股份有限公司 | 基于声音的投影仪控制方法、装置、设备及存储介质 |
CN113380240B (zh) * | 2021-05-07 | 2022-04-12 | 荣耀终端有限公司 | 语音交互方法和电子设备 |
CN113299294B (zh) * | 2021-05-26 | 2024-06-11 | 中国平安人寿保险股份有限公司 | 任务型对话机器人交互方法、装置、设备及存储介质 |
CN113434653A (zh) * | 2021-06-30 | 2021-09-24 | 平安科技(深圳)有限公司 | 处理查询语句的方法、装置、设备及存储介质 |
CN114036277B (zh) * | 2021-11-15 | 2024-08-23 | 深圳壹账通智能科技有限公司 | 一种对话机器人路由跳转方法、装置、电子设备和介质 |
CN114117023A (zh) * | 2022-01-26 | 2022-03-01 | 深圳追一科技有限公司 | 交互方法、装置、电子设备及存储介质 |
CN114676235A (zh) * | 2022-03-02 | 2022-06-28 | 深圳追一科技有限公司 | 基于机器人的应答方法、装置、计算机设备和存储介质 |
CN114416701A (zh) * | 2022-03-30 | 2022-04-29 | 威海海洋职业学院 | 一种基于大数据的财务咨询智能引导系统及方法 |
CN116029379B (zh) * | 2022-12-31 | 2024-01-02 | 中国电子科技集团公司信息科学研究院 | 空中目标意图识别模型构建方法 |
CN117573847B (zh) * | 2024-01-16 | 2024-05-07 | 浙江同花顺智能科技有限公司 | 可视化答案的生成方法、装置、设备及存储介质 |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108509484A (zh) * | 2018-01-31 | 2018-09-07 | 腾讯科技(深圳)有限公司 | 分类器构建及智能问答方法、装置、终端及可读存储介质 |
CN108829757A (zh) * | 2018-05-28 | 2018-11-16 | 广州麦优网络科技有限公司 | 一种聊天机器人的智能服务方法、服务器及存储介质 |
CN109146610A (zh) * | 2018-07-16 | 2019-01-04 | 众安在线财产保险股份有限公司 | 一种智能保险推荐方法、装置及智能保险机器人设备 |
CN109241251A (zh) * | 2018-07-27 | 2019-01-18 | 众安信息技术服务有限公司 | 一种会话交互方法 |
WO2019040436A1 (en) * | 2017-08-21 | 2019-02-28 | Facet Labs, Llc | COMPUTER ARCHITECTURE FOR MULTIPLE SEARCH ROBOTS AND BEHAVIOR ROBOTS AND ASSOCIATED DEVICES AND METHODS |
CN109543030A (zh) * | 2018-10-12 | 2019-03-29 | 平安科技(深圳)有限公司 | 客服机器人会话文本分类方法及装置、设备、存储介质 |
CN109857848A (zh) * | 2019-01-18 | 2019-06-07 | 深圳壹账通智能科技有限公司 | 交互内容生成方法、装置、计算机设备及存储介质 |
CN110010127A (zh) * | 2019-04-01 | 2019-07-12 | 北京儒博科技有限公司 | 场景切换方法、装置、设备和存储介质 |
CN110019725A (zh) * | 2017-12-22 | 2019-07-16 | 科沃斯商用机器人有限公司 | 人机交互方法、系统及其电子设备 |
CN110555095A (zh) * | 2018-05-31 | 2019-12-10 | 北京京东尚科信息技术有限公司 | 人机对话方法和装置 |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2963132A1 (fr) * | 2010-07-23 | 2012-01-27 | Aldebaran Robotics | Robot humanoide dote d'une interface de dialogue naturel, methode d'utilisation et de programmation de ladite interface |
CN105426436B (zh) * | 2015-11-05 | 2019-10-15 | 百度在线网络技术(北京)有限公司 | 基于人工智能机器人的信息提供方法和装置 |
CN108197191B (zh) * | 2017-12-27 | 2018-11-23 | 神思电子技术股份有限公司 | 一种多轮对话的场景意图中断方法 |
JP7099031B2 (ja) * | 2018-04-27 | 2022-07-12 | 日本電信電話株式会社 | 回答選択装置、モデル学習装置、回答選択方法、モデル学習方法、プログラム |
CN108804536B (zh) * | 2018-05-04 | 2022-10-04 | 科沃斯商用机器人有限公司 | 人机对话与策略生成方法、设备、系统及存储介质 |
CN111694939B (zh) * | 2020-04-28 | 2023-09-19 | 平安科技(深圳)有限公司 | 智能调用机器人的方法、装置、设备及存储介质 |
-
2020
- 2020-04-28 CN CN202010351311.8A patent/CN111694939B/zh active Active
- 2020-10-21 WO PCT/CN2020/122325 patent/WO2021218061A1/zh active Application Filing
Patent Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2019040436A1 (en) * | 2017-08-21 | 2019-02-28 | Facet Labs, Llc | COMPUTER ARCHITECTURE FOR MULTIPLE SEARCH ROBOTS AND BEHAVIOR ROBOTS AND ASSOCIATED DEVICES AND METHODS |
CN111033494A (zh) * | 2017-08-21 | 2020-04-17 | 费赛特实验室有限责任公司 | 用于多个搜索机器人和行为机器人的计算体系架构以及相关的设备和方法 |
CN110019725A (zh) * | 2017-12-22 | 2019-07-16 | 科沃斯商用机器人有限公司 | 人机交互方法、系统及其电子设备 |
CN108509484A (zh) * | 2018-01-31 | 2018-09-07 | 腾讯科技(深圳)有限公司 | 分类器构建及智能问答方法、装置、终端及可读存储介质 |
CN108829757A (zh) * | 2018-05-28 | 2018-11-16 | 广州麦优网络科技有限公司 | 一种聊天机器人的智能服务方法、服务器及存储介质 |
CN110555095A (zh) * | 2018-05-31 | 2019-12-10 | 北京京东尚科信息技术有限公司 | 人机对话方法和装置 |
CN109146610A (zh) * | 2018-07-16 | 2019-01-04 | 众安在线财产保险股份有限公司 | 一种智能保险推荐方法、装置及智能保险机器人设备 |
CN109241251A (zh) * | 2018-07-27 | 2019-01-18 | 众安信息技术服务有限公司 | 一种会话交互方法 |
CN109543030A (zh) * | 2018-10-12 | 2019-03-29 | 平安科技(深圳)有限公司 | 客服机器人会话文本分类方法及装置、设备、存储介质 |
CN109857848A (zh) * | 2019-01-18 | 2019-06-07 | 深圳壹账通智能科技有限公司 | 交互内容生成方法、装置、计算机设备及存储介质 |
CN110010127A (zh) * | 2019-04-01 | 2019-07-12 | 北京儒博科技有限公司 | 场景切换方法、装置、设备和存储介质 |
Also Published As
Publication number | Publication date |
---|---|
CN111694939A (zh) | 2020-09-22 |
WO2021218061A1 (zh) | 2021-11-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN111694939B (zh) | 智能调用机器人的方法、装置、设备及存储介质 | |
WO2021189729A1 (zh) | 复杂关系网络的信息分析方法、装置、设备及存储介质 | |
US9436681B1 (en) | Natural language translation techniques | |
US8768914B2 (en) | System and method for searching and matching databases | |
CN112000776B (zh) | 基于语音语义的话题匹配方法、装置、设备及存储介质 | |
CN111581354A (zh) | 一种faq问句相似度计算方法及其系统 | |
CN108197282B (zh) | 文件数据的分类方法、装置及终端、服务器、存储介质 | |
US7475013B2 (en) | Speaker recognition using local models | |
CN108027814B (zh) | 停用词识别方法与装置 | |
CN111428028A (zh) | 基于深度学习的信息分类方法及相关设备 | |
CN111831810B (zh) | 智能问答方法、装置、设备及存储介质 | |
CN113221570B (zh) | 基于线上问诊信息的处理方法、装置、设备及存储介质 | |
CN110659175A (zh) | 日志的主干提取方法、分类方法、设备及存储介质 | |
CN117334186B (zh) | 一种基于机器学习的语音识别方法及nlp平台 | |
CN116501844A (zh) | 语音关键词检索方法及系统 | |
CN114943285B (zh) | 互联网新闻内容数据智能审核系统 | |
CN108875060B (zh) | 一种网站识别方法及识别系统 | |
CN111831286A (zh) | 一种用户投诉处理方法和设备 | |
CN113901839A (zh) | 用户视频信息审核方法、装置、设备及存储介质 | |
WO2021159668A1 (zh) | 机器人对话方法、装置、计算机设备和存储介质 | |
CN114444514A (zh) | 语义匹配模型训练、语义匹配方法及相关装置 | |
CN117221839B (zh) | 5g信令识别方法及其系统 | |
CN113780005B (zh) | 一种基于语义模型的Handle存量标识解析方法 | |
CN111881283B (zh) | 一种业务关键词库创建方法、智能聊天引导方法及装置 | |
CN114124449B (zh) | 一种基于机器学习的sql注入攻击识别方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |